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SVFB Design via Gain Xformation & Pole Placement 

1. “Deadbeat” controller  
 

2. Continuous-Discrete Gain Tranformation 
• Time response equivalence 
• Average gain method 
• Example-double integrator 
 

3. Pole Placement via SVFB Design 
• Direct approach 
• Transformation approach 
• Ackermann formula/algorithm 
• Pole placement for MIMO systems 

o State feedback 
o output feedback (numerically not robust.  So, won’t discuss) 

 

4. Example-Inverted Pendulum on a Cart 
• Continuous-discrete transformation design 

• Direct digital design 
 

5. Implementation of High-Order Compensators 
• State prediction 
• Comparison with Smith compensator 
• Examples 
 

6. Command Inputs to SVFB Systems 
• Integral feedback 
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Control in State-Space 

h
Aσ

0
e dσB  

     
k 1

k k 1 i

i = 0

x k  = Φ x 0 + Φ Γu i


 



•   What can be done with respect to controlling system states?  

x(k+1) = Φ x(k) + Γu(k) 

 y(k) = Cx(k) 
 x(0) = known initial condition  

Equivalent discrete system matrices  

                            Φ = eAh,     

•   State response  

•   Consider k = n  

  -  Can we find u(0), u(1), ... , u(n–1) so that x(n) =  ξ = arbitrary vector, starting at    

any initial condition x(0)?  

         
n 1

n n 1 i n 1

i=0

ξ x 0 Φ Γu i u n 1 u n 2 u 0


           



  
                                                                   

n 1       

cH

u(n–1)  

u(n–2)  

  
u(0) 

.  . 

  -  If Hc is invertible, it is possible to find the requisite {u(i)}.  
  -  Note:  state may not necessarily stay at     for k > n. 
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Deadbeat Controller 

•   If system is cc the sequence {u(0), u(1), ... , u(n–1)} will drive x(0) → x(n) = 

u(n–1)  
u(n–2)  

   
u(0) 

... 

= Hc
-1 [     – Φn x(0)] 

  -  Open-loop control  

  -  Closed-loop control via time-invariance  

"turn system on" at time "k":  x(0) <==> x(k), u(0) <==> u(k)  

                     =>  u(k) = [ 0  0 ... 1 ] 

accomplishes same control sequence but via SVFB  

                  u(0) = [ 0  0 ... 0  1 ] 
                  u(1) = [ 0  0 ... 1  0 ]                                     x(0), not x(k)  is used here  

                  u(n–1) = [ 1  0  0 ... 0 ] 

... 

Hc
-1 [     – Φn x(0)] 

Hc
-1 [     – Φn x(0)] 

Hc
-1 [     – Φn x(0)] 

Hc
-1 [     – Φn x(k)] 

                       u(k) = – [ 0  0 ... 1 ] Hc
-1Φn x(k) 

K  

is an SVFB control that reduces any (initial) state to  0 in n steps → “deadbeat controller”  

(unique to discrete systems) 

  -  CL dynamics           x(k+1) = (Φ – ΓK) x(k)  

x(n) = (Φ – ΓK)n x(0) =  0     

      ==>  Φ – ΓK has all eigenvalues at z = 0  

•   Special case     =  0  

where 
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Example - Pure Inertia Control (e.g. Satillite) 

     
21 h h /2

x k+1 x k u k
0 1 h

  
    
   

   
1

1 2 3 2 1 2
K 0 1 1 3 2

1 1 0 1



   
    

   

 

 

 

 
 

     

1 1

2 2

x t x t0 1 0
u t

x t x t0 0 1

     y t 1 0 x t

      
       
      



1  
 s 

1  
 s u y 

x2 

G(s) = 
 1  
s2 

x1 

•   Equivalent discrete system Φ Γ 

Pick h = 1  

•   Deadbeat controller, u(k) = –K x(k) = –K1 x1(k) – K2 x2(k) 

