

ECE 6435 Adv Numerical Methods in Sci Comp

Fall 2008

August 27, 2008

Copyright ©1991-2008 by K. Pattipati

Outline of Lecture 1

Course Objectives

Round-off Errors

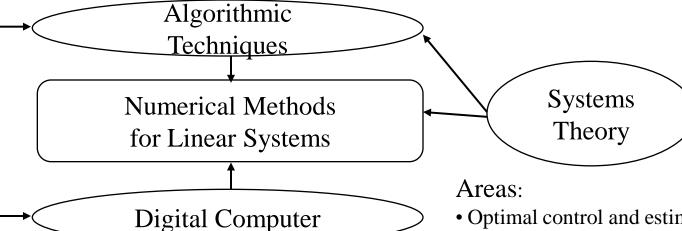
- Computer representation of numbers
- Machine accuracy
- Illustration of round-off error problems via examples

Background on Matrix Algebra

- Matrix-vector notation
- Matrix-vector product
- Linear spaces associated with $A\underline{x}=\underline{b}$
- Matrix inverse and pseudo inverse
- Eigen values and Eigen vectors
- Vector and Matrix Norms
- Singular value decomposition (SVD)

Course Objectives

- Provide Systems analyst with effective software tools
- Use skills from Math. and CS to solve systems theory problems *
- ** Three recurring Themes
 - Need to understand mathematically the problem to be solved (i.e., systems theory)
 - Express the problem **algorithmically**
 - Appreciate the fact that computers have finite precision



- Optimal control and estimation
- Signal processing, AR, ARMA & LS

CS

- Statistics, Multivariate Analysis
- Communication Theory
- Truncation Errors (e.g., infinite summations truncated.)

Word length 32 bits ($\approx 6-7$ digit accuracy)

Word length 64 bits (\approx 13-14 digit accuracy)

-Round-off Errors (finite precision)

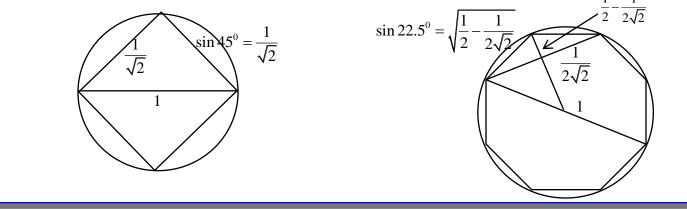
Round-Off Errors - 1

Computer solution is not the same as Hand calculation

- Humans have been computing for thousands of years
- Famous examples are Pythagorean formula and Archimedes's approximation of π .

Example 1: Archimedes approximation of π

- Take a circle with diameter $1 \Rightarrow$ circumference = π
- Idea: Approximate the circumference by the perimeters p_n of inscribed polygons with 2^n sides, n = 2, 3, ...
- $n = 2 \implies$ square \implies perimeter of square $= 2\sqrt{2} = 2.828 < \pi$
- $n = 3 \implies \text{octagon} \implies \text{perimeter of octagon} = 4\sqrt{(2 \sqrt{2})} \approx 3.08 < \pi$



Round-Off Errors - 2

Computer Algorithm:

Start with $p_2 = 2\sqrt{2}$ For n = 3, 4, ..., 60 DO $p_{n+1} = 2^n \sqrt{2(1 - \sqrt{1 - (\frac{p_n}{2^n})^2})}$

End DO

DIASTER!!!

Combination of underflow and catastrophic cancellations

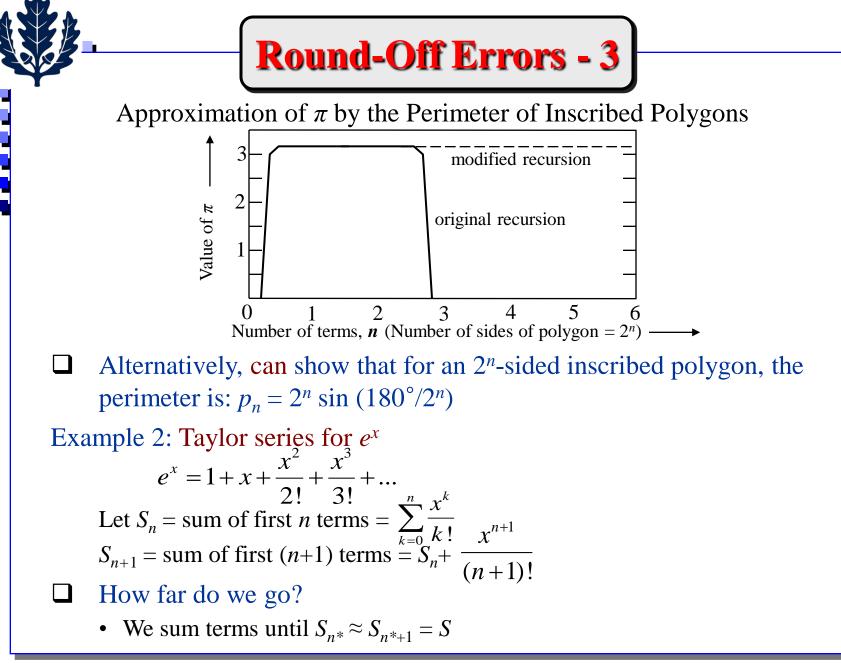
Solution is to rewrite the recursion (due to W. Kahan) Let

$$p_{n+1} = 2^n \sqrt{r_{n+1}}; \quad r_{n+1} = 2(1 - \sqrt{1 - (\frac{p_n}{2^n})^2}); \quad r_3 = \frac{2}{(2 + \sqrt{2})};$$

Stable Recursion:

$$r_{n+1} = \frac{r_n}{2 + \sqrt{4 - r_n}}$$

$$p_{n+1} = 2^n \sqrt{r_{n+1}}; \quad r_{n+1} = 2(1 - \sqrt{1 - \frac{r_n}{4}})$$
$$r_{n+1} = 2 - \sqrt{4 - r_n} = \frac{r_n}{2 + \sqrt{4 - r_n}}$$



