Lecture 11

State Variable Feedback Design via Gain Transformation and Pole Placement
Prof. Krishna R. Pattipati
Assisted by : Kihoon Choi
Dept. of Electrical and Computer Engineering
University of Connecticut
Contact: krishna@engr.uconn.edu (860) 486-2890

ECE 6095/4121
Modeling and Digital Control of Mechatronic Systems

SVFB Design via Gain Xformation \& Pole Placement

1. "Deadbeat" controller
2. Continuous-Discrete Gain Tranformation

- Time response equivalence
- Average gain method
- Example-double integrator

3. Pole Placement via SVFB Design

- Direct approach
- Transformation approach
- Ackermann formula/algorithm
- Pole placement for MIMO systems
- State feedback
- output feedback (numerically not robust. So, won't discuss)

4. Example-Inverted Pendulum on a Cart

- Continuous-discrete transformation design
- Direct digital design

5. Implementation of High-Order Compensators

- State prediction
- Comparison with Smith compensator
- Examples

6. Command Inputs to SVFB Systems

- Integral feedback

Control in State-Space

- What can be done with respect to controlling system states?

$$
\begin{aligned}
\underline{\mathrm{x}}(\mathrm{k}+1) & =\Phi \underline{\mathrm{x}}(\mathrm{k})+\Gamma \mathrm{u}(\mathrm{k}) \\
\mathrm{y}(\mathrm{k}) & =\mathrm{C} \underline{\mathrm{x}}(\mathrm{k}) \\
\underline{\mathrm{x}}(0) & =\mathrm{known} \text { initial condition }
\end{aligned}
$$

Equivalent discrete system matrices

$$
\Phi=\mathrm{e}^{\mathrm{Ah}}, \quad \Gamma=\int_{0}^{\mathrm{h}} \mathrm{e}^{\mathrm{A} \mathrm{\sigma}} \mathrm{~d} \sigma \mathrm{~B}
$$

- State response

$$
\underline{x}(\mathrm{k})=\Phi^{\mathrm{k}} \underline{\mathrm{x}}(0)+\sum_{\mathrm{i}=0}^{\mathrm{k}-1} \Phi^{\mathrm{k}-1-\mathrm{i}} \Gamma \mathrm{u}(\mathrm{i})
$$

- Consider $\mathrm{k}=\mathrm{n}$
- Can we find $u(0), u(1), \ldots, u(n-1)$ so that $\underline{x}(n)=\underline{\xi}=$ arbitrary vector, starting at any initial condition $\underline{x}(0)$?

$$
\begin{aligned}
\underline{\xi}-\Phi^{\mathrm{n}} \underline{x}(0) & =\sum_{\mathrm{i}=0}^{\mathrm{n}-1} \Phi^{\mathrm{n}-1-\mathrm{i}} \Gamma \mathrm{u}(\mathrm{i})=\Gamma \mathrm{u}(\mathrm{n}-1)+\Phi \Gamma \mathrm{u}(\mathrm{n}-2)+\cdots+\Phi^{\mathrm{n}-1} \Gamma \mathrm{u}(0) \\
& =\underbrace{\left[\begin{array}{ccc}
\mid & \mid & \mid \\
\Gamma & \Phi \Gamma & \cdots \\
\mid & \Phi^{\mathrm{n}-1} \Gamma \\
\mid & & \mid
\end{array}\right]}_{\mathrm{H}_{\mathrm{c}}}\left[\begin{array}{c}
\mathrm{u}(\mathrm{n}-1) \\
\mathrm{u}(\mathrm{n}-2) \\
\cdot \\
u(0)
\end{array}\right]
\end{aligned}
$$

- If H_{c} is invertible, it is possible to find the requisite $\{\mathrm{u}(\mathrm{i})\}$.
- Note: state may not necessarily stay at $\underline{\underline{\xi}}$ for $\mathrm{k}>\mathrm{n}$.

Deadbeat Controller

- If system is cc the sequence $\{u(0), u(1), \ldots, u(n-1)\}$ will drive $\underline{x}(0) \rightarrow \underline{x}(n)=\underline{\xi}$ where

$$
\left[\begin{array}{c}
u(n-1) \\
u(n-2) \\
\vdots \\
u(0)
\end{array}\right]=H_{c}^{-1}\left[\underline{\xi}-\Phi^{n} \underline{x}(0)\right]
$$

- Open-loop control

$$
\begin{aligned}
& \mathrm{u}(0)=\left[\begin{array}{llll}
0 & 0 & \ldots & 0
\end{array} 1\right] H_{c}^{-1}\left[\begin{array}{l}
\underline{\xi}-\Phi^{\mathrm{n}}(0)
\end{array}\right] \\
& \mathrm{u}(1)=\left[\begin{array}{lllll}
0 & 0 & \ldots & 1 & 0
\end{array}\right] \mathrm{H}_{\mathrm{c}}^{-1}\left[\underline{\underline{\xi}}-\Phi^{\mathrm{n}} \underline{x}(0)\right] \text {] } \quad \underline{\mathrm{x}}(0), \text { not } \underline{\mathrm{x}}(\mathrm{k}) \text { is used here }
\end{aligned}
$$

- Closed-loop control via time-invariance
"turn system on" at time " k ": $\underline{x}(0)<==>\underline{x}(k), u(0)<==>\mathrm{u}(\mathrm{k})$

$$
\Rightarrow \mathrm{u}(\mathrm{k})=\left[\begin{array}{llll}
0 & 0 & \ldots & 1
\end{array}\right] \mathrm{H}_{\mathrm{c}}^{-1}\left[\underline{\xi}-\Phi^{\mathrm{n}} \underline{\mathrm{x}}(\mathrm{k})\right]
$$

accomplishes same control sequence but via SVFB

- Special case $\underline{\xi}=\underline{0}$

$$
\mathrm{u}(\mathrm{k})=-\overbrace{\left[\begin{array}{lll}
0 & 0 & \ldots
\end{array}\right]}
$$

is an SVFB control that reduces any (initial) state to $\underline{0}$ in n steps \rightarrow "deadbeat controller" (unique to discrete systems)

- CL dynamics $\quad \underline{\mathrm{x}}(\mathrm{k}+1)=(\Phi-\Gamma \mathrm{K}) \underline{\mathrm{x}}(\mathrm{k})$

$$
\underline{x}(n)=(\Phi-\Gamma K)^{n} \underline{x}(0)=\underline{0}
$$

$==>\Phi-\Gamma \mathrm{K}$ has all eigenvalues at $\mathrm{z}=0$

Example - Pure Inertia Control (e.g. Satillite)

$$
\underbrace{\mathrm{u} \rightarrow \underbrace{\frac{1}{\mathrm{~s}}}_{\mathrm{x}_{2}}}_{\underset{\mathrm{G}(\mathrm{~s})}{\mathrm{u}}=\frac{1}{\mathrm{~s}^{2}}} \mathrm{x}_{1} \mathrm{y} \quad\left[\begin{array}{l}
{\left[\begin{array}{l}
\dot{x}_{1}(\mathrm{t}) \\
\dot{\mathrm{x}}_{2}(\mathrm{t})
\end{array}\right]}
\end{array}\right]=\left[\begin{array}{cc}
0 & 1 \\
\mathrm{y}(\mathrm{t}) & =\left[\begin{array}{ll}
1 & 0
\end{array}\right] \underline{\mathrm{x}(\mathrm{t})}
\end{array}\right.
$$

- Equivalent discrete system

Pick $\mathrm{h}=1$

- Deadbeat controller, $\mathrm{u}(\mathrm{k})=-\mathrm{K} \underline{\mathrm{x}}(\mathrm{k})=-\mathrm{K}_{1} \mathrm{x}_{1}(\mathrm{k})-\mathrm{K}_{2} \mathrm{x}_{2}(\mathrm{k})$

$$
\mathrm{K}=\left[\begin{array}{ll}
0 & 1
\end{array}\right]\left[\begin{array}{cc}
1 / 2 & 3 / 2 \\
1 & 1
\end{array}\right]^{-1}\left[\begin{array}{ll}
1 & 2 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 3 / 2
\end{array}\right]
$$

- Time response with $\mathrm{x}_{1}(0)=1, \mathrm{x}_{2}(0)=0: \underline{\mathrm{x}}(0) \rightarrow 0$ in 2 time steps

Discrete SVFB Design Methods

- Continuous \rightarrow discrete equivalence methods

Given a continuous FB control law

$$
\mathrm{u}(\mathrm{t})=\mathrm{K}_{\mathrm{r}} \mathrm{r}(\mathrm{t})-\mathrm{K} \underline{\mathrm{x}}(\mathrm{t})
$$

develop from K_{r}, K an "equivalent" discrete control

$$
\mathrm{u}(\mathrm{k})=\widetilde{\mathrm{K}}_{\mathrm{r}} \mathrm{r}(\mathrm{k})-\widetilde{\mathrm{K}} \underline{\mathrm{x}}(\mathrm{k})
$$

- Idea: capitalize on earlier design for $\underline{\dot{x}}=\mathrm{A} \underline{\mathrm{x}}+\mathrm{B} u$
- Compare continuous vs. discrete time response, phase margin, closed-loop poles, etc.
- Direct digital controller design

Find $u(k)=K_{r} r(k)-K \underline{x}(k)$ directly to place poles at $z=z_{1}, z_{2}, \ldots, z_{n}$
(1) select $z_{i}=e^{\text {sih }} \quad i=1,2, \ldots, n$;
$\mathrm{s}_{\mathrm{i}}=$ desired pole location in s-plane
or, (2) select $\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{n}}$ directly

- Evaluation
- Time response via simulation
- Phase margin via Bode/Nyquist plot of

$$
\operatorname{LG}(\mathrm{j} \omega)=\left.\mathrm{K}(\mathrm{zI}-\Phi)^{-1} \Gamma\right|_{\mathrm{z}=\mathrm{e}^{\mathrm{imh}}}
$$

- Sensitivity to parameters, RD, etc.

