

Outline of Lecture 11

- House holder method to convert a symmetric matrix to tridiagonal form
- Key Ideas of Symmetric QR method
- Lanczos method for sparse symmetric matrices
- Relationship with the conjugate gradient (CG) method
- A variety of algorithms exist for finding the Eigen values and Eigen vectors of a symmetric matrix
- Symmetric QR
- Jacobi method
- Bisection method (using Sturm sequence property)
- Power method
- Lanczos method (for sparse symmetric matrices)
- However, symmetric QR is the best general purpose algorithm
- Unless only a few Eigen values/Eigen vectors are desired
- In the latter case, specialized methods may be useful (see Golub and Van Loan, 1996)

Symmetric QR Algorithm

\square Key ideas of symmetric QR algorithm

- If $Q_{0}{ }^{\mathrm{T}} A Q_{0}=H$, an upper Hessenberg matrix
- A is symmetric $\Rightarrow H=H^{\mathrm{T}}$
- A symmetric upper Hessenberg matrix is a symmetric tridiagonal matrix
- Symmetry and tridiagonal band structure are preserved with single shift QR
- Recall that $\left\{\lambda_{\mathrm{i}}(A)\right\}$ are real for a symmetric matrix A
\Rightarrow no need for double and complex shifts

Transformation to Tridiagonal Form - 1

- Transformation to tridiagonal form via Householder
- Suppose, we have determined $W_{1} W_{2} \ldots W_{\mathrm{k}-2}$
- So,

$$
\begin{aligned}
& \text { So, } \\
& A_{k-1}=\left(W_{1} \ldots W_{k-1}\right)^{T} A W_{1} \ldots W_{k-1}=\left[\begin{array}{c:cc}
B & \underline{0} & k-1 \\
\hdashline \underline{0}^{T} & \underline{b} & \underline{b}^{T} \\
k-1 & 1 & n-k
\end{array}\right] \begin{array}{l}
1 \\
\\
\\
\\
\end{array} \quad .
\end{aligned}
$$

where B is tridiagonal

- \widetilde{W}_{k} is an order $n-k$ Householder $\ni W_{k}=\operatorname{Diag}\left(I_{k}, \widetilde{W}_{k}\right)$

$$
A_{k}=W_{k} A_{k-1} W_{k}=\left[\begin{array}{cc}
B & 0 \\
0 & b^{T} \widetilde{W}_{k} \\
0 & \widetilde{W}_{k} b \widetilde{W}_{k} D \widetilde{W}_{k}
\end{array}\right]
$$

- Exploit Symmetry in generating A_{k}

$$
\widetilde{W}_{k}=I_{n-k}-\frac{2}{\underline{u}^{T} \underline{u}} \cdot \underline{u} \underline{u}^{T} \quad, \underline{u} \in R^{n-k}
$$

Transformation to Tridiagonal Form - 2

$$
\begin{aligned}
& \underline{p}=\frac{2}{\underline{u}^{T} \underline{u}} D \underline{u} \text { and } \underline{q}=\underline{p}-\frac{\underline{p}^{T} \underline{u}}{\underline{u}^{T} \underline{u}} \underline{u} \\
& \widetilde{W}_{k} D \widetilde{W}_{k}=\widetilde{W}_{k}\left[D-\frac{2}{\underline{u}^{T} \underline{u}} \cdot D \underline{u} \underline{u} \underline{u}^{T}\right]=\widetilde{W}_{k}\left[D-\underline{p} \underline{u^{T}}\right]=\left(I-\frac{2}{\underline{u}^{T} \underline{u}^{T}} \cdot \underline{u}^{T}\right)\left(D-\underline{p} \underline{u}^{T}\right) \\
& \quad=D-\underline{u} \underline{p}^{T}-\underline{p} \underline{u} \underline{u}^{T}+\frac{2}{\underline{u}^{T} \underline{u}} \cdot \underline{u} \underline{u}^{T} \underline{p} \underline{u}^{T}=D-\underline{u} \underline{q}^{T}-\underline{q}^{T}
\end{aligned}
$$

where $\underline{q}=\underline{p}-\frac{\underline{p} \underline{u}}{\underline{u}^{T} \underline{u}} . \underline{u}$

- Note that only the upper D portion $\widetilde{W}_{k} D \widetilde{W}_{k}$ needs to be computed $\Rightarrow(n-k)^{2}$ operations.
- So, the process of going from A_{k-1} to A_{k} takes $2(n-k)^{2}$ operations
- Overall, it takes $O\left(2 n^{3} / 3\right)$ operations to obtain tridiagonal form
- Additional $2 n^{3} / 3$ to obtain the transformation matrix $Q_{0}=W_{1} W_{2} \ldots W_{n-2}$

