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N 4 (I Outline of Lecture 1 I

O Course Objectives

O Round-off Errors
« Computer representation of numbers
« Machine accuracy
« [llustration of round-off error problems via examples

O Background on Matrix Algebra
« Matrix-vector notation
« Matrix-vector product
« Linear spaces associated with Ax=b
« Matrix inverse and pseudo inverse
 Eigen values and Eigen vectors

» Vector and Matrix Norms 1
« Singular value decomposition (SVD) an

Copyright ©1991-2008 by K. Pattipati



o5 (I Course Objectives I

Provide Systems analyst with effective software tools

Use skills from Math. and CS to solve systems theory problems
Three recurring Themes

*  Need to understand mathematically the problem to be solved (i.e.,

systems theory)
} CS
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«  Express the problem algorithmically

«  Appreciate the fact that computers have finite precision
Algorithmic
Technique

Systems
Theory

Numerical Methods
for Linear Systems

A

Areas:
—’Qgital CompuD - Optimal control and estimation .
— — « Signal processing, AR, ARMA & LS
-Round-off Errors (finite precision)

Word length 64 bits (=~ 13-14 digit accuracy) « Communication Theory 43
- Truncation Errors (e.g., infinite  summations

3 Copyright ©1991-2008 by K. Pattipati



Yo 5 (I Round-Off Errors - 1 I

O Computer solution is not the same as Hand calculation
« Humans have been computing for thousands of years
« Famous examples are Pythagorean formula and Archimedes’s
approximation of z.

[ N N N NS .

Example 1: Archimedes approximation of z
 Take a circle with diameter 1 = circumference =«
« ldea: Approximate the circumference by the perimeters p,, of
inscribed polygons with 2" sides, n =2, 3, ...
e N=2 = square = perimeter of square = 2J2 =2.828<r

« n=3 = octagon = perimeter of octagon = 4,/(2 _?le) ~3.08< 7

=

|
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15 | Round-Off Errors - 2 I
o
a4 0 Computer Algorithm:
a :
a Start with p, = 22
' Forn=3,4,...,60 DO
. P
pn+1 - 2“\/2(1_ 1_(2_2)2)
End DO
Q DIASTER!!
Combination of underflow and catastrophic cancellations
O Solution is to rewrite the recursion (due to W. Kahan)
Let
" Par2 2
=2 o or, =201— [1-(E2)?); =
pn+1 rn+1 rn+ ( (2n) ) r3 (2+ﬁ)
Stable Recursion: pa= 2t b =20 1_%)
r
r-n+1 — = I
/ _ — 24— =0
2+ .4 r, Mo Fy 2+\/ﬁ
5 Copyright ©1991-2008 by K. Pattipati
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Yo 5 (I Round-Off EFrors - 3 I

Approximation of z by the Perimeter of Inscribed Polygons

T 3-( Y odified recursion -

2_ —
J; | original recursion —
s 1 -
S | —

0 1 2 3 4 5 6
Number of terms, n (Number of sides of polygon = 2") —»

O Alternatively, can show that for an 2"-sided inscribed polygon, the
perimeter is: p, = 2" sin (180°/2")
Example 2: Taylor series for e*

X X

e’ =1+ X+ o+t
n Xk

n+1

Let S. =sum of first-n terfnsz —

5,4, = sum of first (n+1) terms = 5,5 — 1
.1 = sum of first (n+1) terms = S_+

" " (n+1)! 1

4 How far do we go?
« We sum terms until S« = S;«,; =S

Copyright ©1991-2008 by K. Pattipati
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(Raund-Oﬁ‘ EFrors - 4

O Results on a VAX 780 (# bits per floating point word= 32)

X S ex

1 2.718282 2.718282

5 148.4132 148.4132

10 22026.47 22026.46

15 3269017 3269017

20 4.8516531x 108 4.8516531x108
-1 0.3678794 0.3678795

-5 6.7377836x103 6.7379470x 103
-10 -1.6408609%x10%*  4.5399930x10°
-15 -2.2377001 % 102 3.0590232x 107
-20 1.202966 2.0611537x10°

Works for x>0; but
fails miserably for x<0

O Solutions: 1) Use e* = 1/e*

2) Integer x, use e* = (e 1)
3) Much better methods than Taylor series (e.g., Chebyshev
approximation, Pade approximation)

O These two examples illustrate the need to understand computer

arithmetic & their effects on computation.