•   Time response with x1(0) = 1, x2(0) = 0:   x(0) → 0 in 2 time steps  

1 2 3 4 
t(sec) 

0 

0.5 

1.0 

-0.5 

-1.0 

1 2 3 4 
0 

1.0 

5 
0 

-1.0 

t 

State x2(t)  
     = x2(k) 

State x1(t) = y(t)  
     = x1(k) Control, u(k) 

x1 

x2 

u 
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Discrete SVFB Design Methods 

•   Continuous → discrete equivalence methods  

Given a continuous FB control law  

u(t) =  Kr r(t) – K x(t)  

develop from Kr, K an "equivalent" discrete control  

u(k) =  Kr r(k) – K x(k)  
  -  Idea:  capitalize on earlier design for  x = A x + B u  

  -  Compare continuous vs. discrete time response, phase margin, closed-loop poles, etc.  

•   Direct digital controller design  

Find u(k) = Kr r(k) – K x(k) directly to place poles at z = z1, z2, ... , zn   

       (1)  select  zi = esih         i = 1, 2, ... , n ; 

si = desired pole location in s-plane  

or, (2)  select  z1, z2, ... , zn directly  

•   Evaluation  

  -  Time response via simulation  

  -  Phase margin via Bode/Nyquist plot of  

  -  Sensitivity to parameters, RD, etc. 

                         LG(jω) = K(zI – Φ)-1 Γ 
z  =  ejωh  
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Continuous →Discrete Gain  

Transformation Methods 

 h A BK σ

r 0
0

e K Bdσ r




Closed-loop  

C:  x(t) = A x(t) + B u(t)  
 u(t) = Kr r(t) – K x(t) 

D: x(k+1) = Φ x(k) + Γ u(k)  
      u(k) = Kr r(k) – Kx(k) 

 x(t) = (A– B K) x(t) + Kr B r(t)          x(k+1) = (Φ –ΓK) x(k) + Kr Γ r(k)  

•   Desire simplicity and accuracy  

x(h) = e(A–BK)h x(0) + 

•   Start      at x(0) with r(t) = r0.  Response at t = h  C 

D ? 



  -  Time response of          time response of   

  -  Eigenvalues of CL        exp {h · eigenvalues of CL    }  

C 
? C D 



•   For discrete response  

x(h) = (Φ – ΓK) x(0) + Kr Γ r0 

A)  Time response equivalence: 

Only possible to obtain equivalence to O(h2)  

K ≈ K + K(A–BK) h/2 

Can only obtain equivalence to O(h2)  

 Kr ≈ {1 – KB(h/2)} Kr 

      (1)  Φ – ΓK = e(A–BK)h   →   "solve" for  K ?  

 h A BK σ

r r
0

K K e Bdσ


  (2) 
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B) Average Gain Method  

(Kleinman, Automatica, 1978) 

 
h

c
0

1
u t dt

h 

       
t A BK σ A BK t

c r 0
0

u t  = 1 K e Bdσ K r Ke x 0
   

  

     
h t hA BK σ A BK t

c r 0
0 0 0

K K
u  = 1 e dσdtB K r e dtx 0

h h

  
  

 
  

    
h t -1A BK σ

r r r
0 0

K
K  = 1 e dσdtB K = 1+ K K A BK B K

h

         
 

 h A BK t

0

K
K = e dt

h





C •   Consider      over (0, h] with x(0), and r(t) = r0  

 t A BK σ

r 0
0
e K Bdσ r


x(t) = e(A–BK)t  x(0) +  

•   Control, uc(t) over (0, h], in continuous system  

uc(t) = Krr0 – K x(t)  

•   Discrete control over (0, h] = u(0)  

cu              =>  Pick K, Kr so that u(0) =      = 

•   Discrete equivalent gains  

    (1)    

    (2) 

u(0) = Kr r0 – K x(0) 

 h t hA BK σ

0 0 0

h
1

0

1

K K
e dσdt ( )

h h

K
( ( ) ) ( )

h

( )( )

t dt

t I dt A BK

K K A BK
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Computing Average Gain 

   
2

2h h
K K I + A BK + A BK

2 3!