Rudiments of a Sysmmetric QR

－Starting with $T=A_{0}=Q_{0}{ }^{\mathrm{T}} A Q_{0}$ ，where T is tridiagonal，the symmetric $Q R$ algorithm employs the following iterations
For $k=1,2, \ldots$

$$
\begin{aligned}
& A_{k}-\mu I=Q R \\
& A_{k+1}=R Q+\mu I=Q^{T}\left(A_{k}-\mu I\right) Q+\mu I=Q^{T} A_{k} Q
\end{aligned}
$$

end DO
－Key：$Q R$ decomposition of a tridiagonal matrix requires $O(n)$ operations．The resulting R has bidiagonal structure \Rightarrow diagonal and super diagonal

$$
\begin{aligned}
& \text { that is, } \\
& A=\left[\begin{array}{ccccc}
a_{1} & b_{2} & 0 & . . & 0 \\
b_{2} & a_{2} & b_{3} & . . & 0 \\
0 & 0 & 0 & a_{n-1} & b_{n} \\
0 & 0 & 0 & b_{n} & a_{n}
\end{array}\right] \stackrel{Q^{T}}{ }\left[\begin{array}{ccccc}
x & x & & & 0 \\
& x & x & & \\
& & x & x & \\
& & & x & x \\
0 & & & & x
\end{array}\right] \quad \begin{array}{l}
R Q=\text { tridiagonal }
\end{array}
\end{aligned}
$$

Picking the Shift Factor

\square Choice of μ :

- one choice is $\mu=a_{n}$. Another choice is to set $\mu=$ Eigen value of 2×2 block closest to a_{n}, where the 2×2 block is $\left(\begin{array}{cc}a_{n-1} & b_{n} \\ b_{n} & a_{n}\end{array}\right)$

$$
\Rightarrow\left(\lambda-a_{n-1}\right)\left(\lambda-a_{n}\right)-b_{n}^{2}=\lambda^{2}-\left(a_{n}+a_{n-1}\right) \lambda+a_{n} a_{n-1}-b_{n}^{2}
$$

$$
\lambda=\frac{a_{n}+a_{n-1} \pm \sqrt{\left(a_{n}+a_{n-1}\right)^{2}-4 a_{n} a_{n-1}+4 b_{n}^{2}}}{2}
$$

$$
=a_{n}+\frac{a_{n-1}-a_{n}}{2} \pm \frac{\sqrt{\left(a_{n-1}-a_{n}\right)^{2}+4 b_{n}^{2}}}{2}
$$

$$
\Rightarrow \lambda=a_{n}+d_{n} \pm \sqrt{d_{n}^{2}+b_{n}^{2}} \text { where } d_{n}=\frac{a_{n-1}-a_{n}}{2}
$$

$$
\Rightarrow \mu=a_{n}+d_{n}-\operatorname{sgn}\left(d_{n}\right) \sqrt{d_{n}^{2}+b_{n}^{2}}
$$

- This choice of μ is called Wilkinson shift
- Wilkinson shift results in cubic convergence of A to diagonal

QR Decomposition of Tridiagonal - 1

\square Only question then is: how to get $Q R$ form $\left(A_{\mathrm{k}}-\mu I\right)$ in $O(n)$ operations?

- Use Givens transformations to obtain $Q R$ decomposition of a tridiagonal matrix $\left(A_{k}-\mu I\right)$.
- Consider the initial step $k=1$
- The problem is to find

$$
c_{1}, s_{1} \ni\left[\begin{array}{cc}
c_{1} & s_{1} \\
-s_{1} & c_{1}
\end{array}\right]\left[\begin{array}{c}
a_{11}-\mu \\
b_{2}
\end{array}\right]=\left[\begin{array}{l}
* \\
0
\end{array}\right]=k \underline{e}_{1}
$$

- Make $a_{21}=b_{2} \rightarrow 0$ via $J(1,2, \theta)=J_{21}$ and consider $J_{21}^{T}\left(A_{k}-\mu I\right) J_{21}$