Round-Off Errors - 4

Results on a VAX 780 (# bits per floating point word= 32)

x	S	e^x
1	2.718282	2.718282
5	148.4132	148.4132
10	22026.47	22026.4 <mark>6</mark>
15	3269017	3269017
20	4.8516531×10^{8}	4.8516531×10^{8}
-1	0.3678794	0.3678795
-5	6.7377836×10 ⁻³	6.737 <mark>9470</mark> ×10 ⁻³
-10	$-1.6408609 \times 10^{-4}$	4.5399930×10 ⁻⁵
-15	$-2.2377001 \times 10^{-2}$	3.0590232×10 ⁻⁷
-20	1.202966	2.0611537×10^{-9}

Solutions: 1) Use $e^{-x} = 1/e^x$

- 2) Integer *x*, use $e^{-x} = (e^{-1})^x$
- 3) Much better methods than Taylor series (e.g., Chebyshev approximation, Pade approximation)
- These two examples illustrate the need to understand computer arithmetic & their effects on computation.

Computer Representation of Numbers

- Computer representation of numbers
- Integers
 - On a 32 bit computer: Largest integer = 2^{31} 1 = 2,147,483,647
 - Smallest integer = -2^{31}
- Floating point (real) arithmetic
 - On a 32 bit computer (IEEE standard): 24 bits for mantissa & 8 bits for exponent. One bit from each for sign
 - Largest floating point #: + 111 ... $1_2 \times 2^{127} \approx 1.7 \times 10^{38}$;
 - Smallest positive floating point $\# \approx 10^{-38}$
 - Double precision \Rightarrow Twice as many bits to represent each number.

□ Machine Accuracy

- Smallest (in magnitude) floating point number which when added to the floating point number 1.0 produces a floating point number different from 1 (also called macheps or ε_m or machine constant).
- $\Rightarrow \text{Smallest } \varepsilon_m \ni 1 + \varepsilon_m \neq 1 \Rightarrow \varepsilon_m = \text{machine accuracy (function of the # of bits in the mantissa)}$

 \Rightarrow 32-bit floating point arithmetic $\Rightarrow \varepsilon_m \approx 2^{-23} \approx 1.2 \times 10^{-7}$ \Rightarrow 6-7 digit accuracy.

Example 3: Addition of two positive floating point numbers x, y

- x + y = x(1 + y/x)
- Note that if $y/x < \varepsilon_m$, $fl(x+y) \approx x$
- Suppose $y/x > \varepsilon_m$ what is the relative error?

relative error= |true value-computed value|

true value

• The mere act of reading a floating point number (e.g., 0.3) into the computer causes an error. so, $x_{stored} = x(1 + \delta_x)$ or $x_{stored} - x = x \delta_x$; $\delta_x \le \varepsilon_m |(x + y) - (x_{stored} + y_{stored})|$

relative error
$$= \frac{|(x+y) - (x_{stored} + y_{stored})|}{|(x+y)|}$$
$$= \frac{|(x\delta_x + y\delta_y)|}{|(x+y)|} \le \max(\delta_x, \delta_y) \le \varepsilon_m$$

 \Rightarrow Every floating point operation introduces a fractional round-off error of as much as ε_m $\sqrt{N}\varepsilon$ irregular computations:

as much as ε_m Round-off Error $N \varepsilon_m$ irregular computations; up or down equal prob., mean = 0, sd = $\sqrt{N} \frac{\varepsilon_m}{2}$ $N \varepsilon_m$ regular N = # of operations also depends on implementation

Illustration of Round-Off Error Problems - 2

- Example 4: Catastrophic cancellation
- Suppose $y x \approx 2 \varepsilon_m$. then

relative error =
$$\frac{|(y-x) - (y_{stored} - x_{stored})|}{|(y-x)|} = \frac{|\delta_y - \delta_x|}{|y-x|} \le 1$$

- \Rightarrow Difference can be wrong in every digit
- Solutions:
 - Use double precision arithmetic ($\varepsilon_m = 2^{-52} = 2.22 \times 10^{-16}$)
 - Modify algorithm to minimize catastrophic cancellations (e.g., approximation to π and e^x for x < 0 from $1/e^{|x|}$)

Example 5: Roots of a quadratic equation

• Subtraction of nearly equal numbers is dangerous!!

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \text{ if } ac \ll b^2 \text{ trouble}!!$$

alternative $x = \frac{2c}{-b \pm \sqrt{b^2 - 4ac}}$ same problem; but know $x_1 x_2 = \frac{c}{a}$
compute $q = -\frac{1}{2}(b + \operatorname{sgn}(b)\sqrt{b^2 - 4ac}); x_1 = \frac{q}{a}, x_2 = \frac{c}{q}$ stable

Illustration of Round-Off Error Problems - 3

Example 6: Implement ∋ round-off errors do not magnify with iteration

- Golden section # $\varphi = .61803398$; $\varphi^2 = 1 \varphi$, $\varphi^3 = \varphi \varphi^{2,...}$
- In general, $\varphi^{n+1} = \varphi^{n-1} \varphi^n$ DISATER (Why?)
- If n = 1 change Equation to $x^2 + x 1 = 0 \Rightarrow$

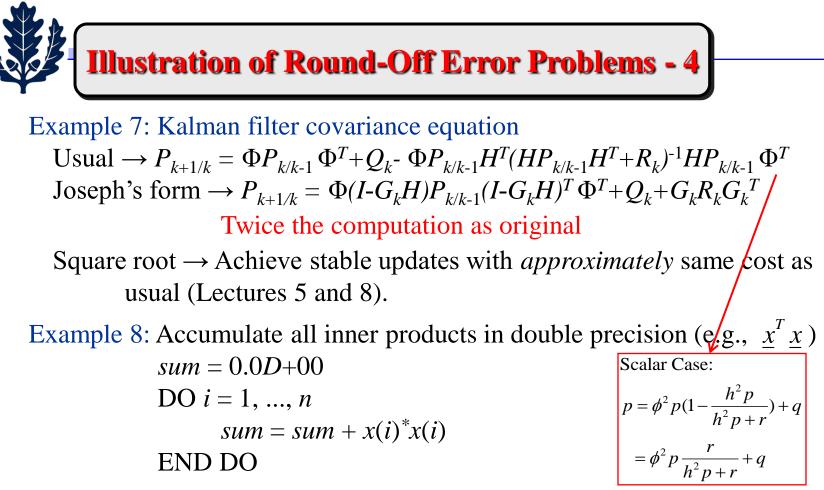
$$x = \frac{\sqrt{5} - 1}{2}; \quad -(\frac{\sqrt{5} + 1}{2})$$

Try it!!