Continuous \rightarrow Discrete Gaìn Transformation Methods

$\boldsymbol{C}: \quad \underline{\dot{x}}(\mathrm{t})=\mathrm{A} \underline{\mathrm{x}}(\mathrm{t})+\mathrm{B} \mathrm{u}(\mathrm{t}) \quad \longrightarrow \quad D: \quad \underline{\mathrm{x}}(\mathrm{k}+1)=\Phi \underline{\mathrm{x}}(\mathrm{k})+\Gamma \mathrm{u}(\mathrm{k})$

$$
\mathrm{u}(\mathrm{t})=\mathrm{K}_{\mathrm{r}} \mathrm{r}(\mathrm{t})-\mathrm{K} \underline{\mathrm{x}}(\mathrm{t})
$$

Closed-loop

$$
\underline{\dot{x}}(\mathrm{t})=(\mathrm{A}-\mathrm{B} \mathrm{~K}) \underline{\mathrm{x}}(\mathrm{t})+\mathrm{K}_{\mathrm{r}} \mathrm{Br} \mathrm{r}(\mathrm{t}) \quad \underline{\mathrm{x}}(\mathrm{k}+1)=(\Phi-\Gamma \widetilde{\mathrm{K}}) \underline{\mathrm{x}}(\mathrm{k})+\widetilde{\mathrm{K}}_{\mathrm{r}} \Gamma \mathrm{r}(\mathrm{k})
$$

- Desire simplicity and accuracy
- Time response of $\boldsymbol{D} \underset{\sim}{\approx}$ time response of \boldsymbol{C}
- Eigenvalues of CL $\boldsymbol{D} \approx \operatorname{\approx } \exp \{\mathrm{h} \cdot$ eigenvalues of CL $\boldsymbol{C}\}$
- Start \boldsymbol{C} at $\underline{\mathrm{x}}(0)$ with $\mathrm{r}(\mathrm{t})=\mathrm{r}_{0}$. Response at $\mathrm{t}=\mathrm{h}$

$$
\underline{\mathrm{x}}(\mathrm{~h})=\mathrm{e}^{(\mathrm{A}-\mathrm{BK}) \mathrm{h}} \underline{\mathrm{x}}(0)+\int_{0}^{\mathrm{h}} \mathrm{e}^{(\mathrm{A}-\mathrm{BK}) \sigma} \mathrm{K}_{\mathrm{r}} \mathrm{Bd} \mathrm{\sigma} \cdot \mathrm{r}_{0}
$$

- For discrete response

$$
\underline{\mathrm{x}}(\mathrm{~h})=(\Phi-\Gamma \widetilde{\mathrm{K}}) \underline{\mathrm{x}}(0)+\widetilde{\mathrm{K}}_{\mathrm{r}} \Gamma \mathrm{r}_{0}
$$

A) Time response equivalence:
(1) $\Phi-\Gamma \widetilde{\mathrm{K}}=\mathrm{e}^{(\mathrm{A}-\mathrm{BK}) \mathrm{h}} \rightarrow \quad$ "solve" for $\widetilde{\mathrm{K}}$?

Only possible to obtain equivalence to $\mathrm{O}\left(\mathrm{h}^{2}\right)$

$$
\widetilde{\mathrm{K}} \approx \mathrm{~K}+\mathrm{K}(\mathrm{~A}-\mathrm{BK}) \mathrm{h} / 2
$$

(2) $\tilde{K}_{\mathrm{r}} \Gamma=\mathrm{K}_{\mathrm{r}} \int_{0}^{\mathrm{h}} \mathrm{e}^{(\mathrm{A}-\mathrm{BK}) \sigma} \mathrm{Bd} \sigma$

Can only obtain equivalence to $\mathrm{O}\left(\mathrm{h}^{2}\right)$

$$
\widetilde{\mathrm{K}}_{\mathrm{r}} \approx\{1-\mathrm{KB}(\mathrm{~h} / 2)\} \mathrm{K}_{\mathrm{r}}
$$

B) Average Gain Method (Kleinman, Automatica, 1978)

- Consider \boldsymbol{C} over ($0, \mathrm{~h}]$ with $\underline{\mathrm{x}}(0)$, and $\mathrm{r}(\mathrm{t})=\mathrm{r}_{0}$

$$
\underline{\mathrm{x}}(\mathrm{t})=\mathrm{e}^{(\mathrm{A}-\mathrm{BK}) \mathrm{t}} \underline{\mathrm{x}}(0)+\int_{0}^{\mathrm{t}} \mathrm{e}^{(\mathrm{A}-\mathrm{BK}) \sigma} \mathrm{K}_{\mathrm{r}} \mathrm{Bd} \mathrm{\sigma} \cdot \mathrm{r}_{0}
$$

- Control, $\mathrm{u}_{\mathrm{c}}(\mathrm{t})$ over $(0, \mathrm{~h}]$, in continuous system

$$
\begin{gathered}
\mathrm{u}_{\mathrm{c}}(\mathrm{t})=\mathrm{K}_{\mathrm{r}} \mathrm{r}_{0}-\mathrm{K}_{\underline{x}}(\mathrm{t}) \\
\mathrm{u}_{\mathrm{c}}(\mathrm{t})=\left[1-\mathrm{K} \int_{0}^{\mathrm{t}} \mathrm{e}^{(\mathrm{A}-\mathrm{BK}) \sigma} \mathrm{Bd} \mathrm{\sigma}\right] \mathrm{K}_{\mathrm{r}} \mathrm{r}_{0}-\mathrm{Ke}^{(\mathrm{A}-\mathrm{BK}) \mathrm{t}} \underline{\mathrm{x}}(0)
\end{gathered}
$$

- Discrete control over $(0, h]=u(0)$

$$
\begin{aligned}
& \mathrm{u}(0)=\widetilde{\mathrm{K}}_{\mathrm{r}} \mathrm{r}_{0}-\widetilde{\mathrm{K}} \underline{\mathrm{x}}(0) \\
& =>\text { Pick } \tilde{\mathrm{K}}, \widetilde{\mathrm{~K}}_{\mathrm{r}} \text { so that } \mathrm{u}(0)=\overline{\mathrm{u}}_{\mathrm{c}}=\frac{1}{\mathrm{~h}} \int_{0}^{\mathrm{h}} \mathrm{u}_{\mathrm{c}}(\mathrm{t}) \mathrm{dt} \\
& \overline{\mathrm{u}}_{\mathrm{c}}=\left[1-\frac{\mathrm{K}}{\mathrm{~h}} \int_{0}^{\mathrm{h}} \int_{0}^{\mathrm{t}} \mathrm{e}^{(\mathrm{A}-\mathrm{BK}) \sigma} \mathrm{d} \sigma \mathrm{dtB}\right] \mathrm{K}_{\mathrm{r}} \mathrm{r}_{0}-\frac{\mathrm{K}}{\mathrm{~h}} \int_{0}^{\mathrm{h}} \mathrm{e}^{(\mathrm{A}-\mathrm{BK}) \mathrm{t}} \mathrm{dt} \underline{\mathrm{x}}(0)\left[\begin{array}{l}
\frac{\mathrm{K}}{\mathrm{~h}} \int_{0}^{\mathrm{h}} \int_{0}^{\mathrm{t}} \mathrm{e}^{(\mathrm{A}-\mathrm{BK}) \sigma} \mathrm{d} \sigma \mathrm{dt}=\frac{\mathrm{K}}{\mathrm{~h}} \int_{0}^{\mathrm{h}} \bar{\Psi}(t) d t \\
=\frac{\mathrm{K}}{\mathrm{~h}}\left[\int_{0}^{\mathrm{h}}(\bar{\Phi}(t)-I) d t\right](A-B K)^{-1} \\
\\
\text { Discrete equivalent gains } \\
\text { (1) } \tilde{\mathrm{K}}=\frac{\mathrm{K}}{\mathrm{~h}} \int_{0}^{\mathrm{h}} \mathrm{e}^{(\mathrm{A}-\mathrm{BK}) \mathrm{t}} \mathrm{dt}
\end{array}\right.
\end{aligned}
$$

(2) $\tilde{\mathrm{K}}_{\mathrm{r}}=\left[1-\frac{\mathrm{K}}{\mathrm{h}} \int_{0}^{\mathrm{h}} \int_{0}^{\mathrm{t}} \mathrm{e}^{(\mathrm{A}-\mathrm{BK}) \sigma} \mathrm{d} \sigma \mathrm{dtB}\right] \mathrm{K}_{\mathrm{r}}=\left[1+(\mathrm{K}-\tilde{\mathrm{K}})(\mathrm{A}-\mathrm{BK})^{-1} \mathrm{~B}\right] \mathrm{K}_{\mathrm{r}}$

Computing Average Gain

－Obtain $\widetilde{\mathrm{K}}$ using c2d，then compute K_{r}
－Approximation for small h
$\tilde{K} \approx K\left[I+(A-B K) \frac{h}{2}+(A-B K)^{2} \frac{h^{2}}{3!}+\cdots\right] \quad \tilde{K}_{r} \approx\left\{1-K\left[\frac{h}{2}+(A-B K) \frac{h^{2}}{3!}+\cdots\right] B\right\} K_{r}$
－Average gain scheme is＂good＂provided

$$
\mathrm{h} \leq \frac{1.0}{\left|\lambda_{\max }(\mathrm{A}-\mathrm{B} \mathrm{~K})\right|} \sim \frac{1.0}{\|\mathrm{~A}-\mathrm{BK}\|}
$$

－Generally requires a smaller h than does the usual criterion

$$
\mathrm{h} \leq(0.5 \rightarrow 1.0) /\left|\lambda_{\max }(\mathrm{A})\right|
$$

－Using average gain $\widetilde{\mathrm{K}}$ is always better than just using K
－but $\widetilde{\mathrm{K}}_{\mathrm{r}}$ may not maintain same DC gain as in continuous case
－Inverse procedure：given a discrete K_{d} ，find continuous gain K ．
Solve

$$
\mathrm{K}=\mathrm{K}_{\mathrm{d}} \mathrm{~h}\left[\int_{0}^{\mathrm{h}} \mathrm{e}^{(\mathrm{A}-\mathrm{BK}) \mathrm{t}} \mathrm{dt}\right]^{-1}
$$

iteratively：

$$
\mathrm{K}_{\mathrm{i}+1}=\mathrm{K}_{\mathrm{d}} \mathrm{~h}\left[\int_{0}^{\mathrm{h}} \mathrm{e}^{\left(\mathrm{A}-\mathrm{BK} \mathrm{~K}_{\mathrm{i}}\right) \mathrm{t}} \mathrm{dt}\right]^{-1} \text { with } \mathrm{K}_{0}=\mathrm{K}_{\mathrm{d}} .
$$

－Generally converges in 2－3 iterations．
－Useful when h is subject to change，e．g．，$K_{d}\left(h_{1}\right) \rightarrow K \rightarrow K_{d}\left(h_{2}\right)$

Example - Satellite Control, G(s)=1/s ${ }^{2}$

$$
\left[\begin{array}{c}
\dot{\mathrm{x}}_{1}(\mathrm{t}) \\
\dot{\mathrm{x}}_{2}(\mathrm{t})
\end{array}\right]=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}_{1}(\mathrm{t}) \\
\mathrm{x}_{2}(\mathrm{t})
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] \mathrm{u}(\mathrm{t}) ; \quad \mathrm{y}(\mathrm{t})=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \underline{\mathrm{x}}(\mathrm{t})
$$

Continuous SVFB control

Gives CL system

$$
\dot{\underline{x}}(\mathrm{t})=\left[\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right] \underline{\underline{x}}(\mathrm{t})+\left[\begin{array}{l}
0 \\
1
\end{array}\right] \mathrm{r}(\mathrm{t}) ; \quad \mathrm{y}(\mathrm{t})=\left[\begin{array}{cc}
1 & 0
\end{array}\right] \underline{x}(\mathrm{t})
$$

CL transfer function

$$
\frac{\mathrm{y}(\mathrm{~s})}{\mathrm{r}(\mathrm{~s})}=\frac{1}{\mathrm{~s}^{2}+\mathrm{s}+1} \text { CL poles at } \mathrm{s}=-\frac{1}{(\zeta=0.5)} \pm \mathrm{j} \frac{\sqrt{3}}{2}
$$