Copyright ©1991-2008 by K. Pattipati




QS Computer Representation of Numbers

L Computer representation of numbers
* Integers
— On a 32 bit computer: Largest integer = 231 - 1 = 2,147,483,647
— Smallest integer = -231
* Floating point (real) arithmetic
— On a 32 bit computer (IEEE standard): 24 bits for mantissa & 8 bits for
exponent. One bit from each for sign
— Largest floating point #: + 111 ... 1, X 2127 = 1.7 X 10%,;
— Smallest positive floating point # =~ 10-38
— Double precision = Twice as many bits to represent each number.
O Machine Accuracy
« Smallest (in magnitude) floating point number which when added to
the floating point number 1.0 produces a floating point number
different from 1 (also called macheps or ¢, or machine constant).
—=Smallest ¢,21 + ¢, # 1 = ¢, = machine accuracy (function of the # of bits 14
In the mantissa) 4]

[ N N N NS .

—=32-bit floating point arithmetic = ¢, ~ 22~ 1.2 x 10" : :

—6-7 digit accuracy. d

L

8 Copyright ©1991-2008 by K. Pattipati L LLLL
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oJe J—I llustration of Round-Off Error Problems - 1|

Example 3: Addition of two positive floating point numbers X, y
o X+ Yy =x(1+y/x)
 Note that if y/x < g, fl(x+y) = X
 Suppose y/x > ¢.. what is the relative error?
|true value-computed value|
|true value|
« The mere act of reading a floating point number (e.g., 0.3) into the
computer causes an error. so, Xgoreq = X(1+ ;) OF Xgoreq = X = X 0,3 0, <&y

| (X + y) B (Xstored + ystored) |

[(x+)]
105, +y8,)|

| (X+Y)]
= Every floating point operation introduces a fractional round-off error of

as much as &, JN¢ irregular computations; . .
up or down equal prob., mean =0, sd =\/W7m a0
Round-off Error N &, regular N = # of operations a

also depends on implementation

relative error=

relative error =

<max(d,,9,) < &,

Copyright ©1991-2008 by K. Pattipati



1Y J—‘ llustration of Round-Off Error Problems - 2 I
ol
4 Example 4. Catastrophic cancellation
‘ S ~
5 e Supposey-x=2 ¢, then
: relative error = | (y - X) - (ystored B Xstored) | _ | 5)/ _5X | <1
| (y—Xx)| |y —X|
= Difference can be wrong in every digit

« Solutions:
- Use double precision arithmetic (g, =2 =2.22x10™)
- Modify algorithm to minimize catastrophic cancellations
(e.g., approximation to 7 and e* for x<0 from 1/e/)

Example 5: Roots of a quadratic equation
« Subtraction of nearly equal numbers is dangerous!!

J— 2 J—
X = b+ Vb” —4ac if ac << b’ trouble!!
2a
alternative x = 2¢ same problem; but know x;X, = c 1o
= ) =7 43
—bF+/b?*—4ac *a .
compute g = —%(b+sgn(b)x/b2 —4ac); xizg, xZ:% stable ey

10 Copyright ©1991-2008 by K. Pattipati



@J—' llustration of Round-Off Error Problems - 3|

o
. |
o
- Example 6: Implement > round-off errors do not magnify with iteration
ow ° Goldensection # ¢ = .61803398; ¢?=1-g, pi=p- o>
a « Ingeneral, p"t! = p"1-p" DISATER (Why?)
"R . ifn=1 change Equation to X2+ x-1=0 =
V5-1.  J5+1
x="" - ()
2 2
Try it!!
« Stable P"l ="
 Suppose interested in only ¢", n = 2t
y<¢
DOiI=1...,L log, n operations
y <y DOUBLING .
END DO : :
 The concept of doubling is extremely useful in computing eAt and its a'a
Integrals :
11 Copyright ©1991-2008 by K. Pattipati ‘ . . ‘ ‘ ‘
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@1 lllustration of Round-Off Error Problems - 4 l