- Stable $\varphi^{n+1} = \varphi \cdot \varphi^n$
- Suppose interested in only φ^n , $n = 2^L$



• The concept of **doubling** is extremely useful in computing *e*^{*At*} and its integrals



Example 9: Some problems are inherently bad (ill-conditioned) Roots of a quartic : $x^4-4x^3+8x^2-16x+15.99999999 = (x-2)^4-10^{-8} = 0$ Actual Solution:

 $x_1 = 2.01, x_2 = 1.99, x_3 = 2 + .01i, x_4 = 2 - .01i$ Suppose $\varepsilon_m > 10^{-10} \Rightarrow$ computer solves $(x-2)^4 = 0$

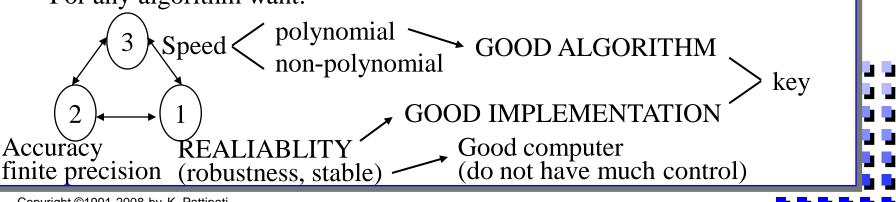
Illustration of Round-Off Error Problems - 5

- \Rightarrow Small changes in coefficients lead to large changes in solution
- ⇒ Such problems are termed *ill-conditioned* (not the fault of the algorithm)

Example 10: Two linear equations (intersection of "nearly" parallel lines) $\begin{array}{c}
0.66x + 3.34y = 4 \\
1.99x + 10.01y = 12
\end{array}$ solution $= \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$

• Suppose we change right hand side to (3.96, 11.94), the new solution is $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 6 \\ 0 \end{pmatrix}$

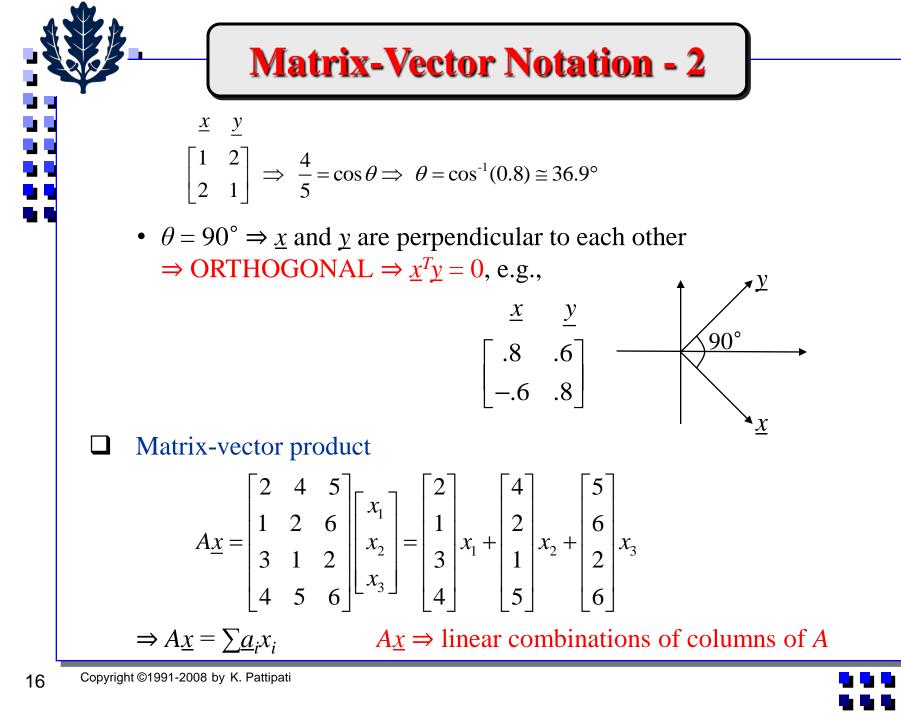
- \Rightarrow Small changes in coeff. \Rightarrow Large changes in solution \Rightarrow ill-conditioned
- For any algorithm want:



Background on Matrix Algebra Vector – Matrix Notation $\underline{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$ a column vector of dimension *n* • $x_i \in R$ $x_i \in [-\infty, \infty]$ • $\underline{x} \in R^n$ $\underline{x} \in C^n$ for complex numbers • $A = [a_{ij}] m \times n$ matrix $\in \mathbb{R}^{mn}$ • $A^T = [a_{ii}] n \times m$ matrix $\in \mathbb{R}^{nm}$ • $A^{I} = [a_{ji}] n \times m$ matrix $\in K^{nm}$ • A square $n \times n$ matrix is symmetric, if $a_{ij} = a_{ji}$ $\begin{bmatrix} 2 & 4 \\ 4 & 11 \end{bmatrix}$ symmetric • Idempotent if $A^2 = A$ (very useful to validate linear systems software) e.g., $A = \begin{bmatrix} 4/5 & -2/5 \\ -2/5 & 1/5 \end{bmatrix}; e^{A} = I + \sum_{i=1}^{\infty} \frac{A^{i}}{i!} = I + (e-1)A = \begin{bmatrix} 2.3746 & -0.6873 \\ -0.6873 & 1.3437 \end{bmatrix}$ • Diagonal matrix: $A = \begin{bmatrix} \mu_1 & 0 \\ \mu_2 & \\ 0 & \mu_1 \end{bmatrix} = Diag (\mu_1, \mu_2, ..., \mu_n) = D (\mu_1, \mu_2, ..., \mu_n)$ Identity matrix: $I_n = Diag (1 \ 1 \ \dots \ 1)$