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
x & x & 0 \\
x & x & & \\
& & 1 & \\
0 & & & 1
\end{array}\right]\left[\begin{array}{cccccc}
a_{1}-\mu & b_{2} & & & & \\
b_{2} & a_{2}-\mu & b_{3} & & & \\
& b_{3} & a_{3}-\mu & b_{4} & & \\
& & & & a_{n-1}-\mu & b_{n} \\
0 & & & b_{n} & a_{n}-\mu
\end{array}\right]\left[\begin{array}{llll}
x & x & & 0 \\
x & x & & \\
& & 1 & \\
0 & & 1
\end{array}\right]=\left[\begin{array}{cccccc}
x & x & + & 0 & . . & 0 \\
x & x & x & 0 & . . & 0 \\
+ & x & x & x & . . & 0 \\
& 0 & & . & . . & \\
& & & . & \\
0 & & & . . & 0
\end{array}\right] ;} \\
& +\Rightarrow \text { unwanted elements }
\end{aligned}
$$

QR Decomposition of Tridiagonal - 2

- This initial step is called implicit Q-step, which creates unwanted elements denoted by +
- Chase these unwanted elements away via Givens or Householder transformation:

$$
\begin{aligned}
& A=J_{31}^{T} A J_{31}=J_{31}^{T} J_{21}^{T}\left(A_{k}-\mu I\right) J_{21} J_{31}=\left[\begin{array}{ccccc}
x & x & & 0 & \\
x & x & x & + & \\
0 & x & x & x & \\
\cdot & + & x & x & x \\
& \cdot & \cdot & \cdot & \cdot \\
0 & 0 & \cdot & 0 &
\end{array}\right] \\
& A=J_{42}^{T} A J_{42}=\left[\begin{array}{lllll}
x & x & & \\
x & x & x & & \\
& x & x & x & + \\
& & x & x & x \\
& & + & x & x
\end{array}\right]
\end{aligned}
$$

Illustration of $\mathrm{QR} \rightarrow$ Tridiagonal

\square Illustration of the process on a 6×6 matrix

$$
\begin{aligned}
& \xrightarrow[J_{42}]{3}\left[\begin{array}{cccccc}
\mathrm{x} & \mathrm{x} & 0 & 0 & 0 & 0 \\
\mathrm{x} & \mathrm{x} & \mathrm{x} & 0 & 0 & 0 \\
0 & \mathrm{x} & \mathrm{x} & \mathrm{x} & + & 0 \\
0 & 0 & \mathrm{x} & \mathrm{x} & \mathrm{x} & 0 \\
0 & 0 & + & \mathrm{x} & \mathrm{x} & \mathrm{x} \\
0 & 0 & 0 & 0 & \mathrm{x} & \mathrm{x}
\end{array}\right] \xrightarrow[J_{53}]{4}\left[\begin{array}{cccccc}
\mathrm{x} & \mathrm{x} & 0 & 0 & 0 & 0 \\
\mathrm{x} & \mathrm{x} & \mathrm{x} & 0 & 0 & 0 \\
0 & \mathrm{x} & \mathrm{x} & \mathrm{x} & 0 & 0 \\
0 & 0 & \mathrm{x} & \mathrm{x} & \mathrm{x} & 0 \\
0 & 0 & 0 & \mathrm{x} & \mathrm{x} & \mathrm{x} \\
0 & 0 & 0 & + & \mathrm{x} & \mathrm{x}
\end{array}\right] \xrightarrow[J_{64}]{J_{5}}\left[\begin{array}{llllll}
\mathrm{x} & \mathrm{x} & 0 & 0 & 0 & 0 \\
\mathrm{x} & \mathrm{x} & \mathrm{x} & 0 & 0 & 0 \\
0 & \mathrm{x} & \mathrm{x} & \mathrm{x} & 0 & 0 \\
0 & 0 & \mathrm{x} & \mathrm{x} & \mathrm{x} & 0 \\
0 & 0 & 0 & \mathrm{x} & \mathrm{x} & \mathrm{x} \\
0 & 0 & 0 & 0 & \mathrm{x} & \mathrm{x}
\end{array}\right]
\end{aligned}
$$

($\mathrm{n}-1$) steps including the implicit Q-step

Wilkinson Shift

I Implicit Symmetric QR - step with Wilkinson shift

$$
\mu=a_{n n}+d-\operatorname{sgn}(d) \sqrt{d^{2}+a_{n, n-1}^{2}}=a_{n n}-a_{n, n-1}^{2} /\left(d+\operatorname{sgn}(d) \sqrt{d^{2}+a_{n, n-1}^{2}}\right.
$$

$$
d=\left(a_{n-1, n-1}-a_{n n}\right) / 2 ; x=a_{11}-\mu ; z=a_{21}
$$

For $k=1,2, \ldots, n-1$
Determine c_{k} and $s_{k} \ni$

$$
\left(\begin{array}{cc}
c_{k} & s_{k} \\
-s_{k} & c_{k}
\end{array}\right)\binom{x}{z}=\binom{*}{0}
$$