 
    

 
 

2

r r

h h
K 1 K + A BK + B K

2 3!

   
    
   

 
1

h A BK t

d
0

K = K h e dt


 
  

•   Inverse procedure:  given a discrete Kd, find continuous gain K.  

h  ≤ 
         1.0  

|| A – BK || 

Closed-loop system matrix 

•   Approximation for small h  

•   Average gain scheme is "good" provided            

-  Generally requires a smaller h than does the usual criterion  

h  ≤   (0.5  → 1.0) / | λmax(A) | 

•   Obtain K using c2d, then compute Kr 

  -  but Kr   may not maintain same DC gain as in continuous case  

•   Using average gain K is always better than just using K  

      1.0  

| λmax (A  –  B K ) | 

Solve 

iteratively: 

  -  Generally converges in 2 - 3 iterations.  

  -  Useful when h is subject to change, e.g.,  Kd(h1) → K → Kd(h2) 

 i

1
h A BK t

i +1 d 0 d
0

K  = K h e dt  with K K .
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Example – Satellite Control, G(s)=1/s2 

           
0 1 0

x t x t r t ;    y t 1 0 x t
1 1 1

   
     

    
1 3

s j
2 2

  

 

 

 

 
       1 1

2 2

x t x t0 1 0
u t ;    y t 1 0 x t

x t x t0 0 1

      
        
      

Continuous SVFB control Kr 
K 

           u(t) = 1.0 r(t) – [ 1   1 ] x(t) 
Gives CL system 

CL transfer function 
y(s)  

r(s) 

           1  

s2  +  s  +  1 
= 

CL poles at 
    (ζ = 0.5) 

•   Equivalent discrete gains, K, with h = 0.5  

OK on "safety" requirement 
1.0

1.0
1

 h  ≤ 
      1.0  

| λmax (A  –  B K ) | 

  
-1

r rK  = 1+ K K A BK B K 0.755   
 

   
h A BK t

0

K
K = e dt 0.755 0.964   ;

h




•   Examine CL discrete eigenvalues (poles) of Φ – ΓK  

  -  "Expect" poles at zi = esih  =  e               = 0.707 ± j0.327  -0.25±j0.433 

•   Without gain equivalence λi(Φ  – ΓK) = 0.688 ± j0.39  (ζ = 0.41) 

 Φ – ΓK =                 –                                         =  1     0.5  
 0        1 

0.125  
0.5 

0.755  0.964 0.906    0.379  
 –0.378   0.518 

eigenvalues at λi = 0.712 ± j0.325   (ζ ≈ 0.5) 
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Satellite Control Closed-Loop Simulation 

x(0)=0, r(t)=1, h=1.0, Average Gain Equivalence 

(a) Equivalent Discrete Gains 

       u(k) = Kr r(k) –K x(k) 

               0.534   [0.534  0.874] 

1 

2 3 4 

t(sec) 

0 

0.5 

1.0 

-0.5 

u(t) 

5 6 7 8 1 2 

3 

4 5 6 

7 8 

0 

0.5 

1.0 

u(t) 

1 2 3 4 
t(sec) 

0 

0.5 

1.0 

y(t) 

5 6 7 8 1 2 3 4 5 6 7 8 
0 

0.5 

1.0 

y(t) 

1.5 1.5 

t(sec) 

-0.5 

t(sec) 

(b) Unconverted Gains 

       u(k) = Kr r(k) – K x(k) 

              1.0        [1.0  1.0] 

Continuous system response 

Discrete system response 

Continuous system response 

Discrete system response 

Continuous system input Continuous system input 
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Satellite Control Closed-Loop Simulation 

x(0)=0, r(t)=1, h=0.5, Average Gain Equivalence 

(a) Equivalent Discrete Gains 

       u(k) = Kr r(k) – K x(k) 