- A matrix is PD if $\underline{x}^T A \underline{x} > 0 \ \forall \underline{x} \neq \underline{0}$; PSD if $= \underline{x}^T A \underline{x} \ge 0$
- Note: $\underline{x}^T A \underline{x} = \underline{x}^T A^T \underline{x} \Rightarrow \underline{x}^T A \underline{x} = \underline{x}^T [(A + A^T)/2] \underline{x}$
 - $\left(\frac{A+A^{T}}{2}\right)$ is called symmetrized part of A
- If A is skew symmetric, $A^T = -A \Rightarrow \underline{x}^T A \underline{x} = 0$ e.g., $A = \begin{bmatrix} 0 & 4 \\ -4 & 0 \end{bmatrix}$
- $A = Diag(\mu_i) \Rightarrow \underline{x}^T A \underline{x} = \sum_{i=1}^n \mu_i x_i^2$
- We will study properties of PD matrices later
- Vector \underline{x} is an $n \times 1$ matrix
- $\underline{x}^T \underline{y} = \text{inner (dot, scalar) product} = \sum_{i=1}^{n} x_i y_i \text{ (a scalar)}$

$$\frac{x}{(x-y)} \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} \xrightarrow{i=1} = (x_1 - y_1)^2 + (x_2 - y_2)^2 + (x_3 - y_3)^2 \\
= (x_1^2 + x_2^2 + x_3^2) + (y_1^2 + y_2^2 + y_3^2) \\
-2(x_1y_1 + x_2y_2 + x_3y_3) \\
\text{Also know } (\underline{x}^T \underline{x}) + (\underline{y}^T \underline{y}) - 2\sqrt{(\underline{x}^T \underline{x})(\underline{y}^T \underline{y})} \cos(\theta) \\
\Rightarrow \cos \theta = \frac{\underline{x}^T \underline{y}}{\sqrt{(\underline{x}^T \underline{x})(\underline{y}^T \underline{y})}} = \frac{\underline{x}^T \underline{y}}{\|\underline{x}\|_2 \|\underline{y}\|_2}$$



Linear Independence

- Linearly independent vectors
 - A subspace is what you get by taking **all** linear combinations of *n* vectors.
- Suppose have a set of vectors $\underline{a}_1, \underline{a}_2, \dots, \underline{a}_r$ $\{\underline{a}_1, \underline{a}_2, \dots, \underline{a}_r\}$ are dependent iff \exists scalars $\underline{a}_1, \underline{a}_2, \dots, \underline{a}_r \ni$ $\sum_{i=1}^{n} \alpha_i \underline{a}_i = 0 \text{ where at least one } \alpha_i \neq 0$ • Independent if $\sum_{i=1}^{r} \alpha_i \underline{a}_i = 0 \implies \alpha_i = 0 \forall i$ \implies there does not exist $\alpha_i \neq 0 \implies \sum_{i=1}^{r} \alpha_i \underline{a}_i = 0$ Rank of an $m \times n$ matrix, A • Rank (A) = # of linearly independent columns = # of linearly independent rows $= \operatorname{rank} (A^T) = \operatorname{dim} [\operatorname{Range} (A)] \leq \min (m, n)$ $\begin{bmatrix} 1 & -1 & 0 \\ 0 & 1 & -1 \\ 1 & 0 & -1 \end{bmatrix} \Rightarrow \text{Independent columns} = 2,$ Independent rows = 2, Rank = 2.

Linear Spaces Associated with $A\underline{x} = \underline{b}$ - 1

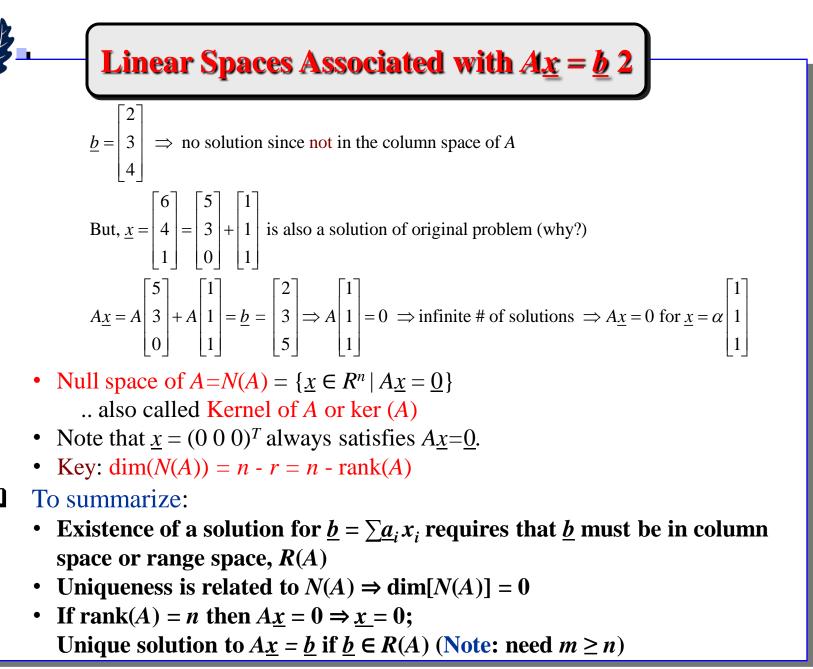
- Linear spaces associated with $A\underline{x}=\underline{b}$
 - Range (A) = $R(A) = \{ \underline{y} \in R^m \mid \underline{y} = \sum_{i=1}^n \underline{a}_i x_i \text{ for } \forall \underline{x} \in R^n \}$ = column space of (A)
 - $\dim(R(A)) = r$, rank of (A)
 - The key to answering the question on linear Spaces associated A<u>x</u>=<u>b</u> is: when does A<u>x</u>=<u>b</u> have a solution? that is when does: Σ x a = b have a solution?

