
Copyright ©1991-2008 by K. Pattipati

Fall 2008

August 27, 2008

Lecture 1:

Course Overview

and Background
Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering

University of Connecticut
Contact: krishna@engr.uconn.edu (860) 486-2890

ECE 6435
Adv Numerical Methods in Sci Comp

mailto:krishna@engr.uconn.edu

Copyright ©1991-2008 by K. Pattipati 2

Outline of Lecture 1

 Course Objectives

 Round-off Errors

• Computer representation of numbers

• Machine accuracy

• Illustration of round-off error problems via examples

 Background on Matrix Algebra

• Matrix-vector notation

• Matrix-vector product

• Linear spaces associated with Ax=b

• Matrix inverse and pseudo inverse

• Eigen values and Eigen vectors

• Vector and Matrix Norms

• Singular value decomposition (SVD)

Copyright ©1991-2008 by K. Pattipati 3

Course Objectives

 Provide Systems analyst with effective software tools

 Use skills from Math. and CS to solve systems theory problems

 Three recurring Themes
• Need to understand mathematically the problem to be solved (i.e.,

systems theory)

• Express the problem algorithmically

• Appreciate the fact that computers have finite precision
CS

Algorithmic

Techniques

Systems

Theory

Digital Computer

Numerical Methods

for Linear Systems

- Truncation Errors (e.g., infinite summations
truncated.)

Areas:

• Optimal control and estimation

• Signal processing, AR, ARMA & LS

• Statistics, Multivariate Analysis

• Communication Theory

-Round-off Errors (finite precision)
Word length 32 bits (≈ 6-7 digit accuracy)
Word length 64 bits (≈ 13-14 digit accuracy)

Copyright ©1991-2008 by K. Pattipati 4

 Computer solution is not the same as Hand calculation

• Humans have been computing for thousands of years

• Famous examples are Pythagorean formula and Archimedes’s

approximation of π.

Round-Off Errors - 1

Example 1: Archimedes approximation of π

• Take a circle with diameter 1  circumference = π

• Idea: Approximate the circumference by the perimeters pn of

inscribed polygons with 2n sides, n = 2, 3, ...

• n

• n

1 1

0 1 1
sin 22.5

2 2 2
 

1 1

2 2 2


0 1
sin 45

2


2 square perimeter of square = 2 2 2.828

3 octagon perimeter of octagon = 4 (2 2) 3.08

n

n





    

     

1

2
1

2 2

Copyright ©1991-2008 by K. Pattipati 5

 Computer Algorithm:

Round-Off Errors - 2

2

1 1 1 3

2
2 ; 2(1 1 ());

2 (2 2)

n n
n n n n

p
p r r r      



2

2

1

Start with 2 2
For 3,4, ,60 DO

2 2(1 1 ())
2

End DO

n n
n n

p
n

p
p 




  



 DIASTER!!!

Combination of underflow and catastrophic cancellations

 Solution is to rewrite the recursion (due to W. Kahan)

Let

Stable Recursion:

1
2 4

n
n

n

r
r

r
 

 

1 1 1

1

2 ; 2(1 1)
4

2 4
2 4

n n
n n n

n
n n

n

r
p r r

r
r r

r

  



   

   
 

Copyright ©1991-2008 by K. Pattipati 6

2 3

1 ...
2! 3!

x x x
e x    

0 !

kn

k

x

k



Approximation of π by the Perimeter of Inscribed Polygons

Round-Off Errors - 3

 Alternatively, can show that for an 2n-sided inscribed polygon, the

perimeter is: pn = 2n sin (180°/2n)

0 2 3 4
Number of terms, n

V
al

u
e

o
f

π

5 6

1

2

3

1
(Number of sides of polygon = 2n)

original recursion

modified recursion

Example 2: Taylor series for ex

Let Sn = sum of first n terms =

Sn+1 = sum of first (n+1) terms = Sn+

 How far do we go?

• We sum terms until Sn* ≈ Sn*+1 = S

1

(1)!

nx

n





Copyright ©1991-2008 by K. Pattipati 7

Round-Off Errors - 4

 Solutions: 1) Use e-x = 1/ex

2) Integer x, use e-x = (e-1)x

3) Much better methods than Taylor series (e.g., Chebyshev

approximation, Pade approximation)

 These two examples illustrate the need to understand computer

arithmetic & their effects on computation.

