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Problem Set #8 

MORE ON LEAST SQUARES 

(Due October 29, 2008) 

(Do Problems 1, 2, 3, 4 and 7) 
 

1. From m independent measurements ix b of the pulse rate with different 

variances 2 2 2

1 2, ,..., m   , what is the best estimate x̂ ?  What is the variance P in the best 

estimate? 

 

2.   Consider two measurements having error variances 11 223, 2R R  , and 

covariance 12 21 1R R   .  If the measurements of the parameter x are 1 0b  and 2 5b  , 

what is the best estimate x̂ ?  What is the error variance? 

 

3.   A child’s age is estimated as b1 by his mother with error probabilities 

1 0 10.1, 0.8, 0.1e e e    , and b2 by his father with error probabilities 

1 0 10.2, 0.6, 0.2e e e    . 

(a)  Find the best linear estimate (Hint: find the variance of errors and use least 

squares). 

(b)  Find the minimum mean squared estimate (i.e. conditional mean). 

 

4. Suppose we have the QR factorization for an m by n matrix A and now wish to solve 

the least squares problem  
2

min TA uv x b  where u and b are m vectors, and v  is an n 

vector.  Give an algorithm for solving this problem in O(mn) operations. Assume that Q 

must be updated. 

 

5.   Give an algorithm for updating the QR factorization of a matrix A when the k
th
 row is 

deleted from A. 

 

6.  A practical application of recursive least squares and Kalman filtering occurs in 

applications where periodic measurements of a changing system are made in order to 

determine the parameters of the system.  A typical example is the track-while-scan 

operation of a radar in which the position of a target is measured each time the antenna 

rotates past the target position.  If it is assumed that the target is moving in a straight line 

at a constant velocity, then these measurements can be used to determine both the target 

position and velocity.  In any practical case, the measurements are corrupted by noise so 

they are not precise, but have errors associated with them.  This means that the tracking 

operation must provide some filtering or smoothing in the process of estimating the 

system parameters. 



 A simple system that is capable of generating the track of a target from a 

sequence of discrete measurements is the   tracker (a more sophisticated tracker is 

the Kalman filter).  In this system, current and past measurements are used to predict the 

next measured value.  The difference between the actual measured values and predicted 

value (called the residual) is used to correct the predictor parameters.  The fractions of the 

error between the measured and predicted positions used to correct the prediction of 

position and velocity estimates are the constants  and   , respectively.  The system is 

easily implemented in two dimensions (x-y) or three dimensions.  However, in the 

interests of simplicity, we will consider the problem of tracking in only one dimension 

(x).  That is, we want to estimate the target’s position and its velocity along the x-axis 

based on inaccurate measurements. 

  

Let:

 

 time interval between two successive measurements (i.e. period of measurement = 1 s)

( )  true position of target along the -coordinate at time step 

( )  true velocity of the target along the -
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 coordinate at time step 

( )  acceleration of the target modeled as random noise at time step 

( )  measurement noise at time step 

( )  measured target position along -axis at time step 
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 stimate of the target position along the -coordinate at time step 

ˆ( )  estimate of the target velocity along the -coordinate at time step 

( )  predicted target position at time step 
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 edicted target velocity at time step n

   

The motion of the target is modeled by the difference equation: 
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with the initial conditions:  x(0) = 0 and v(0) = 1000 ft/sec.  At each time step n, the 

process noise is assumed to be a random variable drawn from a Gaussian distribution 

with zero mean and standard deviation of 30 ft/sec
2
. 

 

The measurement equation is given by ( ) ( ) ( )z n x n e n  , where e(n) is the measurement 

noise.  At each time step n, the measurement noise is assumed to be a random variable 

drawn from a Gaussian distribution with zero mean and standard deviation of 300 ft.  

 

The   filter operation can be described by the following difference equations: 
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(a)  Using Eqs. (1-3), show that the  filter can be written in state-space form: 
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and the output equation is given by: 

ˆ( ) (1 ) ( ) ( )px n x n z n    . 

The filter starts at n = 1 with initial conditions: ˆ(1) (0) (0),  and (1) 0.p px X z v     For 

the target parameters selected, the values  and   are given by: 

0.36 and 0.08.    

 

(b) Simulate the target dynamics and measurement equations for (1,200).n  

(c) Couple the simulation of Task 2 with the simulation of the  filter.  Plot the 

prediction error (also called residual) (z(n)-xp(n)) and the true tracking error 

 ˆ( ) ( ) .x n X n   Also, plot the true target positions x(n) and the estimated target positions 

ˆ ( )X n as a function of n.  Discuss how well your tracker tracks the target. 

(d) Repeat (a) and (c) using the conventional Kalman filter. 

(e) Repeat (a) and (c) using the square-root version of the Kalman filter. 

 

7. Derive the square-root version of the probabilistic data association filter (PDAF).  To 

learn about PDAF, read the paper by Y. Bar-Shalom and E. Tse, “Tracking in a Cluttered 

Environment with a Probabilistic Data Association Filter,” Automatica, Vol. 11, 1975, pp. 

451-560. 

 

8.  Resolve problems 3-7 of problem set #7 using recursive least squares, and plot the 

residuals. 

   

  

 

 

 

 