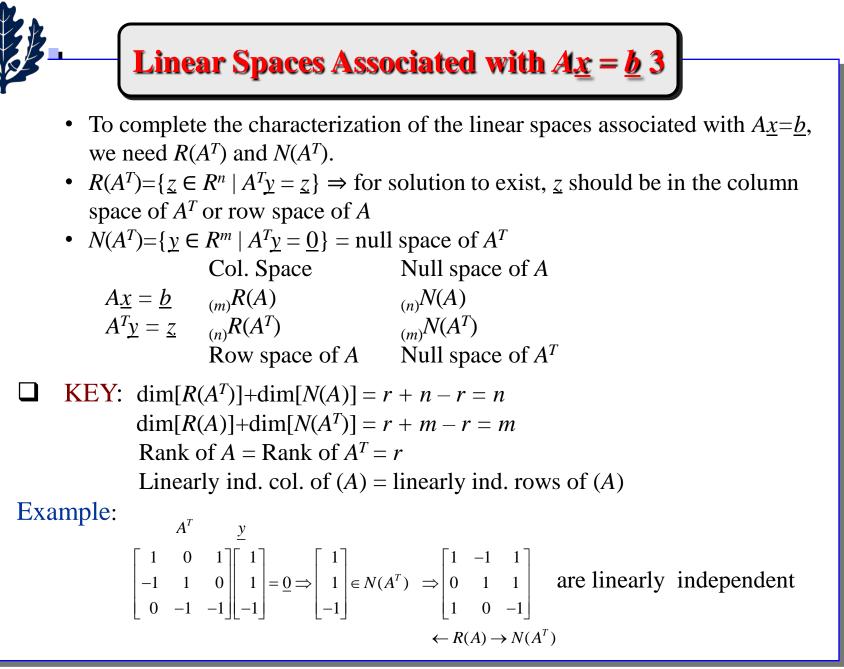
that is, when does: $\sum x_i \underline{a}_i = \underline{b}$ have a solution?

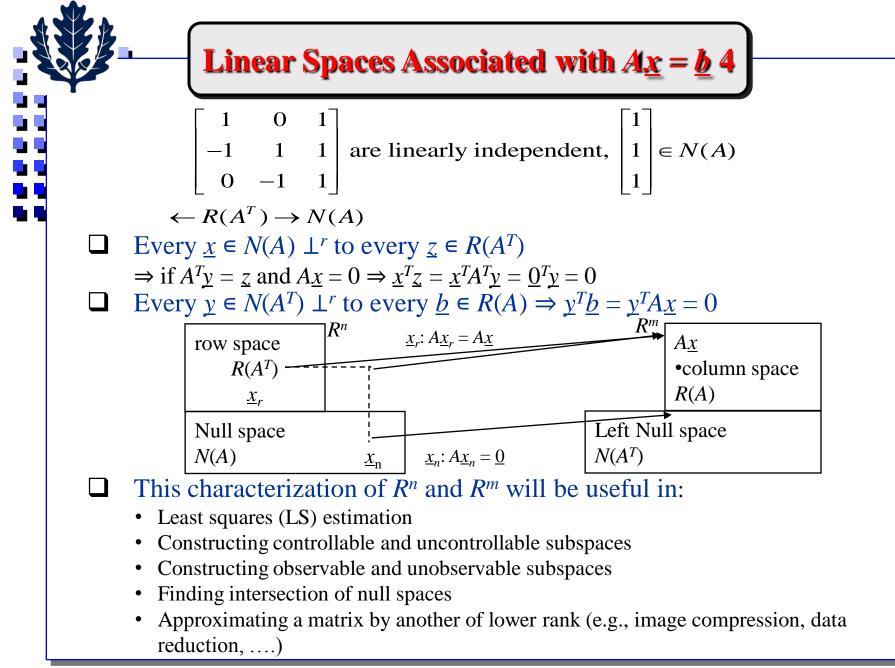
- \Rightarrow answer: has a solution if <u>b</u> can expressed as a linear combination of the columns of A or <u>b</u> $\in R(A)$.
- In the above example, since in every column $a_{1j} + a_{2j} a_{3j} = 0 \forall j$, the right hand side <u>b</u> also must have this structure \Rightarrow row 1 + row 2 row 3 = 0

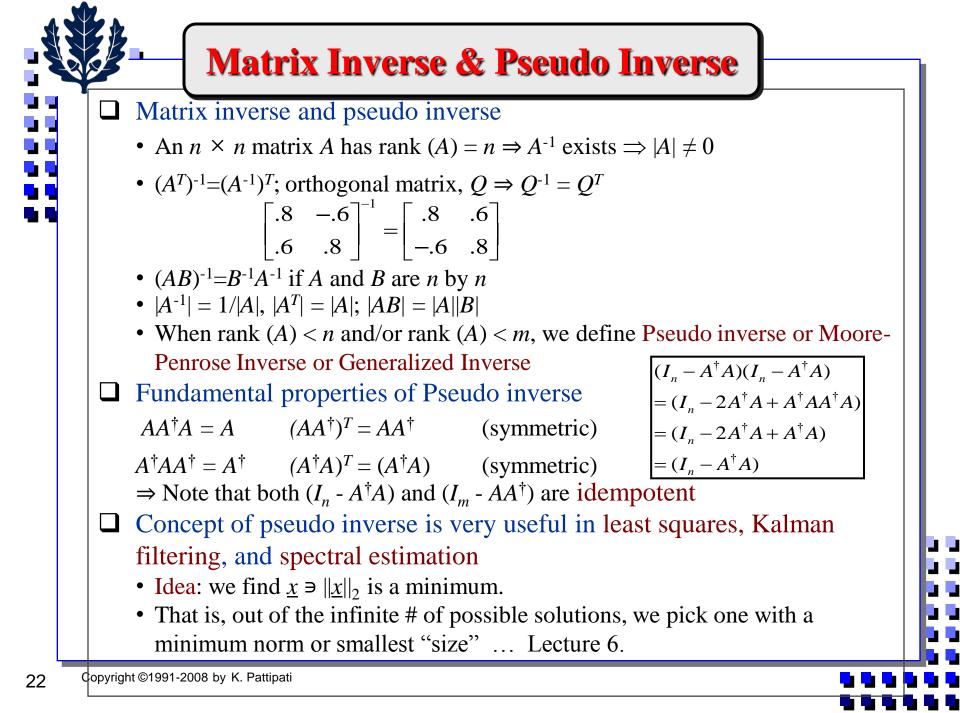
$$\underline{b} = \begin{bmatrix} 2\\3\\5 \end{bmatrix} \Rightarrow 5 \begin{bmatrix} 1\\0\\1 \end{bmatrix} + 3 \begin{bmatrix} -1\\1\\0 \end{bmatrix} \Rightarrow \underline{x} = \begin{bmatrix} 5\\3\\0 \end{bmatrix}$$