 Results on a VAX 780 (# bits per floating point word= 32)

x S ex

1 2.718282 2.718282

5 148.4132 148.4132

10 22026.47 22026.46

15 3269017 3269017

20 4.8516531×108 4.8516531×108

-1 0.3678794 0.3678795

-5 6.7377836×10-3 6.7379470×10-3

-10 -1.6408609×10-4 4.5399930×10-5

-15 -2.2377001×10-2 3.0590232×10-7

-20 1.202966 2.0611537×10-9

Works for x>0; but

fails miserably for x<0

Copyright ©1991-2008 by K. Pattipati 8

 Computer representation of numbers

• Integers
– On a 32 bit computer: Largest integer = 231 - 1 = 2,147,483,647

– Smallest integer = -231

• Floating point (real) arithmetic
– On a 32 bit computer (IEEE standard): 24 bits for mantissa & 8 bits for

exponent. One bit from each for sign

– Largest floating point #: + 111 ... 12× 2127 ≈ 1.7 × 1038;

– Smallest positive floating point # ≈ 10-38

– Double precision  Twice as many bits to represent each number.

 Machine Accuracy

• Smallest (in magnitude) floating point number which when added to

the floating point number 1.0 produces a floating point number

different from 1 (also called macheps or εm or machine constant).

Smallest εm ∍1 + εm ≠ 1  εm = machine accuracy (function of the # of bits

in the mantissa)

32-bit floating point arithmetic  εm ≈ 2-23 ≈ 1.2 × 10-7

6-7 digit accuracy.

Computer Representation of Numbers

Copyright ©1991-2008 by K. Pattipati 9

Example 3: Addition of two positive floating point numbers x, y

• x + y = x(1+y/x)

• Note that if y/x < εm, fl(x+y) ≈ x

• Suppose y/x > εm. what is the relative error?

• The mere act of reading a floating point number (e.g., 0.3) into the

computer causes an error. so, xstored = x(1+ δx) or xstored - x = x δx; δx ≤ εm

 Every floating point operation introduces a fractional round-off error of

as much as εm

|true value-computed value|
relative error=

|true value|

| () () |
relative error

| () |

| () |
 max(,)

| () |

stored stored

x y

x y m

x y x y

x y

x y

x y

 
  

  





  



Round-off Error

irregular computations;

up or down equal prob., mean = 0,

N εm regular N = # of operations

also depends on implementation

Illustration of Round-Off Error Problems - 1

sd
2

mN



mN

Copyright ©1991-2008 by K. Pattipati 10

Example 4: Catastrophic cancellation

• Suppose y - x ≈ 2 εm. then

 Difference can be wrong in every digit

• Solutions:
- Use double precision arithmetic

- Modify algorithm to minimize catastrophic cancellations

(e.g., approximation to π and ex for x<0 from 1/e|x|)

| || () () |
relative error 1

| () | | |

y xstored storedy x y x

y x y x

   
  

 

2
2

1 2
2

2

1 2

4
 if trouble!!

2

2
 alternative same problem; but know

4

1
 compute (sgn() 4); = , = stable

2

b b ac
x ac b

a

c c
x x x

ab b ac

q c
q b b b ac x x

a q

  
 

 
 

   



Example 5: Roots of a quadratic equation

• Subtraction of nearly equal numbers is dangerous!!

Illustration of Round-Off Error Problems - 2

52 16(2 2.22x10)m
  

Copyright ©1991-2008 by K. Pattipati 11

Example 6: Implement ∍ round-off errors do not magnify with iteration

• Golden section # φ = .61803398; φ2=1-φ, φ3=φ- φ2,….

• In general, φn+1 = φn-1-φn DISATER (Why?)

• If n = 1 change Equation to x2 + x - 1 = 0 

Try it!!

• Stable φn+1 = φ·φn

• Suppose interested in only φn, n = 2L

• The concept of doubling is extremely useful in computing eAt and its

integrals

2

DO 1, ,

END DO

i L

 

 









5 1 5 1
; ()

2 2
x

 
 

Illustration of Round-Off Error Problems - 3

2log operations

DOUBLING

n

Copyright ©1991-2008 by K. Pattipati 12

Example 7: Kalman filter covariance equation

Usual → Pk+1/k = ΦPk/k-1 ΦT+Qk- ΦPk/k-1H
T(HPk/k-1H

T+Rk)
-1HPk/k-1 ΦT

Joseph’s form → Pk+1/k = Φ(I-GkH)Pk/k-1(I-GkH)T ΦT+Qk+GkRkGk
T

Twice the computation as original

Square root → Achieve stable updates with approximately same cost as

usual (Lectures 5 and 8).