Example 7: Kalman filter covariance equation

Usual — Py, = ®Pyy; @T+Q- Py HT(HPy HT+R ) HPy ; @7

Joseph’s form — Py, = ®(I-G,H)P,, ,(I-G,H)T ®T+Q,+G,R,G, T

Twice the computation as original

usual (Lectures 5 and 8).

sum = 0.0D+00
DOi=1,..,n

sum = sum + x(i)"x(i)
END DO

Actual Solution:

Suppose ¢,>101° = computer solves (x-2)* =0

Copyright ©1991-2008 by K. Pattipati

Square root — Achieve stable updates with approximately same cost as

T

Example 8: Accumulate all inner products in double precision (e/g., X X)

Scalar Case:
2

p=¢"p—

hp+

r .
h’p+r

=¢°p

q

Example 9: Some problems are inherently bad (ill-conditioned)
Roots of a quartic : x*-4x3+8x%-16x+15.99999999 = (x-2)*-108 =0

X, =2.01, x,=1.99, x3=2+.01i, x,=2-.01i



@J—I llustration of Round-Off Error Problems - 5 l

o
. |
o
- — Small changes in coefficients lead to large changes in solution
: = Such problems are termed ill-conditioned (not the fault of the
a algorithm)
. Example 10: Two linear equations (intersection of “nearly” parallel lines)
0.66x+3.34y = 4 solution =| | = !
1.99x + 10.01y =12 ly) (2
« Suppose we change right hand side to (3.96, 11.94),
the new solutionis (x) (6
Yy lo
= Small changes in coeff. = Large changes in solution = ill-conditioned
 For any algorithm want:
speed” Polynomial -~ A) GORITHM
non-polynomial 13
key .
GOOD IMPLEMENTATION a'
/ < 'd
Accuracy EALIABLITY Good computer
finite précision (robustness, stable) — (do not have much control)

13 Copyright ©1991-2008 by K. Pattipati



Q7 J—| Background on Matrix Algebr-al
o
J O Vector — Matrix Notation
|
r (%
.| X, _ _
[ X = a column vector of dimension n
Xn
* Xx;€R X; € [-00, o0]
« XeR" x € C" for complex numbers

« A=[ag]lm X nmatrix € R™
o AT= [a;] n X m matrix € R™ 2 4

 Asquare n X n matrix is symmetric, if a;; = a;; 4 11 symmetric
 ldempotent if A2 = A (very useful to validate linear systems software)

4 —2/5] © Al 2.3746 —0.687
e.g., A:{ /5 /5 ;eA=I+Z'_i|=I+(e—1)A={ 3746 -0.68 3}
i1 I

—2/5 1/5 ~0.6873 1.3437
_'ul 0 o d
» Diagonal matrix: A = 1 = Diag (Mg, Kpy---5 M) = D (Mg, Hpseeos 1) Fa '
0 U, o

Identity matrix: |, =Diag (1 1... 1)

14 Copyright ©1991-2008 by K. Pattipati



@ Matrix-Vector Notation - 1

o A matrix is PD if xTAx >0 Vx #0; PSD if = xTAx >0
* Note: XxTAx = xTATXx = xTAx = XT[(A+AT)/2]x

.
[A;A j Is called symmetrized part of A

[ N N N NS .

* If A is skew symmetric, AT =-A = x"Ax =0 eg, A{_O4 ﬂ
« A=Diag(l;) = x"Ax =D u X

« We will study propertie§'of PD matrices later

e Vector x isan n X 1 matrix ;

 x'y = inner (dot, scalar) product = in y. (a scalar)
i=1

A 2 2 2 2
ey e (- )+ (- )
: =04+ )+ (0 + Y, + Y
2 % “204%, 45, +X%s)
: (X-y [x1 X, - xn] : 1 XY, T X3Y;
. T Ty T T d
y y Also know (x"x)+(y"y)-2,/(x )(y"y) cos(6) {4 4

15 Copyright ©1991-2008 by K. Pattipati



FlR OO L.