If $k=1$

$$
\text { form } A \leftarrow J_{k+1, k}^{T} A J_{k+1, k}
$$

else

$$
\text { form } J_{k+1, k-1}^{T} A J_{k+1, k-1}
$$

end if
If $k<n-1$ then

$$
x=a_{k+1, k} ; z=a_{k+2, k}
$$

end if
end DO
The procedure requires $\mathrm{O}(14 n)$ operations and n square roots

Overall Symmetric QR

- To form Q , requires an additional $4 n^{2}$ operations
\square The overall Symmetric QR Algorithm
- Find tridiagonal matrix $A_{0}=T=Q_{0}{ }^{\mathrm{T}} A Q_{0}$ via Householder transformation
- Do for ever

$$
\left|a_{i+1, i}\right| \leq \varepsilon\left(\left|a_{i i}\right|+\left|a_{i+1, i+1}\right|\right)
$$

For $i=1,2, \ldots, n-1$
find largest q and smallest p э if
$A=\left[\begin{array}{lll}A_{11} & & 0 \\ & A_{22} & \\ 0 & & A_{33}\end{array}\right] \begin{gathered}p \\ n-p-q \\ q\end{gathered}$
where A_{33} is diagonal and A_{22} has no zero subdiagonal elements
if $q=n$ then quit
else
Apply Wilkinson shift; $A=\operatorname{diag}\left(I_{p} Q I_{q}\right)^{T} \operatorname{Adiag}\left(I_{p} Q I_{q}\right)$
end if
end DO
\square The algorithm requires $\approx 2 n^{3} / 3$ operations for $\left\{\lambda_{\mathrm{i}}(A)\right\}$ and approximately $5 n^{3}$ operations for Eigen vectors also

Lanczos Methods

\square Lanczos Methods for sparse symmetric matrices

- Useful for finding the Eigen values of sparse symmetric matrices
- Also, related to the conjugate gradient method
\square Key fact: if a matrix A is cyclic then
- $\left\{\underline{u} A \underline{u} \ldots A^{n-1} \underline{u}\right\}$ from a basis.
- The subspaces formed by $\left\{\underline{u}, A \underline{u}, \ldots A^{k-1} \underline{u}\right\}$ for $k=1,2, \ldots, n$ are called Krylov subspaces $K(A, \underline{u}, k)$
- We know by the power method that $A^{k} \underline{u}$ goes towards the Eigen vector corresponding to the largest Eigen value.
[. Lanczos Idea
- What if we orthogonalize the vectors associated with Krylov subspaces? This is the basic idea of Lanczos !!
- It turns out that we can derive a three term recursion for the orthogonal vectors

Lanczos Recursion

\square Lanczos Recursion: Starting with any unit vector $u=q_{1}$ and any symmetric matrix A, there is an orthogonal sequence $q_{1} q_{2} \ldots q_{n}$ Э

$$
\begin{aligned}
& A \underline{q}_{j}=b_{j-1} \underline{q}_{j-1}+a_{j} \underline{q}_{j}+b_{j} \underline{q}_{j+1} \\
& Q^{T} A Q=T \text { (tridiagonal) } \\
\Rightarrow & A Q=Q T
\end{aligned}
$$

$$
\left[\begin{array}{lllllllll}
A \underline{q}_{1} & A \underline{q}_{2} & \ldots A \underline{q}_{n}
\end{array}\right]=\left(\underline{q}_{1} \underline{q}_{2} \ldots \underline{q}_{n}\right)\left[\begin{array}{llllllll}
a_{1} & b_{1} & & & & & & \\
b_{1} & a_{2} & b_{2} & & & & & \\
0 & b_{2} & a_{3} & b_{3} & & & & \\
& & & & & . & b_{n-2} & a_{n-1}
\end{array} b_{n-1}\right]
$$

\square So, Lanczos can be viewed as a Tridiagonal decomposition of a symmetric matrix A

$$
\begin{aligned}
& \Rightarrow A \underline{q}_{j}=b_{j-1} \underline{q}_{j-1}+a_{j} \underline{q}_{j}+b_{j} \underline{q}_{j+1} \\
& \Rightarrow b_{j} \underline{q}_{j+1}=\left(A-a_{j} I\right) \underline{q}_{j}-b_{j-1} \underline{q}_{j-1} \\
& \Rightarrow b_{j}=\left\|\left(A-a_{j} I\right) \underline{q}_{j}-b_{j-1} \underline{q}_{j-1}\right\|
\end{aligned}
$$