Example 8: Accumulate all inner products in double precision (e.g.,)

sum = 0.0D+00

DO i = 1, ..., n

sum = sum + x(i)*x(i)

END DO

Example 9: Some problems are inherently bad (ill-conditioned)

Roots of a quartic : x4-4x3+8x2-16x+15.99999999 = (x-2)4-10-8 = 0

Actual Solution:

x1 = 2.01, x2 = 1.99, x3 = 2 + .01i, x4 = 2 - .01i

Suppose εm>10-10  computer solves (x-2)4 = 0

Illustration of Round-Off Error Problems - 4

T
x x

2
2

2

2

2

Scalar Case:

(1)
h p

p p q
h p r

r
p q

h p r





  


 


Copyright ©1991-2008 by K. Pattipati 13

 Small changes in coefficients lead to large changes in solution

 Such problems are termed ill-conditioned (not the fault of the

algorithm)

• For any algorithm want:

Example 10: Two linear equations (intersection of “nearly” parallel lines)

0.66x + 3.34y = 4

1.99x + 10.01y = 12

• Suppose we change right hand side to (3.96, 11.94),

the new solution is

⇒ Small changes in coeff. ⇒ Large changes in solution ⇒ ill-conditioned

3

12

Speed

Accuracy
finite precision

REALIABLITY
(robustness, stable)

polynomial

non-polynomial
GOOD ALGORITHM

key

GOOD IMPLEMENTATION

Good computer
(do not have much control)

1
 solution

1

x

y

    
     

    

6

0

x

y

   
   

   

Illustration of Round-Off Error Problems - 5

Copyright ©1991-2008 by K. Pattipati 14

Background on Matrix Algebra

 Vector – Matrix Notation

• xi ∊ R xi ∊ [-∞, ∞]

• x ∊ Rn x ∊ Cn for complex numbers

• A = [aij] m × n matrix ∊ Rmn

• AT = [aji] n× m matrix ∊ Rnm

• A square n × n matrix is symmetric, if aij = aji

• Idempotent if A2 = A (very useful to validate linear systems software)

e.g.,

• Diagonal matrix: A = = Diag (µ1, µ2,…, µn) = D (µ1, µ2,…, µn)

• Identity matrix: In = Diag (1 1 … 1)

1

2
 a column vector of dimension

n

x

x
x n

x

 
 
 
 
 
 



2 4
 symmetric

4 11

 
 
 

1

4 / 5 2 / 5 2.3746 0.6873
; (1)

2 / 5 1/ 5 0.6873 1.3437!

i
A

i

A
A e I I e A

i





    
         

    


1

2

0

0 n







 
 
 
  

Copyright ©1991-2008 by K. Pattipati 15

Matrix-Vector Notation - 1

• A matrix is PD if xTAx > 0 ∀x ≠ 0; PSD if = xTAx ≥ 0

• Note: xTAx = xTATx ⇒ xTAx = xT[(A+AT)/2]x

• If A is skew symmetric, AT = -A ⇒ xTAx = 0

• A = Diag(µi) ⇒ xTAx =

• We will study properties of PD matrices later

• Vector x is an n× 1 matrix

• xTy = inner (dot, scalar) product =

x

y

(x-y)
θ

 is called symmetrized part of
2

TA A
A

 
 
 

1

 (a scalar)
n

i i

i

x y



2

2 2 2

1 1 2 2 3 3

2 2 2 2 2 2

1 2 3 1 2 3

1 1 2 2 3 3

2 2

() () ()

() ()

2()

Also know () () 2 ()() cos()

cos
()()

T T T T

T T

T T

x y x y x y x y

x x x y y y

x y x y x y

x x y y x x y y

x y x y

x yx x y y





      

     

  

 

  

 

1

2

1 2 n

n

y

y
x x x

y

 
 
 
 
 
 




0 4
. .,

4 0
e g A

 
  