- $b_1 + b_2 b_3 = 0 \Rightarrow \underline{y}^T \underline{b} = 0$ where $\underline{y} = (1 \ 1 \ -1)$.
- So, for a solution to exist, only <u>b</u> perpendicular to <u>y</u> are allowed. We will see later that <u>y</u> is in the so called null space of (A^T)









Eigen Values & Eigen Vectors - 1

- Eigen values Eigen vectors
 - Basic property
 - eigen values of A, $\lambda_i(A)$ λ_i
 - eigen vectors of A, $\xi_i(A)$ $|\xi_i|$

$$\lambda_{\max}(A) = \text{biggest } \lambda_i(A)$$

 $\lambda_{\min}(A) = \text{smallest } \lambda_i(A)$

1

 $\rho(A) = |\lambda_{\max}(A)|$ = spectral radius of $A \sim$ used as measure of size of A

• Key equation: $A \leq_i = \lambda_i \leq_i$

 λ_i solution of $/\lambda I - A / = 0$, characteristic equation of A

$$\lambda^n + a_n \lambda^{n-1} + \dots + a_2 \lambda + a_1 = 0$$

 $A^n + a_n A^{n-1} + \dots + a_2 A + a_1 I = 0$ Caley-Hamilton Theorem

• If
$$A = A^T \Rightarrow$$
 symmetric:

 $-\lambda_i(A)$ real; $Q = (\underline{\xi}_1 \, \underline{\xi}_2 \, \dots \underline{\xi}_n)$ are orthogonal; -Q can be made orthonormal $\Rightarrow A = Q \Lambda Q^T$ -Q is orthonormal $\Rightarrow / \lambda_i(Q) / = 1$ 0.6)

Example:
$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \Rightarrow \lambda_i = \pm 1; \begin{pmatrix} 0.0 & 0.0 \\ -0.6 & 0.8 \end{pmatrix} \Rightarrow \lambda_i = 0.8 \pm 0.6i \Rightarrow |\lambda_i| = -A \text{ is PD} \Rightarrow \{\lambda_i(A)\} \text{ are positive and real}$$

Example: $\begin{pmatrix} 2 & 2 \\ 2 & 4 \end{pmatrix} \Rightarrow \lambda_i = 3 \pm \sqrt{5} > 0 \text{ PD}$

Eigen Values & Eigen Vectors - 2

• A is skew symmetric $\Rightarrow \{\lambda_i(A)\}\ \text{are imaginary}$ Example: $\begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \Rightarrow \lambda_i = \pm j$ (1.100)

• In general, $\lambda_i(A) > 0 \neq A$ is PD. Example: $\begin{pmatrix} 1 & 100 \\ 0 & 1 \end{pmatrix}$

- But, for symmetric A & λ_i(A)>0 ⇒ A is PD
 ⇒ So, for PD: <u>x</u>^TA<u>x</u> > 0 ∀ <u>x</u> ≠ 0 (A need not be symmetric) or principal minors or eigen values of symmetrized A>0
- Note: A, B are PD \Rightarrow A + B, A², A⁻¹, and all Aⁿ are PD
- Eigen vectors associated with distinct eigen values are independent. **Proof:** assume dependent $\Rightarrow \alpha_1 \xi_1 + \alpha_2 \xi_2 + ... + \alpha_n \xi_n = 0$ multiply by $A, A^2, ..., A^{n-1}$

$$\Rightarrow [\alpha_1 \underline{\xi}_1 \quad \alpha_2 \underline{\xi}_2 \quad \dots \quad \alpha_n \underline{\xi}_n] \begin{bmatrix} 1 \quad \lambda_1 \quad \lambda_1^2 \quad \dots \quad \lambda_1^{n-1} \\ 1 \quad \lambda_2 \quad \lambda_2^2 \quad \dots \quad \lambda_2^{n-1} \\ \vdots \quad \vdots \quad \dots \quad \vdots \\ 1 \quad \lambda_n \quad \lambda_n^2 \quad \dots \quad \lambda_n^{n-1} \end{bmatrix} = 0$$

Vandermonde matrix

•
$$tr(A) = \sum_{i=1}^{n} \lambda_i(A)$$
, $det(A) = \prod_{i=1}^{n} \lambda_i(A)$ invertible if $\lambda_i \neq \lambda_j$

24 Copyright ©1991-2008 by K. Pattipati

Vector and Matrix Norms - 1

- Similarity Transformations
 - If Q^{-1} exists, $\overline{A} = Q^{-1}AQ \Longrightarrow \lambda_i(A) = \lambda_i(\overline{A})$
 - If $\{\lambda_i\}$ are distinct, $Q^{-1}AQ = \Lambda = \text{Diag}(\lambda_i)$
 - In particular, $f(A) = Q f(\Lambda) Q^{-1}$ e.g., $e^{At} = Q e^{\Lambda t} Q^{-1}$... worst possible way of computing f(A)
 - If $\{\lambda_i\}$ are not distinct, need to use Jordan's form..... Messy on computers
 - OK for symmetric matrices $f(A) = Q f(\Lambda)Q^T$
- ☐ Vector and Matrix Norms:
 - Play an important role in the convergence studies of algorithms.
 - As an example, consider $A\underline{x} = \underline{b}$ problem
 - Simplest and most important problem in Matrix Computations
 - To show its importance, consider a linear system in steady state:

$$\underline{\dot{x}} = \underline{0} = A\underline{x} + B\underline{u} \Longrightarrow \underline{x}_{ss} = -A^{-1}B\underline{u} = -A^{-1}\underline{b}$$