- Equivalent discrete gains, $\widetilde{\mathrm{K}}$, with $\mathrm{h}=0.5$

OK on "safety" requirement $\mathrm{h} \leq \frac{1.0}{\left|\lambda_{\max }(\mathrm{A}-\mathrm{B} \mathrm{K})\right|}=\frac{1.0}{\sqrt{1}}=1.0$
$\tilde{\mathrm{K}}=\frac{\mathrm{K}}{\mathrm{h}} \int_{0}^{\mathrm{h}} \mathrm{e}^{(\mathrm{A}-\mathrm{BK}) \mathrm{t}} \mathrm{dt}=\left[\begin{array}{ll}0.755 & 0.964\end{array}\right] ; \tilde{\mathrm{K}}_{\mathrm{r}}=\left[1+(\mathrm{K}-\tilde{\mathrm{K}})(\mathrm{A}-\mathrm{BK})^{-1} \mathrm{~B}\right] \mathrm{K}_{\mathrm{r}}=0.755$

- Examine CL discrete eigenvalues (poles) of $\Phi-\Gamma \widetilde{K}$
- "Expect" poles at $\mathrm{z}_{\mathrm{i}}=\mathrm{e}^{\mathrm{s} ; \mathrm{h}}=\mathrm{e}^{-0.25 \pm \mathrm{j} .433}=0.707 \pm \mathrm{j} 0.327$

$$
\begin{aligned}
& \Phi-\Gamma \widetilde{\mathrm{K}}=\left[\begin{array}{ll}
1 & 0.5 \\
0 & 1
\end{array}\right]-\left[\begin{array}{l}
0.125 \\
0.5
\end{array}\right]\left[\begin{array}{ll}
0.755 & 0.964
\end{array}\right]=\left[\begin{array}{rr}
0.906 & 0.379 \\
-0.378 & 0.518
\end{array}\right] \\
& \text { eigenvalues at } \lambda_{\mathrm{i}}=0.712 \pm \mathrm{j} 0.325(\zeta \approx 0.5)
\end{aligned}
$$

- Without gain equivalence $\lambda_{i}(\Phi-\Gamma \mathrm{K})=0.688 \pm \mathrm{j} 0.39 \quad(\zeta=0.41)$

Satellite Control CL Simulation $\mathrm{x}(0)=[00]^{\prime}, \mathrm{r}(\mathrm{t})=1, \mathrm{~h}=1.8$

- Even when $h>\frac{1.0}{\left|\lambda_{\max }(\mathrm{A}-\mathrm{BK})\right|}$ the equivalent (average) gains will often give a "reasonable" CL system.
- With $\mathrm{h}=1.8, \widetilde{\mathrm{~K}}=\left[\begin{array}{ll}0.261 & 0.683\end{array}\right], \widetilde{\mathrm{K}}_{\mathrm{r}}=0.261$

- Unconverted discrete system $\left(\mathrm{K}=\left[\begin{array}{ll}1 & 1\end{array}\right]\right)$ becomes unstable as hincrease.
- CL system with average gains still hanging in, with noticeable slow-down in step response.

Summary of Equivalent Gain Method

- Average gain is best method to convert
- If h $\sim \operatorname{small}\left(<\frac{1.0}{\left|\lambda_{\text {max }}(\mathrm{A}-\mathrm{B} \mathrm{K})\right|}\right)$ use $\widetilde{\mathrm{K}}, \widetilde{\mathrm{K}}_{\mathrm{r}}$
- Do not simply use $\widetilde{\mathrm{K}}=\mathrm{K}, \widetilde{\mathrm{K}}_{\mathrm{r}}=\mathrm{K}_{\mathrm{r}}$ (instability as h increases).
- Useful if need to change h on-line frequently
- Store K, K_{r} from continuous design
- Use series approximation to obtain $\widetilde{\mathrm{K}}, \widetilde{\mathrm{K}}_{\mathrm{r}}$ for current value of h
- Generally
- $\widetilde{\mathrm{K}}_{\mathrm{i}}$ will be smaller in magnitude than K_{i}.
- Gains \widetilde{K} will yield discrete CL poles with a slightly smaller ω_{n} than original continuous system (i.e., slower response).
- Eigenvalues of $\Phi-\Gamma \widetilde{K} \approx \exp (\mathrm{~h} \cdot$ eigenvalues of $\mathrm{A}-\mathrm{BK}$).
- Phase margin of discrete system with average gain \approx phase margin of a discrete system with poles placed at exp $\left[\mathrm{h} \cdot \lambda_{\mathrm{i}}(\mathrm{A}-\mathrm{BK})\right]$.
- DC gain ($\mathrm{r} \rightarrow \mathrm{y}$) of equivalent system not always same as \boldsymbol{C}.
==> may wish to pick $\widetilde{\mathrm{K}}_{\mathrm{r}}$ so that DC gain of discrete CL system = DC gain of original continuous CL design, i.e., so that

$$
\widetilde{\mathrm{K}}_{\mathrm{r}} \mathrm{C}[\mathrm{I}-\Phi+\Gamma \tilde{\mathrm{K}}]^{-1} \Gamma=-\mathrm{K}_{\mathrm{r}} \mathrm{C}[\mathrm{~A}-\mathrm{B} \mathrm{~K}]^{-1} \mathrm{~B}
$$

- If $\mathrm{h} \neq$ small, design $\mathrm{K}, \mathrm{K}_{\mathrm{r}}$ directly for discrete system.

State Variable Feedback Control - Direct Pole Placement (SISO)

- Discrete system design
- Given $\underline{\mathrm{x}}(\mathrm{k}+1)=\Phi \underline{\mathrm{x}}(\mathrm{k})+\Gamma \mathrm{u}(\mathrm{k})$

$$
\mathrm{y}(\mathrm{k})=\mathrm{C} \underline{\mathrm{x}}(\mathrm{k})
$$

with $|z I-\Phi|=p(z)=z^{n}+a_{1} z^{n-1}+\cdots+a_{n}$ and linear feedback control structure

$$
\mathrm{u}(\mathrm{k})=\mathrm{K}_{\mathrm{r}} \mathrm{r}(\mathrm{k})-\mathrm{K} \underline{\mathrm{x}}(\mathrm{k})
$$

- Closed-loop dynamics

$$
\begin{aligned}
\underline{\mathrm{x}}(\mathrm{k}+1) & =(\underbrace{\Phi-\Gamma \mathrm{K}}_{\bar{\Phi}=\text { discrete closed-loop matrix }}) \underline{\mathrm{x}}(\mathrm{k})+\mathrm{K}_{\mathrm{r}} \Gamma \mathrm{r}(\mathrm{k}) \\
\mathrm{y}(\mathrm{k}) & =\mathrm{C} \underline{\mathrm{x}}(\mathrm{k})
\end{aligned}
$$

- Pole placement
(1) Find FB gains $K=\left[K_{1}, K_{2}, \ldots, K_{n}\right]$ so that the closed-loop system matrix $\bar{\Phi}$ has eigenvalues (poles) at pre-selected locations $\mathrm{z}_{1}, \mathrm{z}_{2}, \ldots, \mathrm{z}_{\mathrm{n}}$ *

$$
\begin{gathered}
\Rightarrow|\mathrm{zI}-(\Phi-\Gamma \mathrm{K})|=\left(\mathrm{z}-\mathrm{z}_{1}\right) \cdots\left(\mathrm{z}-\mathrm{z}_{\mathrm{n}}\right)=\mathrm{p}_{\mathrm{d}}(\mathrm{z}) \\
\mathrm{p}_{\mathrm{d}}(\mathrm{z})=\mathrm{z}^{\mathrm{n}}+\mathrm{d}_{1} \mathrm{z}^{\mathrm{n}-1}+\cdots+\mathrm{d}_{\mathrm{n}} \\
\text { desired CL characteristic polynomial }
\end{gathered}
$$

2. Adjust K_{r} to have unity (or some desired) DC gain from r to y

$$
\frac{\mathrm{y}(\mathrm{z})}{\mathrm{r}(\mathrm{z})}=\left.\mathrm{K}_{\mathrm{r}}\left[\mathrm{C}(\mathrm{zI}-\bar{\Phi})^{-1} \Gamma\right]\right|_{\mathrm{z}=1}=1
$$

*Usually $\mathrm{z}_{\mathrm{i}}=\mathrm{e}^{\text {sih }}$ where the $\left\{\mathrm{s}_{\mathrm{i}}\right\}$ are desired pole locations in s-plane.

SISO Pole Placement Methods

－Same scheme should work for either continuous or discrete problems，$\Phi<=>A, \Gamma<=>B$

$$
\Phi-\Gamma \mathrm{K}<==>\mathrm{A}-\mathrm{BK}
$$

－Direct approach
－Expand $\quad|\mathrm{zI}-\Phi+\Gamma \mathrm{K}|=\mathrm{z}^{\mathrm{n}}+\mathrm{f}_{1}(\mathrm{~K}) \mathrm{z}^{\mathrm{n}-1}+\cdots+\mathrm{f}_{\mathrm{n}}(\mathrm{K})$
［each f_{i} will be linear in $K_{1}, K_{2}, \ldots, K_{n}$ ］
－Expand $p_{d}(z)=\left(z-z_{1}\right)\left(z-z_{2}\right) \cdots\left(z-z_{n}\right)=z^{n}+d_{1} z^{n-1}+\ldots+d_{n}$
－Equate coefficients and solve n linear equations，n unknowns

$$
\mathrm{f}_{\mathrm{i}}(\mathrm{~K})=\mathrm{d}_{\mathrm{i}} ; \mathrm{i}=1,2, \ldots, \mathrm{n}
$$

－Useful in simple problems，some structured ones
－Example： $\mathrm{z}_{1}=0.5+\mathrm{j} 0.3, \mathrm{z}_{2}=0.5-\mathrm{j} 0.3$

$$
\begin{aligned}
& \Phi=\left[\begin{array}{ll}
1.0 & 0.2 \\
0.2 & 1.0
\end{array}\right] \quad \Gamma=\left[\begin{array}{c}
1.0 \\
0.5
\end{array}\right] \quad \mathrm{K}=\left[\begin{array}{ll}
\mathrm{K}_{1} & \mathrm{~K}_{2}
\end{array}\right] \\
& \bar{\Phi}=\Phi-\Gamma \mathrm{K}=\left[\begin{array}{cc}
1.0-\mathrm{K}_{1} & 0.2-\mathrm{K}_{2} \\
0.2-0.5 \mathrm{~K}_{1} & 1.0-0.5 \mathrm{~K}_{2}
\end{array}\right] \quad \mathrm{p}_{\mathrm{d}}=\left(\mathrm{z}-\mathrm{z}_{1}\right)\left(\mathrm{z}-\mathrm{z}_{2}\right)=\mathrm{z}^{2}-1.0 \mathrm{z}+0.34 \\
& |\mathrm{z} \mathrm{I}-\bar{\Phi}|=\mathrm{z}^{2}+\underbrace{\left(-2+\mathrm{K}_{1}+0.5 \mathrm{~K}_{3}\right.}_{\mathrm{f}_{1}}) \mathrm{z}+\underbrace{\left.0.96-0.3 \mathrm{~K}_{2}-0.9 \mathrm{~K}_{1}\right)}_{\mathrm{f}_{2}} \\
& \begin{array}{l}
-2+\mathrm{K}_{1}+0.5 \mathrm{~K}_{2}=-1 \\
\left.\begin{array}{l}
0.96-0.9 \mathrm{~K}_{1}-0.3 \mathrm{~K}_{2}=0.34
\end{array}\right\} \quad \Rightarrow \mathrm{K}_{1}=0.067, \mathrm{~K}_{2}=1.867
\end{array}
\end{aligned}
$$