 2

1

n

i i

i

x




Copyright ©1991-2008 by K. Pattipati 16

• θ = 90°⇒ x and y are perpendicular to each other

⇒ ORTHOGONAL ⇒ xTy = 0, e.g.,

90°

y

x
 Matrix-vector product

⇒ Ax = ∑aixi Ax ⇒ linear combinations of columns of A

-1

1 2 4
 cos cos (0.8) 36.9

2 1 5

x y

 
 

      
 

.8 .6

.6 .8

x y

 
 
 

1

2 1 2 3

3

2 4 5 2 4 5

1 2 6 1 2 6

3 1 2 3 1 2

4 5 6 4 5 6

x

Ax x x x x

x

       
        
           
        
         

       

Matrix-Vector Notation - 2

Copyright ©1991-2008 by K. Pattipati 17

 Linearly independent vectors

• A subspace is what you get by taking all linear combinations of n

vectors.

• Suppose have a set of vectors a1, a2, …, ar

{a1, a2, …, ar} are dependent iff ∃ scalars a1, a2, …, ar ∍

• Independent if

⇒ there does not exist i0 ∍

 Rank of an m  n matrix, A

• Rank (A) = # of linearly independent columns

= # of linearly independent rows

= rank (AT) = dim [Range (A)] ≤ min (m, n)

 Independent columns = 2,

Independent rows = 2, Rank = 2.

1

0 where at least one 0
r

i i i

i

a 


 

1

0 0
r

i i i

i

a i 


   

1 1 0

0 1 1

1 0 1

 
 


 
  

Linear Independence

1

0
r

i i

i

a




Copyright ©1991-2008 by K. Pattipati 18

 Linear spaces associated with Ax=b

• Range (A) =

= column space of (A)

• dim(R(A)) = r, rank of (A)

• The key to answering the question on linear Spaces associated Ax=b is:

when does Ax=b have a solution?

that is, when does: ∑ xi ai= b have a solution?

⇒ answer: has a solution if b can expressed as a linear combination of the

columns of A or b ∈ R(A).

• In the above example, since in every column a1j + a2j - a3j = 0 ∀j, the right

hand side b also must have this structure  row 1 + row 2 – row 3 = 0

• b1+b2-b3 = 0 ⇒ yTb = 0 where y=(1 1 -1).

• So, for a solution to exist, only b perpendicular to y are allowed. We will

see later that y is in the so called null space of (AT)

2 1 1 5

3 5 0 3 1 3

5 1 0 0

b x

       
       

    
       
              

1

() { | for }
n

m n

i i

i

R A y R y a x x R


    

Linear Spaces Associated with Ax = b - 1

Copyright ©1991-2008 by K. Pattipati 19

• Null space of A=N(A) = {x ∈ Rn | Ax = 0}

.. also called Kernel of A or ker (A)

• Note that x = (0 0 0)T always satisfies Ax=0.

• Key: dim(N(A)) = n - r = n - rank(A)

2

3 no solution since in the column space of

4

6 5 1

But, 4 3 1 is also a solution of original pro

not

blem (why?)

1 0 1

5 1 2

3 1 = 3

0 1 5

b A

x

Ax A A b

 
 

 
 
  

     
     

  
     
          

    
   

  
   
       

1 1

1 0 infinite # of solutions 0 for 1

1 1

A Ax x 

    
     

     
     
         

 To summarize:
• Existence of a solution for b = ∑ai xi requires that b must be in column

space or range space, R(A)

• Uniqueness is related to N(A) ⇒ dim[N(A)] = 0

• If rank(A) = n then Ax = 0 ⇒ x = 0;

Unique solution to Ax = b if b ∈ R(A) (Note: need m ≥ n)

Linear Spaces Associated with Ax = b 2

Copyright ©1991-2008 by K. Pattipati 20

• To complete the characterization of the linear spaces associated with Ax=b,

we need R(AT) and N(AT).

• R(AT)={z ∈ Rn | ATy = z} ⇒ for solution to exist, z should be in the column

space of AT or row space of A

• N(AT)={y ∈ Rm | ATy = 0} = null space of AT

Col. Space Null space of A

Ax = b (m)R(A) (n)N(A)

ATy = z (n)R(AT) (m)N(AT)

Row space of A Null space of AT

 KEY: dim[R(AT)]+dim[N(A)] = r + n – r = n

dim[R(A)]+dim[N(AT)] = r + m – r = m

Rank of A = Rank of AT = r

Linearly ind. col. of (A) = linearly ind. rows of (A)

Example:

are linearly independent

1 0 1 1 1 1 1 1

1 1 0 1 0 1 () 0 1 1

0 1 1 1 1 1 0 1

 () ()

T

T

T

A y

N A

R A N A

       
       
    
       
                  

 

Linear Spaces Associated with Ax = b 3

Copyright ©1991-2008 by K. Pattipati 21

 This characterization of Rn and Rm will be useful in:
• Least squares (LS) estimation

• Constructing controllable and uncontrollable subspaces

• Constructing observable and unobservable subspaces

• Finding intersection of null spaces

• Approximating a matrix by another of lower rank (e.g., image compression, data

reduction, ….)