16

Xy

1 2
= 2 coso= 0 =cos™(0.8) =36.9°
2 1 5

« #=90° = x and y are perpendicular to each other
= ORTHOGONAL = x'y =0, e.g.,

@ Matrix-Vector Notation - 2

Copyright ©1991-2008 by K. Pattipati

N y
£y
8 .6 N,
-6 .8
. X
O Matrix-vector product
(2 4 5| . [2] (4 (5]
0 )):1 = . + 2 X, + 0 X
R P
X3
6]~ "~ |4 El 6|

Ax = linear combinations of columns of A

kL
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¥ J—| Linear Independence l

O Linearly independent vectors
« Asubspace is what you get by taking all linear combinations of n
vectors.
 Suppose have a set of vectors a,, a,, ..., &,
{a;, 2y, ..., a,} are dependent iff 3 scalars a;, a,, ..., a, >

Za. a, =0 where at least one ¢, #0
=1

* Independent |f Zag_. 0 = & =0vi
= there does not exist a#0 > Zaa 0

=1

d Rank of an m x n matrix, A
» Rank (A) = # of linearly independent columns
= # of linearly independent rows
= rank (AT) = dim [Range (A)] < min (m, n)

(1 -1 0|
O 1 —-1| = Independentcolumns =2,
|1 0 -—-1] Independentrows =2, Rank = 2.

Copyright ©1991-2008 by K. Pattipati
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b=|3
5

18 Copyright ©1991-2008 by K. Pattipati

o

—5

1]

0
|1

+3

= column space of (A)
* dim(R(A)) =r, rank of (A)
» The key to answering the question on linear Spaces associated Ax=Db is:
when does Ax=b have a solution?
that is, when does: )’ x; a,= b have a solution?
= answer: has a solution if b can expressed as a linear combination of the
columns of Aor b € R(A).
* Inthe above example, since in every column a,; + a,; - a; = 0 V], the right
hand side b also must have this structure = row 1 +row 2 —row 3 =0

17

1
0

— X =

* b+b,-b;=0=y™b=0 where y= (1 1-1).
 So, for a solution to exist, only b perpendicular to y are allowed. We will a'l
see later that y is in the so called null space of (AT)

TS

~Ye J—l Linear Spaces Associated with Ax=H-1 I

O Linear spaces associated with Ax:b
* Range (A) =R(A)={yeR"|y= Zg,x for V xeR"}

3
0
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g Linear Spaces Associated with Ax

b { = no solution since not in the column space of A
5| |1

But,x=|4 |=| 3 |+|1] is also a solution of original problem (why?)
0| |1

5 1 2 1 1
AX = A{3]+ Alll=b= {3} = A{l] =0 = infinite # of solutions = Ax=0 for x = 0{1]
0 5

1 1 1

* Null space of A=N(A) ={x e R"| Ax =0}
.. also called Kernel of A or ker (A)
* Note that x = (0 0 0)" always satisfies Ax=0.
» Key: dim(N(A)) =n-r=n-rank(A)
O Tosummarize:
 Existence of a solution for b = > a, x; requires that b must be in column

b2

A DN

B~ O

o d

space or range space, R(A) .

» Uniqueness is related to N(A) = dim[N(A)] =0 a'l
* Ifrank(A) =nthen Ax=0=>x=0; aa

Unique solution to Ax = b if b € R(A) (Note: need m >n) :
Copyright ©1991-2008 by K. Pattipati ‘ . . ‘ ‘ ‘
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~Ye J—l Linear Spaces Associated with Ax=H3 I

» To complete the characterization of the linear spaces associated with Ax=Db,
we need R(AT) and N(A").