－Select K_{r}（e．g．so that DC gain $=1$ ）

Transformation Approach for Pole Placement

－Let $\underline{\mathrm{v}}(\mathrm{k})=\mathrm{T}^{-1} \underline{\mathrm{x}}(\mathrm{k})$ where T transforms Φ, Γ to SCF

$$
\underline{x}(k+1)=\Phi \underline{x}(k)-\Gamma K \underline{x}(k) \Rightarrow \underline{v}(k+1)=\underbrace{T^{-1} \Phi T} \underline{v}(k)-\underbrace{T^{-1} \Gamma}_{\dot{\nabla}} \Gamma \overbrace{}^{T} \underline{\hat{v}(k)}
$$

$$
\left[\begin{array}{cccc}
-\mathrm{a}_{1} & -\mathrm{a}_{2} & \ldots & -\mathrm{a}_{\mathrm{n}} \\
1 & 0 & \ldots & 0 \\
0 & 1 & \ddots & \vdots \\
\vdots & & . & \vdots \\
0 & \ldots & 1 & 0
\end{array}\right]
$$

K $\underset{\substack{a_{i}(k)}}{\sim \sim}$
－If $K T=\left[-\mathrm{a}_{1}+\mathrm{d}_{1},-\mathrm{a}_{2}+\mathrm{d}_{2}, \ldots,-\mathrm{a}_{\mathrm{n}}+\mathrm{d}_{\mathrm{n}}\right]$ ，

$$
\text { then } \mathrm{T}^{-1} \Phi \mathrm{~T}-\mathrm{T}^{-1} \Gamma K \mathrm{~T}=\mathrm{T}^{-1}(\Phi-\Gamma \mathrm{K}) \mathrm{T}=\left[\begin{array}{cccc}
-\mathrm{d}_{1} & -\mathrm{d}_{2} & \ldots & -\mathrm{d}_{\mathrm{n}} \\
1 & 0 & \ldots & 0 \\
0 & 1 & \ddots & \vdots \\
\vdots & & \ddots & \vdots \\
0 & \ldots & 1 & 0
\end{array}\right]
$$

$==>\Phi-\Gamma \mathrm{K}$ has desired characteristic polynomial $\mathrm{p}_{\mathrm{d}}(\mathrm{z})$ with

$$
\mathrm{K}=\left[-\mathrm{a}_{1}+\mathrm{d}_{1},-\mathrm{a}_{2}+\mathrm{d}_{2}, \ldots,-\mathrm{a}_{\mathrm{n}}+\mathrm{d}_{\mathrm{n}}\right] \mathrm{T}^{-1}
$$

－Best to solve

$$
\mathrm{T}^{\prime}\left[\begin{array}{l}
\mathrm{K}_{1} \\
\mathrm{~K}_{2} \\
\cdot \\
\cdot \\
\mathrm{~K}_{\mathrm{n}}
\end{array}\right]=\left[\begin{array}{c}
-\mathrm{a}_{1}+\mathrm{d}_{1} \\
-\mathrm{a}_{2}+\mathrm{d}_{2} \\
\vdots \\
\cdot \\
-\mathrm{a}_{\mathrm{n}}+\mathrm{d}_{\mathrm{n}}
\end{array}\right]
$$

Algorithm for Obtaining T

- Useful in general, not just for pole-placement problems

- Generate T columnwise $\underline{t}_{1}=\Gamma$

$$
\begin{aligned}
& \underline{\mathrm{t}}_{2}=\Phi \underline{\mathrm{t}}_{1}+\mathrm{a}_{1} \Gamma \\
& \underline{\mathrm{t}}_{3}=\Phi \underline{\mathrm{t}}_{2}+\mathrm{a}_{2} \Gamma \\
& \vdots \\
& \underline{\mathrm{t}}_{\mathrm{n}}=\Phi \underline{\mathrm{t}}_{\mathrm{n}-1}+\mathrm{a}_{\mathrm{n}-1} \Gamma \quad\left(\text { check: does } \Phi \underline{\mathrm{t}}_{\mathrm{n}}=-\mathrm{a}_{\mathrm{n}} \Gamma ?\right)
\end{aligned}
$$

- Requires computation of $\left\{\mathrm{a}_{\mathrm{i}}\right\}$-- possible numerical problems
- T^{-1} will exist if system is completely controllable
column \underline{t}_{k} is a linear combination of $\Gamma, Ф \Gamma, \ldots, \Phi^{k-1} \Gamma$
- If $y(k)=C \underline{x}(k)$

$$
\mathrm{y}(\mathrm{k})=\mathrm{CT} \underline{\mathrm{v}}(\mathrm{k})=\left[\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{~b}_{\mathrm{n}}\right] \underline{\mathrm{v}}(\mathrm{k}) \text { with } \mathrm{b}_{\mathrm{i}}=\mathrm{C} \underline{\mathrm{t}}_{\mathrm{i}}
$$

- Closed-loop transfer function with $u(k)=K_{r} r(k)-K \underline{x}(k)$

$$
\frac{\mathrm{y}(\mathrm{z})}{\mathrm{r}(\mathrm{z})}=\mathrm{K}_{\mathrm{r}} \frac{\mathrm{~b}_{1} \mathrm{z}^{\mathrm{n}-1}+\cdots+\mathrm{b}_{\mathrm{n}}}{\mathrm{z}^{\mathrm{n}}+\mathrm{d}_{1} \mathrm{z}^{\mathrm{n}-1}+\cdots+\mathrm{d}_{\mathrm{n}}} ; \mathrm{b}_{\mathrm{i}}=\mathrm{C}_{\mathrm{t}_{\mathrm{i}}}
$$

- for unity DC gain $=K_{r}=\left(1+\sum_{i=1}^{n} d_{i}\right) / \sum_{i=1}^{n} b_{i}$
- Loop gain: $\mathrm{K}(\mathrm{zI}-\Phi)^{-1} \Gamma=\frac{\gamma_{1} \mathrm{z}^{\mathrm{n}-1}+\cdots+\gamma_{\mathrm{n}}}{\mathrm{z}^{\mathrm{n}}+\mathrm{a}_{1} \mathrm{z}^{\mathrm{n}-1}+\cdots+\mathrm{a}_{\mathrm{n}}} ; \quad \gamma_{\mathrm{i}}=\mathrm{K}_{\underline{t}_{i}}=\mathrm{d}_{\mathrm{i}}-\mathrm{a}_{\mathrm{i}}$

Ackermann Formula

- Circumvents requirement to compute a_{i}

$$
\begin{aligned}
& \mathrm{p}_{\mathrm{d}}(\mathrm{z})=\left(\mathrm{z}-\mathrm{z}_{1}\right)\left(\mathrm{z}-\mathrm{z}_{2}\right) \cdots\left(\mathrm{z}-\mathrm{z}_{\mathrm{n}}\right)=\mathrm{z}^{\mathrm{n}}+\mathrm{d}_{1} \mathrm{z}^{\mathrm{n}-1}+\cdots+\mathrm{d}_{\overline{\mathrm{n}}} \text { desired CL characteristic polynomial } \\
& \mathrm{K}=\left[\begin{array}{lllll}
0 & 0 & \ldots & 1
\end{array}\right] \mathrm{H}_{\mathrm{c}}^{-1} \mathrm{p}_{\mathrm{d}}(\Phi) \\
& \quad \mathrm{H}_{\mathrm{c}}=\left[\left.\begin{array}{ccc}
\mid & \mid & \mid \\
\Gamma & \Phi \Gamma & \cdots \\
\mid & \mid & \Phi^{\mathrm{n}-1} \\
\mid & - \\
\hline
\end{array} \right\rvert\,=\right.\text { Controllability matrix } \\
& \mathrm{p}_{\mathrm{d}}(\Phi)=\left(\Phi-\mathrm{z}_{\mathrm{l}} \mathrm{I}\right)\left(\Phi-\mathrm{z}_{2} \mathrm{I}\right) \cdots\left(\Phi-\mathrm{z}_{\mathrm{n}} \mathrm{I}\right) \\
& \left(\mathrm{z}_{\mathrm{i}}=\text { desired poles, must be in complex conjugate pairs }\right)
\end{aligned}
$$

- Algorithm

1. Set up H_{c} matrix one column at a time. Transpose $H_{c} \rightarrow H_{c}{ }^{\prime}$.
2. Solve

$$
H_{c}^{\prime} q=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
1
\end{array}\right] \text { for } n \text {-vector } q
$$

- Use any available routine for solving $\mathrm{A} \underline{\mathrm{x}}=\underline{\mathrm{b}}$.
- If solution fails, stop. System is not completely controllable.

3. Evaluate $\mathrm{p}_{\mathrm{d}}(\Phi)=\mathrm{X}$.
4. Obtain gains $K=q^{\prime} X=\left[K_{1}, K_{2}, \ldots, K_{n}\right]$
5. Compute K_{r} if needed.

