FlR OO L.

Lecture 11: Symmetric Eigen Value

Problem

Prof. Krishna R. Pattipati
Dept. of Electrical and Computer Engineering

University of Connecticut
Contact: krishna@engr.uconn.edu (860) 486-2890

d'd
d'3

ECE 6435 Fall 2008 :

Adv Numerical Methods in Sci Comp November 5, 2008 :

Copyright ©2004 by K. Pattipati ‘ . . ‘ ‘ ‘
L LLRLL


mailto:krishna@engr.uconn.edu

[ N N N NS .

2

Yo s (I Outline of Lecture 11 I

L House holder method to convert a symmetric matrix to tridiagonal form
0 Key Ideas of Symmetric QR method
O Lanczos method for sparse symmetric matrices

 Relationship with the conjugate gradient (CG) method

O Avariety of algorithms exist for finding the Eigen values and Eigen
vectors of a symmetric matrix

« Symmetric QR

« Jacobi method

» Bisection method (using Sturm sequence property)
» Power method

» Lanczos method (for sparse symmetric matrices)

O However, symmetric QR is the best general purpose algorithm a2
* Unless only a few Eigen values/Eigen vectors are desired : :
* In the latter case, specialized methods may be useful (see Golub and Van 4 4

o

Loan, 1996 n
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Y5 (I Symimetric QR Algorithm l

0 Key ideas of symmetric QR algorithm
« If Q,"AQ, = H, an upper Hessenberg matrix
— Alis symmetric => H=H"

— Asymmetric upper Hessenberg matrix is a symmetric
tridiagonal matrix

« Symmetry and tridiagonal band structure are preserved with
single shift QR

 Recall that {4,(A)} are real for a symmetric matrix A
= no need for double and complex shifts

o
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1%%es | Transformation to Tridiagonal Form - 1
: L Transformation to tridiagonal form via Householder
: * Suppose, we have determined W, W, ... W, ,
N * S0, B ! 0 k_1
. A
A =(We W, ) AW, W, , = o : b _E D |n-k
k-1 1 n-k

where B is tridiagonal
« W is an order n-k Householder > W, = Diag(lk,Wk)

0
B ~
A =W AW, = b" W
0 W b WkDWk_
« Exploit Symmetry in generating A,
~ 2
Wi=1I_ ——uu' , ueR™™
uu
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1Y Transformation to Tridiagonal Form - 2
F p= T2 Du and q=p—ETTg-g

"' - ouuy -~ u'u

|

L |

= D-up' —pu' +——.uu' pu' =D-ug' —qu’
P opu AT P g -9
pu
where g =p--=—u
-~ u'u

« Note that only the upper D portion W DW . needs to be computed
= (n-k)* operations.
. So, the process of going from A, to A takes 2(n-k)* operations
. Overall, it takes O(2n° / 3) operations to obtain tridiagonal form
- Additional 2n° /3 to obtain the transformation matrix Q, =W, W,... W __,
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@ ' (I Rudiments of a Sysmmetric QR l
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Q Starting with T=A,= Q,"AQ,, where T is tridiagonal, the symmetric
QR algorithm employs the following iterations

Fork =1,2,...

A—ul =QR

A =RQ+ul =Q"(A - uh)Q+ul =Q'AQ
end DO

tha_t IS,
aQ
A= b,

Copyright ©2004 by K. Pattipati

O Key: QR decomposition of a tridiagonal matrix requires O(n)
operations. The resulting R has bidiagonal structure = diagonal and
super diagonal

RQ = tridiagonal
— takes O(n) operations
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Vo5 - (I Picking the Shift Factor I

0 Choice of pu:
- one choiceis u=a,. Another choice is to set ;= Eigen value of 2 x 2 block

a b
closest to a_, where the 2 x 2 block is [ b”‘l a”j

n n

— (ﬂ“ - an—l)(ﬂ“ - an) _br? - 2“2 - (an + a‘n—l)ﬂ‘_|_ aa, _br?

1 a+a =+ \/(an +a )’ —4aa , +4b’
2

2 2
a ,—a . \/(an_l —a. )" +4b;

=a +

" 2 2
= A = a,+d, +./d?+b? where d, :a“;z_a”
_ _ 2 R d'a
= pu=a +d sgn(dn)«/dn +b’ .
« This choice of x is called Wilkinson shift 4 'd
< 'd

« Wilkinson shift results in cubic convergence of A to diagonal

o

d
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QR Decomposition of Tridiagonal - 1

O Only question then is: how to get QR form (A, -ul) in O(n)
operations ?

Use Givens transformations to obtain QR decomposition of a
tridiagonal matrix (A, -ul).

Consider the initial step k=1

The problem is to find

Cl
— Sl

S
C

|

a, —HU
b,

[

Make a,, = b, — 0 via J(1,2, 0) = J,, and consider J,, (A —u1)J,,

" 'x x + 0 .. O]
x x o) 24 'x x 0] |x x x 0 .0
b, a—Hu b,
X X X X + x x x . 0 33
b, a,—u b, = :
1 a b 1 0 d'Jd
0 1 T B g 1 4
° o TH 0 0 43

+ = unwanted elements
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 This initial step is called implicit Q-step, which creates unwanted
elements denoted by +

» Chase these unwanted elements away via Givens or
Householder transformation:

A=J5A0y =335 (A —ul)d 5 =

o

+ X X X
< X

X X 4+ O
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- | Wilkinson Shift |

Q Implicit Symmetric QR — step with Wilkinson shift

u=a_ +d-sgn(d), /d2 +a; ., =a,—a,, . /(d+sgn(d)d*+aZ ,
d= (an—l,n—l —a,) /2, Xx=a, —u; 2=a,
Fork=12, ..., n-1
Determine c, and s, >
C, S \[X *
(_Sk ij(zj i (Oj
Ifk =1
formA « J.,, Al .1,
else
form ‘]l-<F+1,k—1A‘Jk+1,k—l

end if
If K <n—-1then

FlR OO L.