« R(AT)={z € R"| Aly = z} = for solution to exist, z should be in the column
space of AT or row space of A

* N(AN={y € R™| A'y = 0} = null space of AT

Col. Space Null space of A
Ax=b  mR(A) mN(A)
Ay=z HR(A") mN(AT)

Row space of A Null space of AT
d KEY: dim[R(ADN]+dim[N(A)]=r+n—-r=n
dim[R(A)]+dim[N(A)]=r+m-r=m
Rank of A= Rank of AT=r
Linearly ind. col. of (A) = linearly ind. rows of (A)

Example:
p AT X
1 0 11 1 1 -1 1 : :
1 1 0| 1|=0=| 1]eN(A") =|0 1 1| arelinearly independent -
0 -1 -1|- -1 1 0 -1 a0
«— R(A) > N(A") =
W
Copyright ©1991-2008 by K. Pattipati ‘ . . . ‘ ‘
 LLLLL
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g Linear Spaces Associated with Ax=b 4
1 O 1 1

—1 1 1| are linearly independent, |1 | N(A)
O -1 1 1

<« R(A") - N

Every x € N(A) L"to every z € R(AT)
> ifAy=zand Ax=0=x"z=x"Aly=0y =0

(A)

Everyy e N(AT) L"toeveryb e R(A) = y'b=y'Ax =0

Rn

row space Xp: A% = AX
R(AT) —T—
X |
Null space _,_
N(A) Xy | %A% =0

R

AX
scolumn space
R(A)

Ceft Null space
N(AT)

O This characterization of R" and R™ will be useful in:
» Least squares (LS) estimation
» Constructing controllable and uncontrollable subspaces
 Constructing observable and unobservable subspaces
 Finding intersection of null spaces

» Approximating a matrix by another of lower rank (e.g., image compression, data

reduction, ....)

Copyright ©1991-2008 by K. Pattipati
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J

“— Matrix Inverse & Pseudo Inverse

f

¢

O Matrix inverse and pseudo Inverse

opyright ©1991-2008 by K. Pattipati

« Ann X nmatrix A has rank (A) =n = Al exists = |A| £0
* (AN1=(A1T; orthogonal matrix, Q = Q1 =Q"

8 -6]" [8 6

[6 8 } _[—.6 .8}
* (AB)1=B'Alif Aand Bare nbyn
* A7 =1/A], |AT = |Al; |AB| = |A|B]

* When rank (A) < n and/or rank (A) < m, we define Pseudo inverse or Moore-

Penrose Inverse or Generalized Inverse 1 —AA( —AA)
Fundamental properties of Pseudo inverse _ (1 —2ATA+ AAATA)
AATA = A (AAT)T = AAT (symmetric) = (I, —2ATA+ ATA)
ATAAT = AT (ATA)T = (ATA) (symmetric) =(,-AA)

= Note that both (I, - ATA) and (1., - AAT) are idempotent

Concept of pseudo inverse is very useful in least squares, Kalman
filtering, and spectral estimation

* ldea: we find x 3 |||, is @ minimum.

 That is, out of the infinite # of possible solutions, we pick one with a
minimum norm or smallest “size” ... Lecture 6.




5 A J—| Eigen Values & Eigen Vectors - 1 I
: O Eigen values — Eigen vectors

. « Basic property

u A | eigen values of A, A (A) A (A)= biggest 1. (A)

: {é} eigen vectors of A, & (A) A (A)=smallest A (A)

p(A) = 4. (A) |=spectral radius of A ~ used as measure of size of A
» Key equation: A&, = 46
J; solution of | Al- A| = 0, characteristic equation of A
A+a A+ +a,A+a, =0
A'+a A"+ +a,A+a,l =0 Caley-Hamilton Theorem
« If A= AT = symmetric:
—A(A)real; Q= (& &, ...&,) are orthogonal,
— Q can be made orthonormal = A =QAQT
— Qs orthonormal = | 4,(Q) | =1

Example: a2 08 06 — 1 =0.8+0.6i =| A |=1 ..
PIe- 11 o ' 706 08 T ' a1
—Ais PD = {4,(A)} are positive and real a3

2 2
Example: (2 4}:4:31J§>o PD

23 Copyright ©1991-2008 by K. Pattipati
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Y J—‘ Eigen Values & Eigen Vectors - 2 I