Algorithm to Obtain $\mathrm{P}_{\mathrm{d}}(\Phi)$

- Compute using complex conjugate pairs to avoid complex matrices
- e.g., if $z_{3}=a+b j, z_{4}=a-b j$

$$
\begin{aligned}
\left(\mathrm{z}-\mathrm{z}_{3}\right)\left(\mathrm{z}-\mathrm{z}_{4}\right) & =\mathrm{z}^{2}-2 \mathrm{az}+\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) \\
\left(\Phi-\mathrm{z}_{3} \mathrm{I}\right)\left(\Phi-\mathrm{z}_{4} \mathrm{I}\right) & =\Phi^{2}-2 \mathrm{a} \Phi+\left(\mathrm{a}^{2}+\mathrm{b}^{2}\right) \mathrm{I}
\end{aligned}
$$

- Incorporate into iterative scheme

$$
\begin{aligned}
& \text { 1. initialize } \mathrm{X}=\mathrm{I}, \mathrm{k}=1 \\
& \text { 2. read real \& imaj. parts of roots } R A(i), R B(i), i=1,2, \ldots, n \\
& \text { 3. if } \mathrm{RB}(\mathrm{k})=0: \quad \mathrm{X}=\mathrm{X} *[\Phi-\mathrm{RA}(\mathrm{k}) \mathrm{I}] \\
& \mathrm{k}=\mathrm{k}+1 \\
& \text { 4. if } \operatorname{RB}(k) \neq 0 \text { : } \\
& \mathrm{X}=\mathrm{X} *\left[\Phi^{2}-2 \mathrm{RA}(\mathrm{k}) \Phi+\left(\operatorname{RA}^{2}(\mathrm{k})+\mathrm{RB}^{2}(\mathrm{k})\right) \mathrm{I}\right] \\
& \mathrm{k}=\mathrm{k}+2 \\
& \text { 5. if } \mathrm{k} \leq \mathrm{n} \text { go to } 3 \text {; if } \mathrm{k}=\mathrm{n}+1 \text { done }
\end{aligned}
$$

- Develop as a Subroutine GAINS
- Can be used for continuous or discrete models
- Generally pick z_{i} via $\mathrm{e}^{\text {sih }}$
- No restriction on h other than usual $\frac{(0.5 \rightarrow 1.0)}{\left|\lambda_{\max }(\mathrm{A})\right|}$
- Deadbeat response: all $\mathrm{z}_{\mathrm{i}}=0 \Rightarrow \mathrm{p}_{\mathrm{d}}(\mathrm{z})=\mathrm{z}^{\mathrm{n}}$; also $\mathrm{p}_{\mathrm{d}}(\Phi)=\Phi^{\mathrm{n}}$

$$
\mathrm{K}=\left[\begin{array}{llll}
0 & 0 & \cdots & 1
\end{array}\right] \mathrm{H}_{\mathrm{c}}^{-1} \Phi^{\mathrm{n}}
$$

- deadbeat gains $\mathrm{K}_{\mathrm{i}} \rightarrow \infty$ as $\mathrm{h} \rightarrow 0$

Example - Satellite Control/Pointing

$$
\underline{\mathrm{x}}(\mathrm{k}+1)=\left[\begin{array}{cc}
1 & \mathrm{~h} \\
0 & 1
\end{array}\right] \underline{\mathrm{x}}(\mathrm{k})+\left[\begin{array}{c}
\mathrm{h}^{2} / 2 \\
\mathrm{~h}
\end{array}\right] \mathrm{u}(\mathrm{k})
$$

- Desired CL characteristic polynomial:

$$
\mathrm{z}^{2}+\mathrm{d}_{1} \mathrm{z}+\mathrm{d}_{2}=\mathrm{p}_{\mathrm{d}}(\mathrm{z})
$$

- if $\mathrm{s}_{\mathrm{i}}=-\zeta \omega_{\mathrm{n}} \pm j \omega_{\mathrm{n}} \sqrt{1-\zeta^{2}}: \mathrm{d}_{1}=-2 \mathrm{e}^{-\zeta \omega_{\mathrm{n}} \mathrm{h}} \cos \left(\omega_{\mathrm{n}} \mathrm{h} \sqrt{1-\zeta^{2}}\right) ; \quad \mathrm{d}_{2}=\mathrm{e}^{-2 \zeta \omega_{\mathrm{n}} \mathrm{h}}$
- Use Ackermann algorithm: $\mathrm{K}=\left[\begin{array}{ll}0 & 1\end{array}\right] \mathrm{H}_{\mathrm{c}}{ }^{-1} \mathrm{p}_{\mathrm{d}}(\Phi)$

$$
\begin{aligned}
& \mathrm{H}_{\mathrm{c}}=\left[\begin{array}{cc}
\mid & \mid \\
\Gamma & \Phi \Gamma \\
\mid & \mid
\end{array}\right]=\left[\begin{array}{cc}
\mathrm{h}^{2} / 2 & 3 \mathrm{~h}^{2} / 2 \\
\mathrm{~h} & \mathrm{~h}
\end{array}\right] ; \text { solve } \underbrace{\left[\begin{array}{cc}
\mathrm{h}^{2} / 2 & \mathrm{~h} \\
3 \mathrm{~h}^{2} / 2 & \mathrm{~h}
\end{array}\right]}_{\mathrm{H}_{\mathrm{c}}^{\prime}}\left[\begin{array}{l}
\mathrm{q}_{\mathrm{l}} \\
\mathrm{q}_{2}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \Rightarrow \mathrm{q}=\left[\begin{array}{c}
1 / \mathrm{h}^{2} \\
-0.5 / \mathrm{h}
\end{array}\right] \\
& \mathrm{p}_{\mathrm{d}}(\Phi)=\left[\begin{array}{cc}
1+\mathrm{d}_{1}+\mathrm{d}_{2} & 2 \mathrm{~h}+\mathrm{d}_{\mathrm{h}} \mathrm{~h} \\
0 & 1+\mathrm{d}_{1}+\mathrm{d}_{2}
\end{array}\right]=\Phi^{2}+\mathrm{d}_{1} \Phi+\mathrm{d}_{2} \mathrm{I} \\
& \quad \mathrm{~K}=\mathrm{q}^{\prime} \mathrm{p}_{\mathrm{d}}(\Phi)=\left[\frac{1+\mathrm{d}_{1}+\mathrm{d}_{2}}{\mathrm{~h}^{2}} \frac{3+\mathrm{d}_{1}-\mathrm{d}_{2}}{2 \mathrm{~h}}\right]
\end{aligned}
$$

- Deadbeat controller: $\mathrm{d}_{1}=\mathrm{d}_{2}=0 \quad===>\quad \mathrm{K}=\left[\begin{array}{ll}1 / h^{2} & 3 / 2 \mathrm{~h}\end{array}\right]$
- as $h \rightarrow 0$, require excessive control energy
- good control scheme when h is large
- For $\zeta=0.707, \omega_{\mathrm{n}}=0.707, \mathrm{~h}=0.5$

$$
\begin{aligned}
& \mathrm{s}_{\mathrm{i}}=-0.5 \pm \mathrm{j} 0.5 \rightarrow \mathrm{z}_{\mathrm{i}}=\mathrm{e}^{\mathrm{sih}}=0.53 \pm \mathrm{j} 0.29 \\
& \mathrm{~d}_{1}=-1.5092, \mathrm{~d}_{2}=0.6065 \rightarrow \mathrm{~K}=\left[\begin{array}{lll}
0.3894 & 0.8843
\end{array}\right]
\end{aligned}
$$

RQ Implementation

- Transform ($\Phi, \Gamma)$ to controller Hessenberg form, $\mathrm{H}_{\mathrm{p}}=Q^{T} \Phi Q ; \Gamma_{\mathrm{p}}=Q^{T} \Gamma=\beta \underline{e}_{1}$
- Perform RQ factorization of Hessenberg as follows

Set $H_{1}=H_{p}$
For $\mathrm{i}=1,2, . ., \mathrm{n}$ Do

$$
\begin{aligned}
R_{i} Q_{i} & =H_{i}-\lambda_{i} I \\
H_{i+1} & =Q_{i} R_{i}+\lambda_{i} I
\end{aligned}
$$

End
Note $H_{i+1}=Q_{i} H_{i} Q_{i}^{T} \Rightarrow H_{n+1}=Q_{n} Q_{n-1} \ldots Q_{2} Q_{1} H_{p} Q_{1}^{T} Q_{2}^{T} \ldots . Q_{n-1}^{T} Q_{n}^{T}$
$\Rightarrow P_{d}\left(H_{p}\right)=\prod_{i=1}^{n}\left(H_{p}-\lambda_{i} I\right)=R_{1} R_{2} \ldots . R_{n} Q_{n} Q_{n-1} \ldots Q_{2} Q_{1}$
$\Rightarrow P_{d}(\Phi)=Q P_{d}\left(H_{p}\right) Q^{T}$
Controllability matrix: $H_{c}=Q\left[\begin{array}{llll}\Gamma_{p} & H_{p} \Gamma_{p} & V_{p}^{n-1} \Gamma_{p}\end{array}\right]$

- Algorithm

1. Set $\mathrm{H}_{1}=\mathrm{H}_{\mathrm{p}}, \alpha=\left(\prod_{i=1}^{n-1}\left[H_{p}\right]_{i+1, i}\right)^{-1}$
2. For $\mathrm{i}=1,2, \ldots, \mathrm{n}$ DO

$$
\begin{aligned}
& R_{i} Q_{i}=H_{i}-\lambda_{i} I \\
& H_{i+1}=Q_{i} R_{i}+\lambda_{i} I \\
& \alpha \rightarrow \alpha\left[R_{i}\right]_{n n}
\end{aligned}
$$

End
3. Obtain gains

$$
K=\alpha e_{n}^{T} Q_{n} Q_{n-1} \cdots Q_{2} Q_{1} Q^{T}
$$

$$
\begin{aligned}
K=\underline{e}_{n}^{T} H_{c}^{-1} P_{d}(\Phi) & =e_{-n}^{T} \underbrace{\left[\begin{array}{lll}
\Gamma_{p} & H_{p} \Gamma_{p} & H_{p}^{n-1} \Gamma_{p}
\end{array}\right]^{-1} R_{1} R_{2} \ldots . . R_{n} Q_{n} Q_{n-1} \ldots Q_{2} Q_{1} Q^{T}}_{\text {upper } \Delta} \\
& =\underbrace{\alpha \prod_{i=1}^{n}\left[R_{i}\right]_{n n} e_{n}^{T} Q_{n} Q_{n-1} \ldots Q_{2} Q_{1} Q^{T} ; \alpha^{\prime}=1 /}_{\alpha} \prod_{\substack{\left.n-1 \\
\prod_{i=1} \\
\text { Numerically stable } \\
\text { Implementation of 'place' command }\\
\right]_{i+1, i}}}
\end{aligned}
$$

Example－Inverted Pendulum on a Cart

Small angle equations：

$$
\begin{aligned}
& \ddot{\theta}(\mathrm{t})=\frac{(\mathrm{m}+\mathrm{M}) g}{\mathrm{M} l} \theta(\mathrm{t})-\frac{\mathrm{u}(\mathrm{t})}{\mathrm{M} l} \\
& \ddot{\mathrm{~d}}(\mathrm{t})=-\mathrm{g} \frac{\mathrm{~m}}{\mathrm{M}} \theta(\mathrm{t})+\frac{\mathrm{u}(\mathrm{t})}{\mathrm{M}}
\end{aligned}
$$

State equation $\underline{x}=[\theta, q, d, v]^{\prime} ; ~ q=\dot{\theta}, v=\dot{d}$

$$
\text { Let } \mathrm{m}=0.1, \mathrm{M}=1.0, l=1 \mathrm{~m}, \mathrm{~g} \approx 10 \mathrm{~m} / \mathrm{sec}^{2}
$$

$$
\underline{\dot{x}}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
\frac{(m+\mathrm{M}) g}{\mathrm{M} l} & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
-\mathrm{g} \frac{\mathrm{~m}}{\mathrm{M}} & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{c}
\theta \\
\mathrm{q} \\
\mathrm{~d} \\
\mathrm{v}
\end{array}\right]+\left[\begin{array}{c}
0 \\
\frac{-1}{\mathrm{M} l} \\
0 \\
\frac{1}{\mathrm{M}}
\end{array}\right] \mathrm{u}
$$

$$
\Rightarrow \quad \underline{\dot{x}}=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
11 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0
\end{array}\right] \underline{x}+\left[\begin{array}{c}
0 \\
-1 \\
0 \\
1
\end{array}\right] u
$$