 Every x ∊ N(A) ⊥r to every z ∊ R(AT)
⇒ if ATy = z and Ax = 0 ⇒ xTz = xTATy = 0Ty = 0

1 0 1 1

 1 1 1 are linearly independent, 1 ()

0 1 1 1

() ()T

N A

R A N A

   
   
 
   
      

 

 Every y ∊ N(AT) ⊥r to every b ∊ R(A) ⇒ yTb = yTAx = 0

Null space

N(A) xn

row space

R(AT)

xr

Left Null space

N(AT)

Ax

•column space

R(A)

xr: Axr = Ax

xn: Axn = 0

Linear Spaces Associated with Ax = b 4

Rn Rm

Copyright ©1991-2008 by K. Pattipati 22

 Matrix inverse and pseudo inverse

• An n × n matrix A has rank (A) = n ⇒ A-1 exists  |A| ≠ 0

• (AT)-1=(A-1)T; orthogonal matrix, Q ⇒ Q-1 = QT

• (AB)-1=B-1A-1 if A and B are n by n
• |A-1| = 1/|A|, |AT| = |A|; |AB| = |A||B|

• When rank (A) < n and/or rank (A) < m, we define Pseudo inverse or Moore-

Penrose Inverse or Generalized Inverse

 Fundamental properties of Pseudo inverse

AA†A = A (AA†)T = AA† (symmetric)

A†AA† = A† (A†A)T = (A†A) (symmetric)

⇒ Note that both (In - A†A) and (Im - AA†) are idempotent

 Concept of pseudo inverse is very useful in least squares, Kalman

filtering, and spectral estimation
• Idea: we find x ∍ ||x||2 is a minimum.

• That is, out of the infinite # of possible solutions, we pick one with a

minimum norm or smallest “size” … Lecture 6.

1
.8 .6 .8 .6

.6 .8 .6 .8


   

   
   

Matrix Inverse & Pseudo Inverse

† †

† † †

† †

†

()()

(2)

(2)

()

n n

n

n

n

I A A I A A

I A A A AA A

I A A A A

I A A

 

  

  

 

Copyright ©1991-2008 by K. Pattipati 23

 Eigen values – Eigen vectors

• Basic property

• Key equation: A ξ i = λiξi

λi solution of | λI- A| = 0, characteristic equation of A

λn+an λ
n-1+…+a2 λ+a1 = 0

An+anA
n-1+…+a2A+a1I = 0 Caley-Hamilton Theorem

• If A = AT ⇒ symmetric:

‒ λi(A) real; Q = (ξ1 ξ2 …ξn) are orthogonal;

‒ Q can be made orthonormal ⇒ A =QΛQT

‒ Q is orthonormal ⇒ | λi(Q) | = 1

Example:

‒ A is PD ⇒ {λi(A)} are positive and real

Example:

max

min

max

eigen values of , () ()= biggest ()

eigen vectors of , () ()= smallest ()

() | () | spectral radius of ~ used as measure of size of

i i i

i i i

A A A A

A A A A

A A A A

   

   

 

 
 
 

 

0 1 0.8 0.6
1; 0.8 0.6 | | 1

1 0 0.6 0.8
i i ii  

   
          

   

P
2 2

3 5 0 D
2 4

i
 

    
 

Eigen Values & Eigen Vectors - 1

Copyright ©1991-2008 by K. Pattipati 24

0 1

1 0
i j

 
   

 

• A is skew symmetric ⇒ {λi(A)} are imaginary

Example:

• In general, λi(A)>0 ⇏ A is PD. Example:

• But, for symmetric A & λi(A)>0 ⇒ A is PD
⇒ So, for PD: xTAx > 0 ∀ x ≠ 0 (A need not be symmetric) or principal

minors or eigen values of symmetrized A>0

• Note: A, B are PD ⇒ A + B, A2, A-1, and all An are PD

• Eigen vectors associated with distinct eigen values are independent.