X= 0 L=
end if
end DO
O The procedure requires O(14n) operations and n square roots

kL
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' [ Overall Symmetric QR

0 To form Q, requires an additional 4n4 operations
L The overall Symmetric QR Algorithm
» Find tridiagonal matrix A, = T = Q,"AQ, via Householder transformation
* Do for ever
11,01 )
Fori=12,..,n-1

find largest g and smallestp > if
Ay 0 p
A= Ay n-p-q
0 A, q
where A,, is diagonal and A,, has no zero subdiagonal elements
iIf g=nthen

a

Se(|a"|+

i+1,1

quit
else
Apply Wilkinson shift; A=diag(l IOqu)T Adiag(1 ,Ql,)
end if
end DO
O The algorithm requires ~ 2n3/3 operations for {i;(A)} and approximately
5n3 operations for Eigen vectors also

kL
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N 4 (I Lanczos Methods I

O Lanczos Methods for sparse symmetric matrices

 Useful for finding the Eigen values of sparse symmetric matrices
 Also, related to the conjugate gradient method

[ N N N NS .

O Key fact: if a matrix A is cyclic then

e {uAu ... A™1u} from a basis.

 The subspaces formed by {u, Au, ... A¥Tu} fork = 1,2, ..., n are called
Krylov subspaces K(A, u, k)

« We know by the power method that Aku goes towards the Eigen vector
corresponding to the largest Eigen value.

O Lanczos Idea
» What if we orthogonalize the vectors associated with Krylov subspaces?

L L . |

This is the basic idea of Lanczos !! 3

* |t turns out that we can derive a three term recursion for the d

orthogonal vectors 4
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N 4 (I Lanczos Recursion I

O Lanczos Recursion: Starting with any unit vector u = g, and any
symmetric matrix A, there is an orthogonal sequence g, 4, ... 4, 3
Aq, =b;.q, +a,9,+bq,
Q" AQ =T (tridiagonal)
= AQ=QT

[ N N N NS .

o o o
Lo
o

| Ag, Ag, . Ad, |=(g, g, -,

O
N
Q?J
=)

O So, Lanczos can be viewed as a Tridiagonal decomposition of a

symmetric matrix A
= Agj :bj—lgj—1+aj9j +qu

—j+l

= bjq,, =(A-a;1)q,-b;.,q, 42
a3
= bj :H(A_ajl)gj_bj—lgj—l od d
an

O The set of orthogonal vectors {g;} are called Lanczos vectors

o

d
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Lanczos Vectors are Orthogonal

O Note:
1) 9,=0
2) Ifb;=0,then g, isany vector orthogonal to g; ... g;
3) If this happens, T splits into two subblocks
4) Ag;Ll'tog; ... g,
5) Vector g;,, Is orthogonal to {q; ... g;}
This is because (recall A=AT)

gT Ag' - (Agi)T gj - (bi_lgi—l tag bi9i+1)ng =0

Vi=12, .., -2
Fori< j-2, we have

9?— Agj - (A9|)T91 = (bi—lgi_1+A9i +biq- )ng =0

—i+l
FromAq. =+b;q.  +a;q.+b;,q.
Since giTAgj =0 Vi< j-2, wehave 9?9,- =0

= q_, is L' toall the previous {q }

o

d
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NI E (I Lanczos lteration l

L So, the Lanczos vectors {q;} are such that

1) Eachg,,is 1"to{g;, 0, ..., 0} |

2) Each g;,, is a combination of {q;, Ag, ..., Alg; }

3) Eachg;,, is orthogonal to all combinations of {q; Ag; ... Al'lq,}
1 Lanczos iteration to find the vectors {q;}:

[0:91; 9j+1:£j/bj;j: J+1

a; :nggj; N :(A_ajl)gj _bj—lg'—l; bi :HEJH

J

*  Requires O(cn + 4) operations where ¢ = # of non-zero elements per
row

*  Prone to round off errors ... Need to do selective re-orthogonalization
of r; against previous Lanczos vectors.

*  Find Eigen values of the tridiagonal matrix by symmetric QR 3'a
O Relationship with the conjugate gradient method 44
* Residuals {r; = b — A X}, where x; is the solution at iteration | of : :

conjugate gradient method, are multiples of the Lanczos vectors {q;}

o
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5" (I Summary l

House holder method to convert a symmetric matrix to tridiagonal form
Lanczos method for sparse symmetric matrices
 Relationship with the conjugate gradient (CG) method

A variety of algorithms exist for finding the Eigen values and Eigen
vectors of a symmetric matrix

* Symmetric QR
 Jacobi method
 Bisection method (using Sturm sequence property)

(.

O

» Power method
» Lanczos method (for sparse symmetric matrices)

O However, symmetric QR is the best general purpose algorithm

« Unless only a few Eigen values/Eigen vectors are desired 4
* In the latter case, specialized methods may be useful (see Golub and Van :
Loan, 1989) d
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