Open－loop eigenvalues at

$$
\mathrm{s}=0,0, \sqrt{11},-\sqrt{11}
$$

－Objective－Find SVFB $u=-K \underline{x}$ such that any $\underline{x}(0) \rightarrow \underline{0}$（regulator design，$r=0$ ）
－Continuous time design：$u(t)=-\left[\begin{array}{cccc}77.9 & -23.0 & -16.9 & -13.0\end{array}\right] \underline{x}(t)$ gives a stable CL system $\underline{\dot{x}}=(\mathrm{A}-\mathrm{BK}) \underline{\mathrm{x}}$ with CL eigenvalues

$$
\lambda_{\mathrm{i}}(\mathrm{~A}-\mathrm{BK})=-2 \pm 3 \mathrm{j},-3 \pm 2 \mathrm{j}
$$

－Examine discrete time design（s）
－equivalent（average）gains
－direct design with $\mathrm{z}_{\mathrm{i}}=\mathrm{e}^{\text {sih }}$

$G(s) G(-s)=\frac{1}{1+(-1)^{n}\left(\frac{s}{\omega_{c}}\right)^{2 n}}=\frac{1}{1+\left(\frac{-s^{2}}{\omega_{c}^{2}}\right)^{n}}$
Roots $:\left(\frac{-s^{2}}{\omega_{c}^{2}}\right)=(-1)^{1 / n} \Rightarrow\left(\frac{-s^{2}}{\omega_{c}^{2}}\right)=e^{\frac{j(2 k-1) \pi}{n}}$
$s_{k}=\omega_{c} e^{\frac{j(2 k-1+n) \pi}{2 n}} ; k=1,2, . ., n$

Equivalent Discrete Design, $\mathrm{u}(\mathrm{k})=-\widetilde{\mathrm{K}} \mathbf{x}(\mathrm{k})$

- Expect good performance for $\mathrm{h} \leq \frac{1.0}{\left|\lambda_{\max }(\mathrm{A}-\mathrm{B} \mathrm{K})\right|}=\frac{1}{\sqrt{13}}=0.28$
- System parameters vs. h (sec)

h	$\tilde{\mathrm{K}}_{1}$	$\tilde{\mathrm{~K}}_{2}$	$\tilde{\mathrm{~K}}_{3}$	$\tilde{\mathrm{~K}}_{4}$	ω_{c}	ϕ_{m}
0.00	-77.9	-23.0	-16.9	-13.0	9.4	53.6^{0}
0.02	-72.6	-21.5	-15.3	-11.9	9.1	46.7
0.05	-65.1	-19.4	-13.0	-10.3	8.6	39.8
0.10	-53.5	-16.0	-9.53	-7.92	7.4	30.0
0.15	-43.2	-13.0	-6.61	-5.81	6.5	23.1
0.20	-34.1	-10.4	-4.17	-3.98	5.4	17.7
0.25	-26.3	-8.05	-2.16	-2.42	4.6	14.8

- Large decrease in gain magnitudes as h increases

- Stability analysis
- Discrete system has a delay of $\sim \mathrm{h} / 2 \sec =>$ Reduces ϕ_{m} by $\omega_{\mathrm{c}} \mathrm{h} / 2$
- To avoid instability, average gain lowers ω_{c}
=> Lessens destabilizing effect of discretization delay
$=>$ Moves ω_{c} into a region where $\measuredangle \mathrm{LG}(\mathrm{j} \omega)$ is larger
- Examine Bode plot of LG to get ω_{c} and $\phi_{\mathrm{m}} \quad \mathrm{LG}(\mathrm{j} \omega)=\left.\widetilde{\mathrm{K}}(\mathrm{zI}-\Phi)^{-1} \Gamma\right|_{\mathrm{z}=\mathrm{e}^{\text {joh }}}$

Direct Degital Design
 - Inverted Pendulum

- Selection of $h \sim \frac{0.5-1}{\left|\lambda_{\max }(\mathrm{A})\right|}=\frac{.5-1}{\sqrt{11}}=0.15$ to 0.3 sec

Pick $\mathrm{h}=0.18 \mathrm{sec}$
(1) Pole placement $@ \mathrm{z}_{\mathrm{i}}=\mathrm{e}^{\text {sih }}=\{0.60 \pm \mathrm{j} 0.36,0.55 \pm \mathrm{j} 0.21\}$
=> discrete gains $\mathrm{K}=\left[\begin{array}{llll}-43.8 & -13.2 & -6.67 & -5.91\end{array}\right]$
(2) Equivalent discrete design: $\widetilde{\mathrm{K}}=\left[\begin{array}{llll}-37.6 & -11.4 & -5.09 & -4.68\end{array}\right]$

- $\omega_{\text {c }}$ pole placement $=6.7$ vs. 5.9 for equivalent design. Both have \sim same $\phi_{\mathrm{m}} \approx 19.3^{\circ}$!

Continuous system had 56.3°.

Deadbeat Controller, Inverted Pendulum, $\mathrm{x}(0)=[0.2,0,1,0]^{\circ}$

- Impossible physically in this example, but interesting... gains $\mathrm{K}=\left[\begin{array}{lllll}-190.92 & -53.52 & -92.48 & -41.62\end{array}\right]$

- Excessive control and state overshoots. Yet $\underline{x}(4)=\underline{0}$.
- And there is virtually no phase-margin ($\omega_{\mathrm{c}} \approx 13.3, \phi_{\mathrm{m}} \approx 4^{\circ}$).

- CL system has virtually no robustness properties.
- Best to reserve deadbeat for "slow" systems with h ~ large.

SVFB with Time Delay in Control, $\tau=\mathrm{Mh}+\varepsilon$

- First design SVFB $u(k)=-K \underline{x}(k)$ assuming $\tau=0$.

Case 1: $\mathrm{M}>0, \varepsilon=0$

$$
\underline{\mathrm{x}}(\mathrm{k}+1)=\Phi \underline{\mathrm{x}}(\mathrm{k})+\Gamma \mathrm{u}(\mathrm{k}-\mathrm{M})
$$

- Predictor controller

$$
\begin{aligned}
& u(k)=-K \underbrace{\hat{x}}(\underbrace{k+M}) \quad \text { prediction of state at time }(k+M) h \\
& \text { from } \underline{x}(k) \text { and } u(k-1), \ldots, u(k-M) \\
& \hat{\hat{x}}(k+1)=\Phi \underline{x}(k)+\Gamma u(k-M) \\
& \underline{\hat{x}}(k+2)=\Phi \underline{\hat{x}}(k+1)+\Gamma u(k-M+1) \\
& \vdots=\Phi^{2} \underline{x}(k)+\Phi \Gamma u(k-M)+\Gamma u(k-M+1) \\
& \underline{\hat{x}}(k+M)=\Phi^{M} \underline{x}(k)+\sum_{i=1}^{M} \Phi^{i-1} \Gamma u(k-i)
\end{aligned}
$$

- Present control $u(k)$ will have its first effect on $\underline{x}(k+1+M)$
- Need to store past controls in a pushdown stack
- Requires a good knowledge of Φ, Γ to perform accurate propagation of $\underline{x}(k)$

Case 2: $\mathrm{M}=0, \varepsilon>0(0 \leq \varepsilon<\mathrm{h})$

- Use $u(k)=-K \underline{\hat{x}}(k h+\varepsilon)$

$$
\begin{aligned}
& \hat{\mathrm{x}}(\mathrm{kh}+\varepsilon)=\mathrm{e}^{\mathrm{A} \varepsilon} \underline{\mathrm{x}}(\mathrm{k})+\int_{0}^{\varepsilon} \mathrm{e}^{\mathrm{Af}} \mathrm{~d} \sigma \mathrm{Bu}(\mathrm{k}-1) \\
& \Rightarrow \mathrm{u}(\mathrm{k})=-\mathrm{K}_{\mathrm{x}} \underline{\mathrm{x}}(\mathrm{k})-\mathrm{K}_{\mathrm{u}} \mathrm{u}(\mathrm{k}-1)
\end{aligned}
$$

- Modification to structure only, propagation "hidden"
- Identical to earlier equations when $\varepsilon=h^{-}$(corresp to $\mathrm{M}=1$)

Implementation of Delay Compensator, General Case

- Basic Idea: construct $\mathrm{u}(\mathrm{k})$ so that $\tau \sec$ later, $\mathrm{u}(\mathrm{kh}+\tau) \approx-\operatorname{Kx}(\mathrm{kh}+\tau)$

$$
\Rightarrow \text { input } \mathrm{u}(\mathrm{k})=-\mathrm{K} \underline{\hat{x}}(\mathrm{kh}+\tau) \text { now }
$$

- Algorithm: Enter with $\underline{x}(k)=$ current state measurement

$$
\mathrm{u}(\mathrm{k}-1)=\text { last control generated }
$$

- Need to set up a delay stack (initialized to zero)

$$
\mathrm{V}=\left[\begin{array}{ll:l}
& \mathrm{v}_{0}, \mathrm{v}_{1}, \cdots, \mathrm{v}_{\mathrm{M}}
\end{array}\right]=[\mathrm{u}(\mathrm{k}-1-\mathrm{M}) \mathrm{u}(\mathrm{k}-\mathrm{M}): \cdots \mathrm{u}(\mathrm{k}-1)]
$$

- Propagate current state ahead ε sec: $\underline{x}_{e}=\underline{\hat{x}}(k h+\varepsilon)$

$$
\underline{\hat{\mathrm{x}}}(\mathrm{kh}+\varepsilon)=\mathrm{e}^{\mathrm{A} \varepsilon} \underline{\mathrm{x}}(\mathrm{k})+\int_{0}^{\varepsilon} \mathrm{e}^{\mathrm{A} \sigma} \mathrm{~d} \sigma \mathrm{Bu}(\mathrm{k}-1-\mathrm{M})
$$

- Propagat \underline{x}_{e} ahead M time steps and apply control $u=-K \underline{x}_{e}$

- Algorithm can be rearranged for greater efficiency (need to store $\Phi^{\mathrm{j}} \Gamma$)

Comparison with Smith Predictor Structure（ $\varepsilon=0$ ）

－Define system＂model＂

$$
\begin{gathered}
\underline{\xi}(\mathrm{k}+1)=\Phi \underline{\xi}(\mathrm{k})+\Gamma \mathrm{u}(\mathrm{k}) \\
\underline{\xi}(\mathrm{k}) \sim \text { crude estimate of } \underline{\mathrm{x}}(\mathrm{k}+\mathrm{M}) \\
\Rightarrow \underset{\mathrm{\xi}}{ } \quad \underline{\mathrm{k})=\Phi^{\mathrm{M}} \underline{\xi}(\mathrm{k}-\mathrm{M})+\sum_{\mathrm{i}=1}^{\mathrm{M}} \Phi^{\mathrm{i}-1} \Gamma \mathrm{u}(\mathrm{k}-\mathrm{i})} \\
\Rightarrow \sum_{\mathrm{i}=1}^{\mathrm{M}} \Phi^{\mathrm{i}-1} \Gamma \mathrm{u}(\mathrm{k}-\mathrm{i})=\underline{\xi}(\mathrm{k})-\Phi^{\mathrm{M}} \underline{\xi}(\mathrm{k}-\mathrm{M})
\end{gathered}
$$