* Ais skew symmetric = {4,(A)} are imaginary

Example: SNy

-1 0
1 100
 Ingeneral, 4,(A)>0 # Ais PD. Example: [0 . j

 But, for symmetric A & 4,(A)>0 = Ais PD
= So, for PD: xTAx >0 V x # 0 (A need not be symmetric) or principal
minors or eigen values of symmetrized A>0
« Note: A, Bare PD= A+ B, A2 Al and all A" are PD
» Eigen vectors associated with distinct eigen values are independent.
Proof: assume dependent = a,¢; +a,é+ ... ta,&= 0
multiply by A, A, ..., A1

(1 A4 A2 At
1 4 A2 ... it
= ¢ ... ad)] :2 f 2 1=0
2 n-1
1A, A2 .. AT -
Vandermonde matrix 4 'd
=& =0=a,=0 invertibleif 4 = A, i

o (A= A(A), det(A)=][A4(A)

Copyright ©1991-2008 by K. Pattipati
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e J—| Vector and Matrix Norms - 1 I

O Similarity Transformations
« If Qlexists, A=Q'AQ= 4 (A) =A(A)
o If {4} are distinct, Q"'AQ = A = Diag(4)
* In particular, f(A) = Q f(A) Q! e.g., eA=Q eM Q!
... worst possible way of computing f(A)

 If {4;} are not distinct, need to use Jordan’s form..... Messy on computers
» OK for symmetric matrices f(A) = Q f(A)QT
O Vector and Matrix Norms:

 Play an important role in the convergence studies of algorithms.

» As an example, consider Ax = b problem

» Simplest and most important problem in Matrix Computations

 To show its importance, consider a linear system in steady state:
Xx=0=Ax+Bu=x,=-A"'Bu=-A"b
= solve Ax=—-Bu=Db

» Mathematically, solution exists iff b € R(A) = {x e R™| >a; ;= b}

Copyright ©1991-2008 by K. Pattipati
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. Vector & Matrix Norms - 2

* UniqueifN(A)=p=>>Yax=0=>X,=X,=..=x,=0
= Linearly independent columns of A
Q 1. If A and b are perturbed by a small amount 6A and Jb, how does it affect x?
the so-called sensitivity (conditioning) problem.
2. What if A is “nearly” singular? what is near singularity?
3. If b € R(A), then how can we determine x 3 Ax is “close” to b? =
least squares problem
4. How do we measure small Pe_rturbat!ons? Norms provide
near singularity?
distance in vector spaces?
L Norms generalize the concept of absolute value of a real number to vectors and
matrices (measure of “SIZE” of a vector and matrix)

O Vector Norms i Up
{Z| X, |p} ~ "size"

x|, =Holder or p-norm =[| X, [° +| %, |° +...+|x, IPT'P = 2
i=

such a language

n

p=1=|x|| =D_| x |=1-normor Manhattan Distance
i=1

n 1/2
most importanty p=2=|x||, = [Z| X, |2j (2-norm, root sum square (RSS) or Euclidean norm)
i=1

p=o0=|x| =max;|x| (cc-norm)

Copyright ©1991-2008 by K. Pattipati
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Properties of Vector Norms

 All norms convey approximately same information.
 Only thing is, some are more convenient to use (e.g., 2-norm).
» However, all satisfy:

() [x+yll, < Iix[l,lyll, (Minkowski’s inequality)

(vii)

Copyright ©1991-2008 by K. Pattipati

(i) [x+yll, =0
(i) [lex||,= clill,
(V) Ix"vl[=Ix"yl< X[ lIyllyl/p +1/g =1 (Holder’s inequality)
(V) X'y| <|X]l,llvll, (Cauchy-Schwartz-Bunyakovski’s inequality)
(vi) lIQxIlz* = XTQTQx = xTx = ||x][,*
= 2-norm is invariant under orthogonal transformations ...

extremely important idea in numerical computations.

x||. <[|x]. </nx 1\ (1
ol <L 1) )
K, <lx], <vnfxl, 10 1
x| <[x|, <n|x]. LB UBwithequality
(viii) X approx. to x = absolute error |x—&|;  relative error |x—X|/|X| : :
oo-norm = # of correct signifiant digits in x a3
107" = p signifiant digits ‘:
L
LR LR LR
. R L LR L
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Y J—‘ Properties of Matrix Norms I