 \Rightarrow solve $A\underline{x} = -B\underline{u} = \underline{b}$

• Mathematically, solution exists *iff* $\underline{b} \in R(A) = \{\underline{x} \in R^m \mid \underline{\sum} \underline{a}_i x_i = \underline{b}\}\$

Vector & Matrix Norms - 2

- Unique if $N(A) = \varphi \Rightarrow \sum \underline{a}_i x_i = 0 \Rightarrow x_1 = x_2 = \dots = x_n = 0$ \Rightarrow Linearly independent columns of A
 - $\Rightarrow \text{Linearly independent columns of } A$

Q 1. If A and <u>b</u> are perturbed by a small amount δA and $\delta \underline{b}$, how does it affect <u>x</u>? the so-called sensitivity (conditioning) problem.

- 2. What if *A* is "nearly" singular? what is near singularity?
- 3. If $\underline{b} \notin R(A)$, then how can we determine $\underline{x} \ni A\underline{x}$ is "close" to \underline{b} ? \Rightarrow least squares problem
- 4. How do we measure small Perturbations?

near singularity? distance in vector spaces? Norms provide such a language

□ Norms generalize the concept of absolute value of a real number to vectors and matrices (measure of "SIZE" of a vector and matrix)

•
$$\|\underline{x}\|_{p} = \text{Holder or } p\text{-norm} = [|x_{1}|^{p} + |x_{2}|^{p} + \dots + |x_{n}|^{p}]^{1/p} = \left[\sum_{i=1}^{n} |x_{i}|^{p}\right]^{1/p} \sim \text{"size"}$$

most important
$$\begin{cases} p = 1 \Rightarrow \|\underline{x}\|_{1} = \sum_{i=1}^{n} |x_{i}| \Rightarrow 1\text{-norm or Manhattan Distance} \\ p = 2 \Rightarrow \|\underline{x}\|_{2} = \left(\sum_{i=1}^{n} |x_{i}|^{2}\right)^{1/2} \text{ (2-norm, root sum square (RSS) or Euclidean norm)} \\ p = \infty \Rightarrow \|\underline{x}\|_{\infty} = \max_{i} |x_{i}| \pmod{\infty-norm} \end{cases}$$

- All norms convey approximately same information.
- Only thing is, some are more convenient to use (e.g., 2-norm).
- However, all satisfy:
 - $||\underline{x}+\underline{y}||_p \le ||\underline{x}/|_p + ||\underline{y}||_p$ (Minkowski's inequality) (i)
 - (ii) $\|\underline{x}+\underline{y}\|_p \ge 0$
 - (iii) $||c\underline{x}||_p = c||\underline{x}||_p$
 - (iv) $||\underline{x}^T\underline{y}|| = |\underline{x}^T\underline{y}| \le ||\underline{x}|/_p||\underline{y}||_q 1/p + 1/q = 1$ (Holder's inequality)
 - (v) $|\underline{x}^T \underline{y}| \le ||\underline{x}|/2||\underline{y}||_2$ (Cauchy-Schwartz-Bunyakovski's inequality)

(vi)
$$||Q\underline{x}||_2^2 = \underline{x}^T Q^T Q\underline{x} = \underline{x}^T \underline{x} = /|\underline{x}|/2^2$$

 \Rightarrow 2-norm is invariant under orthogonal transformations ... extremely important idea in numerical computations.

$$(\text{vii}) \|\underline{x}\|_{2} \leq \|\underline{x}\|_{1} \leq \sqrt{n} \|\underline{x}\|_{2} \qquad \begin{pmatrix} 1\\ 0 \end{pmatrix} \& \begin{pmatrix} 1\\ 1 \end{pmatrix} \text{satisfy} \\ \|\underline{x}\|_{\infty} \leq \|\underline{x}\|_{2} \leq \sqrt{n} \|\underline{x}\|_{\infty} \qquad \text{LB UB with equality}$$

(viii) $\underline{\hat{x}}$ approx. to $\underline{x} \implies$ absolute error $\|\underline{x} - \underline{\hat{x}}\|$; relative error $\|\underline{x} - \underline{\hat{x}}\| / \|\underline{x}\|$ ∞ -norm \Rightarrow # of correct signifiant digits in x

 $10^{-p} \Rightarrow p$ signifiant digits

Properties of Matrix Norms

Matrix norms: *A* is *m* by *n*

(i) Frobenius norm (or)
$$F$$
-norm = $||A||_F = \left(\sum_{i=1}^m \sum_{j=1}^n a_{ij}^2\right)^{1/2}$
(ii) p -norm $||A||_p = \max_{\underline{x}} \frac{||A\underline{x}||_p}{||\underline{x}||_p} \sim \text{"size" of the matrix}$
(iii) Note: $||A\underline{x}||_p \le ||A||_p ||\underline{x}||_p$; $||AB||_p \le ||A||_p ||B||_p$; $||A + B||_p \le ||A||_p + ||B||_p$
(iv) $p = 1 \Rightarrow ||A||_1 = \max_{1 \le j \le n} \sum_{i=1}^m |a_{ij}| = \max$. column sum
(v) $p = 2 \Rightarrow ||A||_2 = \max_{\underline{x}} \frac{\left(\underline{x}^T A^T A \underline{x}\right)^{1/2}}{\left(\underline{x}^T \underline{x}\right)^{1/2}} = \left[\lambda_{\max} (A^T A)\right]^{1/2} = \sigma_{\max}(A),$
Max. singular value of A
(vi) $p = \infty \Rightarrow ||A||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^n |a_{ij}| = \max$. row sum

Use of Matrix Norms:

- Use ||A|| to approximate $|\lambda_{\max}(A)| = \rho(A)$ spectral radius of *A*.
- Can show $\rho(A) \leq ||A||_p \forall p$.
- Other properties, see problem set #1

Singular Value Decomposition - 1

- Scale by $c = \text{constant} > \rho(A) \Rightarrow A/c$ has all $|\lambda_i(A)| < 1$. Will be useful in evaluating e^{At} and integrals involving e^{At} .
- Matrix norm used in estmaing the convergence rate of algorithms. We see its use in Lecture 4.

