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Outline of Lecture 11

 House holder method to convert a symmetric matrix to tridiagonal form

 Key Ideas of Symmetric QR method

 Lanczos method for sparse symmetric matrices

• Relationship with the conjugate gradient (CG) method

 A variety of algorithms exist for finding the Eigen values and Eigen 

vectors of a symmetric matrix

• Symmetric QR

• Jacobi method

• Bisection method (using Sturm sequence property)

• Power method

• Lanczos method (for sparse symmetric matrices)

 However, symmetric QR is the best general purpose algorithm

• Unless only a few Eigen values/Eigen vectors are desired

• In the latter case, specialized methods may be useful (see Golub and Van 

Loan, 1996)
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Symmetric QR Algorithm

 Key ideas of symmetric QR algorithm

• If Q0
TAQ0 = H, an upper Hessenberg matrix

– A is symmetric  H = HT

– A symmetric upper Hessenberg matrix is a symmetric 

tridiagonal matrix

• Symmetry and tridiagonal band structure are preserved with 

single shift QR

• Recall that {i(A)} are real for a symmetric matrix A

 no need for double and complex shifts
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 Transformation to tridiagonal form via Householder

• Suppose, we have determined W1 W2 … Wk-2

• So,

• Exploit Symmetry in generating Ak
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Transformation to Tridiagonal Form - 1
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 Starting with T=A0 = Q0
TAQ0, where T is tridiagonal, the symmetric 

QR algorithm employs the following iterations

 Key: QR decomposition of a tridiagonal matrix requires O(n) 

operations. The resulting R has bidiagonal structure  diagonal and 

super diagonal

that is,
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Rudiments of a Sysmmetric QR
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 Choice of :
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 Only question then is: how to get QR form (Ak -I) in O(n) 

operations ? 

• Use Givens transformations to obtain QR decomposition of a 

tridiagonal matrix (Ak -I).

• Consider the initial step k = 1

• The problem is to find 

• Make a21 = b2 → 0 via J(1,2,) = J21 and consider 

QR Decomposition of Tridiagonal - 1 
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• This initial step is called implicit Q-step, which creates unwanted 

elements denoted by +

• Chase these unwanted elements away via Givens or 

Householder transformation:
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QR Decomposition of Tridiagonal - 2 
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 Illustration of the process on a 6 x 6 matrix
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Wilkinson Shift

 Implicit Symmetric QR – step with Wilkinson shift

 The procedure requires O(14n) operations and n square roots
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 To form Q, requires an additional 4n2 operations

 The overall Symmetric QR Algorithm

• Find tridiagonal matrix A0 = T = Q0
TAQ0 via Householder transformation 

• Do for ever

 The algorithm requires  2n3/3 operations for {i(A)} and approximately 

5n3 operations for Eigen vectors also
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Lanczos Methods

 Lanczos Methods for sparse symmetric matrices

• Useful for finding the Eigen values of sparse symmetric matrices

• Also, related to the conjugate gradient method

 Key fact: if a matrix A is cyclic then 

• {u Au … An-1u} from a basis.

• The subspaces formed by {u, Au, … Ak-1 u} for k = 1,2, …, n are called 

Krylov subspaces K(A, u, k) 

• We know by the power method that Ak u goes towards the Eigen vector 

corresponding to the largest Eigen value.

 Lanczos Idea

• What if we orthogonalize the vectors associated with Krylov subspaces? 

This is the basic idea of Lanczos !!

• It turns out that we can derive a three term recursion for the 

orthogonal vectors
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Lanczos Recursion

 Lanczos Recursion: Starting with any unit vector u = q1 and any 

symmetric matrix A, there is an orthogonal sequence q1 q2 … qn 

 So, Lanczos can be viewed as a Tridiagonal decomposition of a 

symmetric matrix A

 The set of orthogonal vectors {qi} are called Lanczos vectors
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 Note:
1) q0 = 0

2) If b j = 0, then qj+1 is any vector orthogonal to q1 … qj.

3) If this happens, T splits into two subblocks

4) A qj 
r to q1 … qj-2

5) Vector qj+1 is orthogonal to {q1 … qj}

This is because (recall A=AT )
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Lanczos Vectors are Orthogonal
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 So, the Lanczos vectors {qj} are such that
1) Each qj+1 is r to {q1, q2, … , qj}

2) Each qj+1 is a combination of {q1, Aq1, … , Ajq1}

3) Each qj+1 is orthogonal to all combinations of {q1 Aq1 … Aj-1q1}

 Lanczos iteration to find the vectors {qj}:

• Requires O(cn + 4) operations where c = # of non-zero elements per 

row

• Prone to round off errors … Need to do selective re-orthogonalization

of rj against previous Lanczos vectors.

• Find Eigen values of the tridiagonal matrix by symmetric QR 

 Relationship with the conjugate gradient method

• Residuals {rj = b – A xj}, where xj is the solution at iteration j of 

conjugate gradient method, are multiples of the Lanczos vectors {qj}
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Lanczos Iteration
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Summary

 House holder method to convert a symmetric matrix to tridiagonal form

 Lanczos method for sparse symmetric matrices

• Relationship with the conjugate gradient (CG) method

 A variety of algorithms exist for finding the Eigen values and Eigen 

vectors of a symmetric matrix

• Symmetric QR

• Jacobi method

• Bisection method (using Sturm sequence property)

• Power method

• Lanczos method (for sparse symmetric matrices)

 However, symmetric QR is the best general purpose algorithm

• Unless only a few Eigen values/Eigen vectors are desired

• In the latter case, specialized methods may be useful (see Golub and Van 

Loan, 1989)