          0.755   [0.755  0.964] 

1 

2 3 4 

t(sec) 

0 

0.5 

1.0 

-0.5 

u(t) 

5 6 7 8 1 2 3 4 5 6 7 8 

0 

0.5 

1.0 

u(t) 

1 2 3 4 
t(sec) 

0 

0.5 

1.0 

y(t) 

5 6 7 8 1 2 3 4 5 6 7 8 
0 

0.5 

1.0 

y(t) 

1.5 1.5 

t(sec) 

-0.5 

t(sec) 

(b) Unconverted Gains 

       u(k) = Kr r(k) – K x(k) 

1.0    [1.0  1.0] 

Continuous system response 

Discrete system response 

Continuous system response 

Discrete system response 

Continuous system input Continuous system input 
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•   Even when h  >                                   the equivalent (average) gains will often give a   

"reasonable" CL system.  

•   With h = 1.8, K = [ 0.261   0.683 ],  Kr = 0.261 

      1.0  

| λmax (A  –  B K ) | 

1 2 3 4 
t(sec) 

0 

0.5 

1.0 

-0.5 

y(t) 

1.5 

2.0 

2.5 

5 6 7 8 9 10 

Unconverted gains response  
Continuous system response  
Average gain response  

•   Unconverted discrete system (K = [ 1  1 ] ) becomes unstable as h increase. 

•   CL system with average gains still hanging in, with noticeable slow-down in step response.  

Satellite Control CL Simulation 

x(0)=[0 0]΄, r(t)=1, h=1.8 
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Summary of Equivalent Gain Method 

•   Useful if need to change h on-line frequently  

  -  Store K, Kr from continuous design  

•   Average gain is best method to convert  
K → K  ; Kr → Kr  

•   If h ~ small ( <                                )  use K, Kr 

      1.0  

| λmax (A  –  B K ) | 

•   Do not simply use K = K,  Kr = Kr (instability as h increases).  

  -  Use series approximation to obtain K, Kr for current value of h  

•   Generally  

  -  Ki will be smaller in magnitude than Ki.  

  -  Gains K will yield discrete CL poles with a slightly smaller ωn than original continuous  

system (i.e., slower response).  

  -  Eigenvalues of Φ – ΓK ≈ exp (h · eigenvalues of A – BK ).  

  -  Phase margin of discrete system with average gain ≈ phase margin of a discrete system  

with poles placed at exp [h · λi(A – BK)].  

  -  DC gain (r → y) of equivalent system not always same as    .  

•   If h ≠ small, design K, Kr directly for discrete system. 

    ==>  may wish to pick Kr so that DC gain of discrete CL system = DC gain of original  

continuous CL design, i.e., so that 

 C 

Kr C [I – Φ + Γ K ]-1Γ  = – Kr C [ A – B K ]-1B 
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State Variable Feedback Control  

– Direct Pole Placement (SISO) 

 

 
 

1

r
z 1

y z
K C zI  Φ Γ 1

r z





   
  

  -  Given   x(k+1) = Φ x(k) + Γ u(k) 

                                    y(k) = C x(k)                                       

and linear feedback control structure  

u(k) = Kr r(k) – K x(k) 

•   Discrete system design 

with |zI – Φ| = p(z) = zn + a1z
n-1 + ··· + an 

  -  Closed-loop dynamics  

x(k+1) = (Φ – ΓK) x(k) + Kr Γ r(k) 

y(k) = C x(k)  
Φ = discrete closed-loop matrix 

  -  Pole placement  

       (1)  Find FB gains K = [K1, K2, ... , Kn] so that the closed-loop system matrix  

 has eigenvalues (poles) at pre-selected locations            z1, z2, ... ,zn*  

2.  Adjust Kr to have unity (or some desired) DC gain from r to y 

*Usually zi = esih where the {si } are desired pole locations in s-plane. 