Proof: assume dependent ⇒ α1ξ1 +α2ξ2+…+αnξn= 0

multiply by A, A2, …, An-1

•

1 100

0 1

 
 
 

2 1

1 1 1

2 1

2 2 2

1 1 2 2

2 1

1

1
[] 0

1

 Vandermonde matrix

0 0 invertible if

n

n

n n

n

n n n

i i i i j

  

  
     

  

    







 
 
  
 
 
  

    






   



1 1

() (), det() ()
nn

i i

i i

tr A A A A 
 

  

Eigen Values & Eigen Vectors - 2

Copyright ©1991-2008 by K. Pattipati 25

 Similarity Transformations

• If

• If {λi} are distinct, Q-1AQ = Λ = Diag(λi)

• In particular, f(A) = Q f(L) Q-1 e.g., eAt=Q eΛt Q-1

… worst possible way of computing f(A)

• If {λi} are not distinct, need to use Jordan’s form….. Messy on computers

• OK for symmetric matrices f(A) = Q f(L)QT

 Vector and Matrix Norms:

• Play an important role in the convergence studies of algorithms.

• As an example, consider Ax = b problem

• Simplest and most important problem in Matrix Computations

• To show its importance, consider a linear system in steady state:

• Mathematically, solution exists iff b ∊ R(A) = {x ∊ Rm | ∑ai xi= b}

1 1exists, () ()i iQ A Q AQ A A    

1 10

 solve

ssx Ax Bu x A Bu A b

Ax Bu b

        

   



Vector and Matrix Norms - 1

Copyright ©1991-2008 by K. Pattipati 26

• Unique if N(A) = φ ⇒ ∑ai xi= 0 ⇒ x1 = x2 = …= xn = 0

⇒ Linearly independent columns of A

Q 1. If A and b are perturbed by a small amount δA and δb, how does it affect x? …

the so-called sensitivity (conditioning) problem.

2. What if A is “nearly” singular? what is near singularity?

3. If b ∉ R(A), then how can we determine x ∍ Ax is “close” to b? ⇒
least squares problem

4. How do we measure small Perturbations?

near singularity?

distance in vector spaces?

Norms generalize the concept of absolute value of a real number to vectors and

matrices (measure of “SIZE” of a vector and matrix)

 Vector Norms
•

1/

1/

1 2

1

1
1

1/2

2

2
1

Holder or -norm [| | | | | |] | | ~ "size"

1 | | 1-normor Manhattan Distance

most important 2 | | (2-norm, root sum square (RSS) or Euclidean no

p
n

p p p p p

n ip
i

n

i

i

n

i

i

x p x x x x

p x x

p x x







 
       

 

   

 
    

 









rm)

max | | (-norm)i ip x x








    



Norms provide

such a language

Vector & Matrix Norms - 2

Copyright ©1991-2008 by K. Pattipati 27

• All norms convey approximately same information.

• Only thing is, some are more convenient to use (e.g., 2-norm).

• However, all satisfy:

(i) ||x+y||p ≤ ||x||p+||y||p (Minkowski’s inequality)

(ii) ||x+y||p ≥ 0

(iii) ||cx||p= c||x||p
(iv) ||xTy||=|xTy|≤ ||x||p||y||q1/p +1/q = 1 (Holder’s inequality)

(v) |xTy| ≤ ||x||2||y||2 (Cauchy-Schwartz-Bunyakovski’s inequality)

(vi) ||Qx||2
2 = xTQTQx = xTx = ||x||2

2

⇒ 2-norm is invariant under orthogonal transformations …

extremely important idea in numerical computations.

(vii)

(viii)

2 1 2

2

1

x x n x

x x n x

x x n x

 

 

 

 

 

1 1
& satisfy

0 1

LB UB with equality

   
   
   

ˆ ˆ ˆ approx. to absolute error ; relative error /

-norm # of correct signifiant digits in

10 signifiant digitsp

x x x x x x x

x

p

  

 



Properties of Vector Norms

Copyright ©1991-2008 by K. Pattipati 28

 Matrix norms: A is m by n

1/2

2

1 1

1 1
1

(i) Frobenius norm (or) -norm =

(ii) -norm max ~ "size" of the matrix

(iii) : ; ;

(iv) 1 max | | max. column sum

(v)

Note

m n

ijF
i j

p

p x
p

p p p p p p p p p
m

ij
j n

i

F A a

Ax
p A

x

Ax A x AB A B A B A B

p A a

 

 


 
  
 



    

   





 

 

1/2

1/2

max max1/22

1
1

 2 max () (),

 Max. singular value of A

(vi) max | | max. row sum

T T

T

x T

n

ij
i m

j

x A Ax
p A A A A

x x

p A a

 

  


      

   

 Use of Matrix Norms:
• Use ||A|| to approximate | λ max(A)| = ρ(A) spectral radius of A.