Singular Value Decomposition (SVD) :

Best method for approximating A by \hat{A} & Determining rank(A) is SVD.

What is SVD?

- $A \in \mathbb{R}^{mn} = U\Sigma V^T$; U & V orthogonal
- $U = (\underline{u}_1, \underline{u}_2, \dots, \underline{u}_m) \in R^{mm}$ $V = (\underline{v}_1, \underline{v}_2, \dots, \underline{v}_n) \in \mathbb{R}^{nn}$

•
$$U^{T}AV = \Sigma = Diag(\sigma_{1} \sigma_{2} \dots \sigma_{p}); p = \min(m, n) \sigma_{1} \ge \sigma_{2} \ge \dots \ge \sigma_{p} \ge 0$$

•
$$p = m < n \Longrightarrow A = U \begin{pmatrix} \Sigma_1 & 0 \end{pmatrix} \begin{pmatrix} v_1^T \\ v_2^T \end{pmatrix}; \quad p = n < m \Longrightarrow \begin{pmatrix} u_1 & u_2 \end{pmatrix} \begin{pmatrix} \Sigma_1 \\ 0 \end{pmatrix} V^T$$

• In general, can have $\sigma_1 \ge \sigma_2 \ge \ldots \ge \sigma_r > 0$ and $\sigma_{r+1} = \ldots = \sigma_p = 0$

$$\Rightarrow A = \begin{pmatrix} U_r & U_2 \end{pmatrix} \begin{pmatrix} \Sigma_r & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} v_r^T \\ v_2^T \end{pmatrix} = U_r \Sigma_r V_r^T$$

- $r = \operatorname{rank}(A) \Rightarrow \operatorname{can} \text{ use SVD to determine rank of } A$
- $A \underline{v}_i = \sigma_i \underline{u}_i$, \underline{u}_i is called the left singular vector of A

Singular Value Decomposition - 2

- $A^T \underline{u}_i = \sigma_i \underline{v}_i, \underline{v}_i$ is called the right singular vector of A $AA^T = U \Sigma^2 U^T \Rightarrow AA^T \underline{u}_i = \sigma_i^2 \underline{u}_i$
 - $\Rightarrow \sigma_i^2$ are eigen values of AA^T ; \underline{u}_i eigen vectors of AA^T
- Similarly, $A^T A = V \Sigma^2 V^T \Rightarrow A^T A \underline{v}_i = \sigma^2_i \underline{v}_i$
 - $\Rightarrow \sigma_i^2$ are eigen values of $A^T A$; \underline{v}_i eigen vectors of $A^T A$
- Symmetric PD ⇒ SVD = eigen value analysis (called principal component analysis in statistics)
- Since $||A||_2 = [\lambda_{\max}(A^T A)]^{1/2} = (\sigma^2_{\max})^{1/2} = \sigma_{\max}$
- Also, $||A||_F = (\sigma_1^2 + \sigma_2^2 + \dots + \sigma_p^2)^{1/2}$ $||A^{-1}||_2 = [\lambda_{\max}(A^T A)^{-1}]^{1/2} = 1/\sigma_{\min}$

□ One application of SVD: data compression (reduction)

• Suppose we approximate *A* by the first *r* singular vectors. What is the error involved?

• Know
$$A = U\Sigma V^{T} \qquad \hat{A} = U_{r}\Sigma_{r}V_{r}^{T} = \sum_{i=1}^{r}\sigma_{i}\underline{u}_{i}v_{i}^{T} \qquad \left\|A - \hat{A}\right\|_{2} = \sigma_{r+1}$$
$$\left\|A - \hat{A}\right\|_{F} = \left(\sum_{i=r+1}^{n}\sigma_{i}^{2}\right)^{1/2}$$

Singular Value Decomposition - 3

- Very useful in spectral estimation and robust control.
- \Box Second application: determining the condition number of a matrix A
 - Condition number, $k(A) = ||A||_p ||A^{-1}||_p$ for p=2: $k(A) = \sigma_{\max}(A)/\sigma_{\min}(A)$
 - \Rightarrow *k*(*A*) is a measure of non-singularity of *A*

Example 11: Consider $A = \begin{bmatrix} .66 & 3.34 \\ 1.99 & 10.01 \end{bmatrix}$

 $\sigma_{\max} = 10.7588$ $\sigma_{\min} = 0.0037$ $k(A) = \sigma_{\max} / \sigma_{\min} = 2894$

• Large $k(A) > 10^6 \Rightarrow$ bad news in solving $A\underline{x} = \underline{b}$

□ Third application of SVD: determining the bases of linear spaces associated with $A\underline{x}=\underline{b}$ and $A^T\underline{y}=\underline{c}$ as well as the pseudo inverse

$$\Rightarrow R(A) = (u_1 \dots u_r); \qquad N(A^T) = (\underline{u}_{r+1} \dots \underline{u}_m) \dim(R(A)) + \dim(N(A^T)) = m N(A) = (\underline{v}_{r+1} \underline{v}_{r+2} \dots \underline{v}_n); \qquad R(A^T) = (\underline{v}_1 \dots \underline{v}_r) \dim(N(A)) + \dim(R(A^T)) = n \Rightarrow \text{Pseudo Inverse of } A = A^{\dagger} = V_r \Sigma_r^{\dagger} U_r^T = \sum_{i=1}^r \frac{1}{\sigma_i} \underline{v}_i \underline{u}_i^T$$