O Matrix norms: Aism by n

1/2
(i) Frobenius norm (or) F-norm = ||A||_ = (ZZaﬁj
i-1 j=1
|Ax],

< Il
(iit) Note: [ Ax|[, <[[Af[x],: |A8], <Al IB],:[A+B[, <[Al, +|8]

~ "sjze" of the matrix

(ii) p-norm ||A||p = max

p

(iv) p=1=|A|, =max > |a; |= max. column sum

<i<
=i=n 47

T AT 1/2
(5 A-I\- A)\l_)fz) = ':ﬂ‘ max (AT A):Illz = Gmax (A)’
X X

Max. singular value of A

V) p=2=|A|, = max

(Vi) p=oo=|A| = maxzn] a; |= max. row sum
j=1

1<i<m <

O Use of Matrix Norms: a'a
* Use ||A|| to approximate | 2 ...(A)| = p(A) spectral radius of A. 4
* Can show p(A) < ||All, ¥ p. : :

 Other properties, see problem set #1

Copyright ©1991-2008 by K. Pattipati
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Y J—‘ Singular Value Decomposition - 1 I

 Scale by ¢ = constant > p(A) = A/c has all | 4;,(A)| < 1. Will be useful in
evaluating eAt and integrals involving eAt.

» Matrix norm used in estmaing the convergence rate of algorithms. We see
its use in Lecture 4.

O Singular Value Decomposition (SVD)
|- Best method for approximating A by A & Determining rank(A) is SVD.

O Whatis SVD?

« AeRM™M=UZXVT;, U &V orthogonal
* U:(g]_! gz; "'agm)ERmm V:(yll y29 "'9yn) ERnn
UTAV= X =Diag(o; o, ... 6,); p=min(m,n) o> 0,> ... >0, >0

A 2
p=m<n=A=U(Z, 0)[V1Tj; p=n<m=(y, Uz)(oleT
V2

In general, can have ¢,> 0, >

s 0)(V
= A=(U, UZ)( f j[\’;}:u,zrvj
0 0)lv,

..=2o,>0and o, =...= 0,=0

r = rank(A) = can use SVD to determine rank of A
Av; =g, U;, U; is called the left singular vector of A
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Y J—‘ Singular Value Decomposition - 2 I

« ATu =g, V;, v, is called the right singular vector of A
AAT = U 22UT = AAT U= 62U,
= ¢%; are eigen values of AAT; u; eigen vectors of AAT
« Similarly, ATA=VIVT = ATAvi= 0%V,
= o2, are eigen values of ATA; v; eigen vectors of ATA
« Symmetric PD = SVD = eigen value analysis (called principal component
analysis in statistics)
 Since All, = P A2 = (0212 = Gy
* Also, [IAlle = (o2 +0%+...+02,) 1
”A l”2 [imax(ATA) 1]1/2 = 1l0—min

L One application of SVD: data compression (reduction)

« Suppose we approximate A by the first r singular vectors. What is the error
involved?

* Know A=UXVT A=U V' = ZO‘UV HA—AH2=O}+1 o d

r-=r-r =1
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 Very useful in spectral estimation and robust control.

O Second application: determining the condition number of a matrix A
- Condition number, k(A) = [|A[| [|AY], for p=2: k(A) = 6ux(A) 0nin(A)
= Kk(A) is a measure of non-singularity of A
66 3.34
1.99 10. 01}
O =10.7588 =0.0037

mln

k(A)=0c. . /o, =2894

Example 11: Consider A= {

* Large k(A) >10° = bad news in solving Ax=b
O Third application of SVD: determining the bases of linear spaces
associated with Ax=b and ATy=c as well as the pseudo inverse
= R(A) =(u,...u,); N(A")=(U,,...u.)
dim(R(A)) +dim(N(A")) =m

N(A) =(VeVerp---Y); RA) =(Y...V,)
dim(N (A)) + dim(R(A")) = n

r=r r

= Pseudo Inverse of A= A" =V,ZIU => —vu/
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