- The set of orthogonal vectors $\left\{q_{i}\right\}$ are called Lanczos vectors

Lanczos Vectors are Orthogonal

\square Note：
1）$q_{0}=\underline{0}$
2）If $\underline{b}_{j}=0$ ，then q_{j+1} is any vector orthogonal to $q_{1} \ldots q_{j}$ ．
3）If this happens，T splits into two subblocks
4）$A q_{j} \perp^{\mathrm{r}}$ to $q_{1} \ldots q_{j-2}$
5）Vector q_{j+1} is orthogonal to $\left\{q_{1} \ldots q_{j}\right\}$ This is because（recall $A=A^{T}$ ）

$$
\begin{aligned}
& \underline{q}_{i}^{T} A \underline{q}_{j}=\left(A \underline{q}_{i}\right)^{T} \underline{q}_{j}=\left(b_{i-1} \underline{q}_{i-1}+a_{i} \underline{q}_{i}+b_{i} \underline{q}_{i+1}\right)^{T} \underline{q}_{j}=0 \\
& \quad \forall i=1,2, \ldots, j-2
\end{aligned}
$$

For $i \leq j-2$ ，we have

$$
\underline{q}_{i}^{T} A \underline{q}_{j}=\left(A \underline{q}_{i}\right)^{T} \underline{q}_{j}=\left(b_{i-1} \underline{q}_{i-1}+A \underline{q}_{i}+b_{i} \underline{q}_{i+1}\right)^{T} \underline{q}_{j}=0
$$

$$
\text { From } A \underline{q}_{j}=+b_{j} \underline{q}_{j+1}+a_{j} \underline{q}_{j}+b_{j-1} \underline{q}_{j-1}
$$

Since $\underline{q}_{i}^{T} A \underline{q}_{j}=0 \quad \forall i \leq j-2$ ，we have $\underline{q}_{i}^{T} \underline{q}_{j+1}=0$
$\Rightarrow \underline{q}_{j+1}$ is \perp^{r} to all the previous $\left\{\underline{q}_{i}\right\}$

Lanczos Iteration

- So, the Lanczos vectors $\left\{q_{j}\right\}$ are such that

1) Each q_{j+1} is \perp^{r} to $\left\{q_{1}, q_{2}, \ldots, q_{j}\right\}$
2) Each q_{j+1} is a combination of $\left\{q_{1}, A q_{1}, \ldots, A^{j} q_{1}\right\}$
3) Each q_{j+1} is orthogonal to all combinations of $\left\{q_{1} A q_{1} \ldots A^{j-1} q_{1}\right\}$

- Lanczos iteration to find the vectors $\left\{q_{j}\right\}$:

$$
\begin{aligned}
& j=0 ; \underline{q}_{0}=\underline{0} ; b_{0}=1 \\
& \underline{r}_{0}=\underline{q}_{1} ; \underline{q}_{j+1}=\underline{r}_{j} / b_{j} ; j=j+1 \\
& a_{j}=\underline{q}_{j} A \underline{q}_{j} ; \underline{r}_{j}=\left(A-a_{j} I\right) \underline{q}_{j}-b_{j-1} \underline{q}_{j-1} ; b_{j}=\left\|\underline{r}_{j}\right\|
\end{aligned}
$$

- Requires $\mathrm{O}(c n+4)$ operations where $c=\#$ of non-zero elements per row
- Prone to round off errors ... Need to do selective re-orthogonalization of r_{j} against previous Lanczos vectors.
- Find Eigen values of the tridiagonal matrix by symmetric QR
\square Relationship with the conjugate gradient method
- Residuals $\left\{r_{j}=b-A x_{j}\right\}$, where x_{j} is the solution at iteration j of conjugate gradient method, are multiples of the Lanczos vectors $\left\{q_{j}\right\}$

Summary

[. House holder method to convert a symmetric matrix to tridiagonal form

- Lanczos method for sparse symmetric matrices
- Relationship with the conjugate gradient (CG) method
- A variety of algorithms exist for finding the Eigen values and Eigen vectors of a symmetric matrix
- Symmetric QR
- Jacobi method
- Bisection method (using Sturm sequence property)
- Power method
- Lanczos method (for sparse symmetric matrices)
[However, symmetric QR is the best general purpose algorithm
- Unless only a few Eigen values/Eigen vectors are desired
- In the latter case, specialized methods may be useful (see Golub and Van Loan, 1989)