                   =>  | zI – ( Φ – ΓK) | = (z  –  z1) ··· (z  –  zn) = pd(z) 

pd(z) = zn + d1z
n-1 + ··· + dn  

desired CL characteristic polynomial  
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SISO Pole Placement Methods 

•   Same scheme should work for either continuous or discrete problems,  Φ  <=> A,  Γ <=> B  

Φ – ΓK  <==>  A – BK  

•   Direct approach  

  -  Expand  | zI – Φ + ΓK | = zn + f1(K)zn-1 + ··· + fn(K) 

[each fi will be linear in K1, K2, ... , Kn]  

  -  Expand              pd(z) = (z – z1) (z – z2) ··· (z – zn) = zn + d1z
n-1 + ... + dn       

  -  Equate coefficients and solve n linear equations, n unknowns  

fi(K) = di;  i = 1, 2, ... , n 

  - Useful in simple problems, some structured ones  

•   Example:  z1 = 0.5 + j0.3, z2 = 0.5 – j0.3 

  -  Select Kr (e.g. so that DC gain = 1) 

K=
  1.0–K1       0.2–K2  

0.2–0.5K1   1.0–0.5K2 

pd = (z – z1) (z – z2)        = z2 – 1.0z + 0.34 

–2 + K1 + 0.5K2 = –1  

0.96 – 0.9K1 – 0.3K2 = 0.34 
=>  K1 = 0.067,   K2 = 1.867 

    |  z I –     | = z2 + (–2 + K1 + 0.5K2)z + (0.96 – 0.3K2 – 0.9K1) 

f1 f2 

1.0  

0.5 
K1   K2 Φ =                       Γ =                K = 

1.0   0.2  

0.2   1.0  
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Transformation Approach for Pole Placement 

•   Let v(k) = T-1x(k) where T transforms Φ, Γ to SCF  

x(k+1) = Φ x(k) – Γ K x(k)                      =>   v(k+1) = T-1ΦT v(k) – T-1Γ K T v(k) 

x(k) 

–a1    –a2   ...  –an   
  1       0    ...     0  
  0      1  
  
  0     ...      1     0       

. 
. 

. . . . 

.  .  . 

1  
0  
  
  
0 

.  .  . ai = coefficients of open-loop  

       characteristic polynomial 

          KT = [–a1 + d1, –a2 + d2, ... , –an + dn],  

then  T-1ΦT – T-1ΓKT = T-1(Φ – ΓK)T 

–d1  –d2  ...   –dn   
  1      0   ...     0  
  0      1  
  
  0     ...      1   0       

. . . 

.  .  . 

= 
. 

. 
. 

•   If 

K1  
K2  
  
  
Kn 

.  .  . 

–a1 + d1  
–a2 + d2  
  
  
–an + dn 

.  .  . 

T '            = 

                   K = [–a1 + d1, –a2 + d2, ... , –an + dn] T
-1 

  -  Best to solve 

    ==> Φ – ΓK has desired characteristic polynomial pd(z) with 
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Algorithm for Obtaining T 

n n

r i i

i=1 i=1

K 1 d b
 

  
 

 

•   Useful in general, not just for pole-placement problems 

   |        |         |  
   t1      t2  ···  tn 
   |        |         | 

T = 

•   Generate T columnwise   t1 = Γ  

t3 = Φ t2 + a2Γ 

tn = Φ tn-1 + an-1Γ  (check: does Φ tn = –anΓ ?)   