－$\hat{\mathrm{X}}(\mathrm{k}+\mathrm{M})=$ Prediction estimate：

$$
\begin{aligned}
& \underline{\hat{x}}(\mathrm{k}+\mathrm{M})=\Phi^{\mathrm{M}}[\underline{\mathrm{x}}(\mathrm{k})-\xi(\mathrm{k}-\mathrm{M})]+\xi(\mathrm{k}) \\
& \text { control } \mathrm{u}(\mathrm{k})=-\mathrm{K} \underline{\hat{\mathrm{x}}}(\mathrm{k}+\mathrm{M})
\end{aligned}
$$

－Loop structure

－Nearly identical to Smith predictor（ $\underline{x} \sim y$ ）
－Preferable to use state propagation formula，especially if system is open－loop unstable and Φ, Γ are not perfectly known．

Example - Inverted Pendulum

$$
\begin{gathered}
\mathrm{h}=0.18 \mathrm{sec} \quad \mathrm{~K}=\left[\begin{array}{llll}
-43.8 & -13.2 & -6.67 & -5.91
\end{array}\right] \text { (gains obtained via pole placement) } \\
\omega_{\mathrm{c}}=6.7, \phi_{\mathrm{m}}=19.3^{\circ} \Rightarrow \tau_{\max }=\phi_{\mathrm{m}} / \omega_{\mathrm{c}} \approx 0.05 \mathrm{sec}
\end{gathered}
$$

- Select $\tau=0.18$ (corresponds to $\mathrm{M}=1, \varepsilon=0$).

System is highly unstable unless delay is compensated.

- Simulation $\underline{x}(0)=\left[\begin{array}{llll}0.1 & 0 & 1.0 & 0\end{array}\right]=\left[\begin{array}{ll}\theta, \dot{\theta}, \mathrm{d}, \dot{d}]\end{array}\right]$ compare with response of system with no delay

- System "drifts" for first τ sec, then is controlled to zero.
- In ideal case, state response for $\mathrm{k}>\mathrm{M}$ is identical to an undelayed response with an initial condition $\underline{x}(M)=\Phi^{M} \underline{x}(0)$, and shifted by Mh sec.
$=>$ from $\mathrm{k} \geq \mathrm{M}$, predictor control is "perfect" (assuming you know Φ and Γ).

Robust MIMO Pole Placement ：State Feedback－ 1

－Kautsky＇s Algorithm
－In MIMO，we have $m n$ degrees of freedom，but only n pole locations．Use the remaining degrees of freedom to minimize the conditioning of the closed－loop eigen vector matrix．

Recall Eigen value conditioning：

$s_{j}=\frac{d \lambda_{j}}{d \varepsilon}=\frac{\left\|\underline{y}_{j}\right\|_{2}\left\|\underline{x}_{j}\right\|_{2}}{\left|\underline{y}_{j}^{T} \underline{x}_{j}\right|} ; \varepsilon=\operatorname{parameter}$ in Φ, Γ, K
$\underline{x}_{j}=$ Right eigen vector of $\Phi-\Gamma K ; \underline{y}_{j}=$ Left eigen vector of $\Phi-\Gamma K$
Metrics ：（i）$J=\min _{K} \max _{j} s_{j} ;(i i) J=\min _{K}\left(\sum_{i=1}^{n} s_{j}^{2}\right)^{1 / 2} ;(i i i) \kappa_{2}(T)=\|T\|_{2}\left\|T^{-1}\right\|_{2}$
Let $\Lambda=\operatorname{diag}\left(\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right)$ be pole locations
If T is the matrix of eigen vectors：$(\Phi-\Gamma K) T=T \Lambda \Rightarrow \Gamma K=\Phi-T \Lambda T^{-1}$
Suppose we do $Q R$ decomposition of $\Gamma: \Gamma=Q_{1} R_{1}=\left[\begin{array}{ll}Q_{1} & Q_{2}\end{array}\right]\left[\begin{array}{c}R_{1} \\ 0\end{array}\right]$
so，$R_{1} K=Q_{1}^{T}\left(\Phi-T \Lambda T^{-1}\right) \Rightarrow K=R_{1}^{-1} Q_{1}^{T}\left(\Phi-T \Lambda T^{-1}\right)$. Also，$Q_{2}^{T} \Gamma K=0=Q_{2}^{T}\left(\Phi-T \Lambda T^{-1}\right)$
One way of picking T is find $N\left[\left(\Phi-\lambda_{j} I\right)^{T} Q_{2}\right] ; j=1,2, . ., n$ and pick directions from these．
So，$\left(\Phi-\lambda_{j} I\right)^{T} Q_{2}=\left[\begin{array}{ll}L_{j} & V_{j}\end{array}\right]\left[\begin{array}{c}\Delta_{j} \\ 0\end{array}\right]=L_{j} \Delta_{j} \Rightarrow V_{j} \in N\left[\left(\Phi-\lambda_{j} I\right)^{T} Q_{2}\right]$
One approach：Form an arbitray T ．Replace column $\underline{t}_{j} \ni$ new $\underline{t}_{j}=\frac{V_{j} V_{j}^{T} \underline{u}_{j}}{\left\|V_{j}^{T} \underline{u}_{j}\right\|_{2}}$ where $\underline{u}_{j} \perp R\left[\underline{t}_{1}, \underline{t}_{2}, \ldots, \underline{t}_{j-1}, \underline{t}_{j+1}, \ldots, \underline{t}_{n}\right]$

Robust Pole Placement Algorithm

- Kautsky's Algorithm
- Step 1: Do QR decomposition of $\Gamma=Q_{1} R_{1}=\left[\begin{array}{ll}Q_{1} & Q_{2}\end{array}\right]\left[\begin{array}{l}R_{1} \\ 0\end{array}\right]$
- Step 2: For $\mathrm{j}=1,2, . ., \mathrm{n}$ Do

Compute V_{j} by doing QR decomposition of

> End

$$
\left[\left(\Phi-\lambda_{j} I\right)^{T} Q_{2}\right]=\left[\begin{array}{ll}
L_{j} & V_{j}
\end{array}\right]\left[\begin{array}{c}
\Delta_{j} \\
0
\end{array}\right]
$$

- Step 3: Select from $\left\{V_{j}\right\}_{j=1}^{n}$ one from each an independent vector set to form T.

Now iterate until $k_{2}(T)$ stabilizes.

$$
\begin{aligned}
& {\left[\underline{t}_{1}, \underline{t}_{2}, \ldots, t_{j-1}, \underline{t}_{j+1}, \ldots, \underline{t}_{n}\right]=\left[\begin{array}{ll}
U_{j} & \underline{u}_{j}
\end{array}\right]\left[\begin{array}{c}
Z_{j} \\
0
\end{array}\right] \Rightarrow \text { new } \underline{\underline{t}}_{j}=\frac{V_{j} V_{j}^{T} \underline{u}_{j}}{\left\|V_{j}^{T} \underline{u}_{j}\right\|_{2}}} \\
& \text { Note }: s_{j}=\frac{1}{\left|\underline{u}_{j}^{T} \underline{t}_{j}\right|}=\frac{1}{\left\|V_{j}^{T} \underline{u}_{j}\right\|_{2}}
\end{aligned}
$$

MATLAB place implements this

- Compute gains:

$$
K=R_{1}^{-1} Q_{1}^{T}\left(\Phi-T \Lambda T^{-1}\right)
$$

Application Example

- Chemical Reactor Example: $\mathrm{n}=4, \mathrm{~m}=2$
- Continuous-time system

$$
A=\left[\begin{array}{cccc}
1.3800 & -0.2077 & 6.7150 & -5.6760 \\
-0.5814 & -4.2900 & 0 & 0.6750 \\
1.0670 & 4.2730 & -6.6540 & 5.8930 \\
0.0480 & 4.2730 & 1.3430 & -2.1040
\end{array}\right] ; B=\left[\begin{array}{cc}
0 & 5.6790 \\
1.1360 & 1.1360 \\
0 & 0 \\
-3.1460 & 0
\end{array}\right] ; \lambda_{i}(A)=\left[\begin{array}{c}
1.9910 \\
0.0635 \\
-5.0566 \\
-8.6659
\end{array}\right] ; \text { desired } \lambda_{i}(\bar{A})=\left[\begin{array}{c}
-0.200 \\
-0.500 \\
-5.0566 \\
-8.6659
\end{array}\right]
$$

- $h=0.2 /\|A\|=0.0154 \Rightarrow$ select $h=0.01 \mathrm{sec}$
- Discretized system
$\Phi=\left[\begin{array}{rrrr}1.0142 & -0.0018 & 0.0651 & -0.0546 \\ -0.0057 & 0.9582 & -0.0001 & 0.0067 \\ 0.0103 & 0.0417 & 0.9363 & 0.0563 \\ 0.0004 & 0.0417 & 0.0129 & 0.9797\end{array}\right] ; \Gamma=\left[\begin{array}{rr}0.0009 & 0.0572 \\ 0.0110 & 0.0110 \\ -0.0007 & 0.0005 \\ -0.0309 & 0.0003\end{array}\right] ; \lambda_{i}(\Phi)=\left[\begin{array}{l}1.0201 \\ 1.0006 \\ 0.9507 \\ 0.9170\end{array}\right] ;$ desired $\lambda_{i}(\bar{\Phi})=\left[\begin{array}{l}0.9980 \\ 0.9950 \\ 0.9507 \\ 0.9170\end{array}\right]$
- Gains $K=\left[\begin{array}{rrrr}0.1325 & -0.9186 & 0.1731 & -0.0692 \\ 0.5030 & 0.6180 & 0.4966 & -0.3457\end{array}\right] ; T=\left[\begin{array}{rrrr}-0.5261 & 0.0834 & 0.7273 & -0.5877 \\ 0.0428 & 0.8082 & -0.2123 & 0.2540 \\ 0.8214 & 0.2057 & 0.4402 & 0.5555 \\ -0.2162 & -0.5455 & 0.4819 & 0.5306\end{array}\right] ; \kappa_{2}(T)=2.5237$

Command Inputs to SVFB Systems

- Consider continuous case for simplicity

$$
\begin{aligned}
& \underline{\dot{x}}(\mathrm{t})=\mathrm{A} \underline{x}(\mathrm{t})+\mathrm{Bu}(\mathrm{t}) \\
& \mathrm{u}(\mathrm{t})=-\mathrm{K} \underline{x}(\mathrm{t})
\end{aligned}
$$