• Can show ρ(A) ≤ ||A||p ∀ p.

• Other properties, see problem set #1

Properties of Matrix Norms

Copyright ©1991-2008 by K. Pattipati 29

• Scale by c = constant > ρ(A) ⇒ A/c has all | λi(A)| < 1. Will be useful in

evaluating eAt and integrals involving eAt.

• Matrix norm used in estmaing the convergence rate of algorithms. We see

its use in Lecture 4.

 Singular Value Decomposition (SVD) :

• .

 What is SVD?

• A ∊ Rmn = UΣVT; U & V orthogonal

• U = (u1, u2, …, um) ∊ Rmm V = (v1, v2, …, vn) ∊ Rnn

• UTAV= Σ =Diag(ζ1 ζ2 … ζp); p=min(m,n) ζ1≥ ζ2 ≥ … ≥ ζp ≥0

• .

• In general, can have ζ1≥ ζ2 ≥ … ≥ ζr > 0 and ζr+1=…= ζp=0

• r = rank(A) ⇒ can use SVD to determine rank of A
• A vi = ζi ui, ui is called the left singular vector of A

    11

1 1 2

2

0 ;
0

T

T

T

v
p m n A U p n m u u V

v

   
          

  

 2

2

0

0 0

T
r Tr

r r r rT

v
A U U U V

v

   
     

  

Singular Value Decomposition - 1

ˆ Best method for approximating by & Determining rank() is SVD.A A A

Copyright ©1991-2008 by K. Pattipati 30

1
2

1
1/2

2

1

ˆ ˆ

ˆ

r
T T T

r r r i i i r

i

n

i
F

i r

A U V A U V u v A A

A A

 







 

      

 
   

 





• AT ui = ζi vi, vi is called the right singular vector of A

AAT = U Σ2UT ⇒ AAT ui= ζ2
iui

⇒ ζ2
i are eigen values of AAT; ui eigen vectors of AAT

• Similarly, ATA = VΣ2VT ⇒ ATA vi= ζ2
i vi

⇒ ζ2
i are eigen values of ATA; vi eigen vectors of ATA

• Symmetric PD ⇒ SVD = eigen value analysis (called principal component

analysis in statistics)

• Since ||A||2 = [λmax(A
TA)]1/2 = (ζ2

max)
1/2 = ζmax

• Also, ||A||F = (ζ2
1+ζ2

2+…+ζ2
p)

1/2

||A-1||2 = [λmax(A
TA)-1]1/2 = 1/ζmin

 One application of SVD: data compression (reduction)

• Suppose we approximate A by the first r singular vectors. What is the error

involved?

• Know

Singular Value Decomposition - 2

Copyright ©1991-2008 by K. Pattipati 31

1 1

1 2 1

† †

1

() (); () ()

dim(()) dim(())

 () (); () ()

dim(()) dim(())

1
 Pseudo Inverse of

T

r r m
T

T

r r n r
T

r
T T

r r r i i

i i

R A u u N A u u

R A N A m

N A v v v R A v v

N A R A n

A A V U v u




 



  

 

 

 

    

 

 

• Very useful in spectral estimation and robust control.

 Second application: determining the condition number of a matrix A

• Condition number, k(A) = ||A||p||A
-1||p for p=2: k(A) = ζmax(A)/ζmin(A)

⇒ k(A) is a measure of non-singularity of A

Example 11:

• Large k(A) >106 ⇒ bad news in solving Ax=b

 Third application of SVD: determining the bases of linear spaces

associated with Ax=b and AT y=c as well as the pseudo inverse

max min

max min

.66 3.34
Consider

1.99 10.01

10.7588 0.0037

() / 2894

A

k A

 

 

 
  
 

 

 

Singular Value Decomposition - 3