- Closed-loop A-BK has poles at desired locations
- Desire $\mathrm{x}_{\mathrm{m}}=\mathrm{m}$-th component of $\underline{\mathrm{x}}(\mathrm{t}) \rightarrow \mathrm{x}_{\mathrm{m}} *$ in steady-state
- Idea: Use control

$$
\begin{aligned}
& \mathrm{u}(\mathrm{t})=-\mathrm{K}_{1} \mathrm{x}_{1}(\mathrm{t})-\cdots-\mathrm{K}_{\mathrm{m}}\left[\mathrm{x}_{\mathrm{m}}(\mathrm{t})-\mathrm{x}_{\mathrm{m}}{ }^{*}\right]-\cdots-\mathrm{K}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}(\mathrm{t}) \\
& u(t)=\underbrace{K_{m} x_{m}} *-K \underline{x}(t)
\end{aligned}
$$

$$
\underline{\dot{x}}(\mathrm{t})=(\mathrm{A}-\mathrm{BK}) \underline{\mathrm{x}}(\mathrm{t})+\mathrm{BK}_{\mathrm{m}} \mathrm{x}_{\mathrm{m}} *
$$

- Steady-state \underline{x} : $\underline{\mathrm{x}}_{\mathrm{ss}}=-(\mathrm{A}-\mathrm{BK})^{-1} \mathrm{~B} \mathrm{~K} \mathrm{~K}_{\mathrm{m}} \mathrm{x}_{\mathrm{m}}{ }^{*} \quad$ m-th element

$$
\underline{\mathrm{x}}_{\mathrm{m}, \mathrm{ss}}=-\underline{\mathrm{e}}_{\mathrm{m}}^{\prime}(\mathrm{A}-\mathrm{BK})^{-1} \mathrm{~B} \mathrm{~K}_{\mathrm{m}} \mathrm{x}_{\mathrm{m}}^{*} ; \underline{\mathrm{e}}_{\mathrm{m}}{ }^{\prime}=\left[\begin{array}{lllll}
0 & 0 & \ldots & 1 & \ldots
\end{array}\right]
$$

- Generally $\mathrm{x}_{\mathrm{m}, \mathrm{ss}} \neq \mathrm{x}_{\mathrm{m}}$ *

$$
\Rightarrow \text { Adjust } \mathrm{x}_{\mathrm{m}}{ }^{*} \rightarrow \beta \mathrm{x}_{\mathrm{m}} * \text { and pick } \beta \text { so that } \mathrm{x}_{\mathrm{m}, \mathrm{ss}}=\mathrm{x}_{\mathrm{m}}{ }^{*}
$$

or consider use of integral control

$$
\mathrm{u}(\mathrm{t})=-\mathrm{Kx}_{1}(\mathrm{t})-\cdots-\mathrm{K}_{\mathrm{m}}\left[\mathrm{x}_{\mathrm{m}}(\mathrm{t})-\mathrm{x}_{\mathrm{m}}^{*}\right]-\cdots-\mathrm{K}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}(\mathrm{t})-\mathrm{K}_{\mathrm{n}+1} \int_{0}^{\mathrm{t}}\left[\mathrm{x}_{\mathrm{m}}(\sigma)-\mathrm{x}_{\mathrm{m}}^{*}\right] \mathrm{d} \sigma
$$

Integral Control in SVFB

- Define $\left.\mathrm{x}_{\mathrm{m}}(\mathrm{t})\right|_{\mathrm{new}}=\left.\mathrm{x}_{\mathrm{m}}(\mathrm{t})\right|_{\text {old }}-\mathrm{x}_{\mathrm{m}}{ }^{*} \triangleq$ error in state $\mathrm{x}_{\mathrm{m}} \Rightarrow \underline{\dot{x}}(\mathrm{t})=\mathrm{A} \underline{\mathrm{x}}(\mathrm{t})+\underline{a}_{\mathrm{m}} \mathrm{x}_{\mathrm{m}} *+\mathrm{Bu}(\mathrm{t})$ $\underline{a}_{m}=m$-th column of A, (often $\underline{a}_{m}=\underline{0}$, especially if x_{m} is a position variable)
- Define $x_{n+1}(t)=\int_{0}^{t} x_{m}(\sigma) d \sigma=\left\{\begin{array}{l}\text { integral of error in } x_{m} \\ \text { from desired ss value }\end{array}\right.$

$$
\dot{\underline{x}}_{\mathrm{n}+1}(\mathrm{t})=\mathrm{x}_{\mathrm{m}}(\mathrm{t}) ; \quad \mathrm{x}_{\mathrm{n}+1}(0)=0
$$

- Augmented $(\mathrm{n}+1)$-st order system, $\underline{\mathrm{x}}_{\mathrm{a}}=\left[\underline{\mathrm{x}}, \mathrm{x}_{\mathrm{n}+1}\right]^{\prime}$

$$
\begin{aligned}
& {\left[\begin{array}{c}
\dot{x}_{1} \\
\dot{\mathrm{x}}_{\mathrm{n}+1}
\end{array}\right]=\left[\begin{array}{c:c}
\mathrm{A} & 0 \\
\hdashline \underline{\mathrm{e}}_{\mathrm{m}}^{\prime} & 0
\end{array}\right]\left[\begin{array}{c}
\underline{x}^{x_{n+1}}
\end{array}\right]+\left[\begin{array}{c}
\underline{\mathrm{a}}_{\mathrm{m}} \\
\hdashline 0
\end{array}\right] \mathrm{x}_{\mathrm{m}}{ }^{*}+\left[\begin{array}{c}
\mathrm{B} \\
\hdashline 0
\end{array}\right] \mathrm{u}} \\
& \dot{\underline{x}}_{\mathrm{a}}(\mathrm{t})=\mathrm{A}_{\mathrm{a}} \underline{x}_{\mathrm{a}}(\mathrm{t})+\mathrm{B}_{\mathrm{a}} \mathrm{u}(\mathrm{t})+\underline{\underline{a}}_{\mathrm{m}} \mathrm{x}_{\mathrm{m}}^{*}
\end{aligned}
$$

- Augmented system may not be controllable. Examine
- Selection of $u(t)=-K_{a} \underline{x}_{a}(t)=-K \underline{x}(t)-K_{n+1} x_{n+1}(t)$
- Design K as before, to place poles of $\mathrm{A}-\mathrm{BK}=\overline{\mathrm{A}}$
- $\mathrm{K}_{\mathrm{n}+1} \sim$ small gain on integral error
- CL characteristic polynomial, $\left|s I-A_{a}+B_{a} K_{a}\right|$

$$
\left|\begin{array}{cc}
\mathrm{sI}-\overline{\mathrm{A}} & \mathrm{BK}_{\mathrm{n}+1} \mid \\
-\underline{\mathrm{e}}_{\mathrm{m}}^{\prime} & \mathrm{s}
\end{array}\right|=|\mathrm{sI}-\overline{\mathrm{A}}| \cdot \underbrace{\left|\mathrm{s}+\underline{\mathrm{e}}_{\mathrm{m}}^{\prime}\left(\mathrm{sin}^{\prime}-\overline{\mathrm{A}}\right)^{-1} \mathrm{~B} K_{\mathrm{n}+1}\right|}_{\sim\left(\mathrm{s}-\underline{e}_{\mathrm{m}}^{\prime} \overline{\mathrm{A}}^{-1} \mathrm{BK} K_{\mathrm{n}+1}\right)}\left|=\left|\mathrm{sI}-\overline{\mathrm{A}}_{\mathrm{a}}\right|\right.
$$

- Select $\mathrm{K}_{\mathrm{n}+1}$ so that pole is in LHP.

Example - Integral Control

$$
\begin{array}{ll}
\mathrm{u} \rightarrow \frac{1}{\mathrm{~s}+1} \rightarrow \frac{1}{\mathrm{~s}} \underset{\mathrm{x}_{2}}{ } & {\left[\begin{array}{l}
\dot{\mathrm{x}}_{1} \\
\dot{\mathrm{x}}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-1 & 0 \\
1 & 0
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}_{1} \\
\mathrm{x}_{2}
\end{array}\right]+\left[\begin{array}{l}
1 \\
0
\end{array}\right] \mathrm{u}} \\
\mathrm{x}_{1}=\text { Motor shaft velocity } \\
\mathrm{x}_{2}=\text { Shaft angular position } & \mathrm{u}=-[12]
\end{array}
$$

(1) Desire $\mathrm{x}_{1}(\mathrm{t}) \rightarrow \mathrm{x}_{1}{ }^{*}$ in ss (obvious problem since $\mathrm{x}_{2} \rightarrow \infty$)

Introduce integral control, $\mathrm{x}_{1} \triangleq \mathrm{x}_{1, \mathrm{e}}$, obtain augmented state equation

$$
\dot{\underline{x}}_{\mathrm{a}}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
1 & 0 & 0 \\
\hdashline 1 & 0 & 0
\end{array}\right] . . \underline{\mathrm{x}}_{\mathrm{a}}+\left[\begin{array}{c}
-1 \\
11 \\
\hdashline 0
\end{array}\right] \mathrm{x}_{1}{ }^{*}+\left[\begin{array}{c}
1 \\
0 \\
\hdashline 0
\end{array}\right] \mathrm{u} ;\left|\mathrm{H}_{\mathrm{c}}\right|=\left|\begin{array}{ccc}
1 & -1 & 1 \\
0 & 1 & -1 \\
0 & 1 & -1
\end{array}\right|=0 \text { ! }
$$

- Uncontrollable, cannot have a stable system if $x_{1}=$ constant
(2) Desire $\mathrm{x}_{2}(\mathrm{t}) \rightarrow \mathrm{x}_{2}{ }^{*}$ in ss. Introduce integral control, $\mathrm{x}_{2} \rightarrow \mathrm{x}_{2, \mathrm{e}}$

$$
\left.\begin{array}{l}
\dot{\underline{x}}_{a}=\left[\begin{array}{ccc}
-1 & 0 & 0 \\
1 & 0 & 0 \\
\hdashline 0 & 1 & 0
\end{array}\right]
\end{array}\right] \underline{x}_{a}+\left[\begin{array}{c}
0 \\
0 \\
\cdots \\
0
\end{array}\right] \mathrm{x}_{2}{ }^{*}+\left[\begin{array}{c}
1 \\
0 \\
\hdashline 0
\end{array}\right] \mathrm{u} ;\left|\mathrm{H}_{\mathrm{c}}\right| \neq 00
$$

let $\left[\begin{array}{ll}K_{1} & K_{2}\end{array}\right]=\left[\begin{array}{ll}1 & 2\end{array}\right]=$ same as before for primary poles; $K_{3}=\varepsilon \sim$ small

$$
\left|\mathrm{sI}-\overline{\mathrm{A}}_{\mathrm{a}}\right|=\mathrm{s}\left(\mathrm{~s}^{2}+2 \mathrm{~s}+2\right)+\varepsilon \sim\left(\mathrm{s}^{2}+2 \mathrm{~s}+2\right)(\mathrm{s}+\varepsilon / 2)
$$

- Too much gain on \int-term is NG when simply added in

Alternate approach - Pick [$\mathrm{K}_{1} \mathrm{~K}_{2} \mathrm{~K}_{3}$] to place all 3 CL poles in LHP -- but this destroys association $\mathrm{K}_{3} \leftrightarrow$ new pole @ s ~ 0