... 

 t2 = Φ t1 + a1Γ 

•   Requires computation of {ai} -- possible numerical problems  

•   T-1 will exist if system is completely controllable  

    column tk is a linear combination of Γ, ΦΓ, ... , Φk–1Γ  

•   If y(k) = C x(k)  

with   bi = C ti  y(k) = CT v(k) = [ b1, b2, ... , bn ] v(k)          

= Kr                                     ;   bi= C ti         

K(zI –Φ)-1Γ  =                                     ;    γi = K ti               

•   Closed-loop transfer function with u(k) = Kr r(k) – K x(k)   

y(z)  

 r(z) 

   b1z
n-1 + ··· + bn  

zn + d1z
n-1 + ··· + dn 

  -  for unity DC gain = 

•   Loop gain: 
   γ1z

n-1 + ··· + γn  

zn + a1z
n-1 + ··· + an 

= di – ai 
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Ackermann Formula 

•   Circumvents requirement to compute ai  

pd(z) = (z – z1) (z – z2)··· (z – zn) = zn + d1z
n-1+ ·· + dn  = desired CL characteristic polynomial  

K = [ 0  0  ...  1 ] Hc
-1 pd(Φ) 

pd(Φ) = (Φ – z1I) (Φ – z2I) ··· (Φ – znI)  

(zi = desired poles, must be in complex conjugate pairs)  

   |       |            |  

   |       |            | 
Hc =   Γ    ΦΓ ···  Φn-1 Γ     =   Controllability matrix 

•   Algorithm  

1.  Set up Hc matrix one column at a time.   Transpose Hc → Hc'.  

2.  Solve 

Hc' q   =          for n-vector q 

0  
0  
  
1 

. . . 

     -  Use any available routine for solving A x = b.  

     -  If solution fails, stop.  System is not completely controllable.  

3.  Evaluate pd(Φ) = X.  

4.  Obtain gains  K = q' X = [ K1, K2, ... , Kn ]  

5.  Compute Kr if needed. 

Numerically unstable 
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Algorithm to Obtain Pd(Φ) 

       1.  initialize X = I, k = 1  

2.  read real & imaj.   parts of roots RA(i), RB(i), i = 1, 2, ... , n  

3.  if RB(k) = 0:    X = X * [Φ – RA(k)I]  

k = k + 1  

4.  if RB(k) ≠ 0:     X = X * [Φ2 – 2RA(k)Φ + (RA2(k) + RB2(k))I]  

k = k + 2  

5.  if k  ≤ n  go to 3 ;   if k = n + 1  done 

•   Compute using complex conjugate pairs to avoid complex matrices  

  -  e.g., if z3 = a + bj,  z4  = a – bj  

(z – z3) (z – z4) = z2 – 2az + (a2+b2)  

(Φ – z3I) (Φ – z4I) = Φ2 – 2aΦ + (a2+b2)I  

  -  Incorporate into iterative scheme  

•   Develop as a Subroutine GAINS  

  -  Can be used for continuous or discrete models  

•   Generally pick zi via esih  

•   No restriction on h other than usual  

•   Deadbeat response:  all zi = 0  =>  pd(z)  =  zn ;  also pd(Φ) = Φn  

                                         

K = [ 0  0  ···  1 ] Hc
-1 Φn 

  -  deadbeat gains Ki → ∞  as h → 0  

(0.5  →1.0)  

  | λmax(A) | 
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Example – Satellite Control/Pointing 

 n nζω h 2ζω h2

1 n 2d 2e cos ω h 1 ζ   ;     d e
 

   2

i n ns ζω ω 1 ζ :j   

1   h  

0   1 

h2/2  

h 
x(k+1) =              x(k)  +            u(k) 

•   Desired CL characteristic polynomial:  

z2 + d1z + d2 = pd(z)  

  -  if 

  |    |  
Γ ΦΓ  

  |    | 

h2/2  3h2/2  

  h       h 
Hc =               =                       ;  solve                            =        => q = 

    h2/2   h  

3h2/2   h 

0  

1 

q1  

q2 

  1/h2  

–0.5/h 

1+d1+d2   2h+d1h  

     0         1+d1+d2 

pd(Φ) =                                  = Φ2 + d1Φ + d2I 

Hc' 

K = q'pd(Φ) = 
1+d1+d2   3+d1–d2  

     h2            2h       

•   Use Ackermann algorithm:  K = [ 0  1 ] Hc
-1 pd(Φ) 

•   Deadbeat controller:  d1 = d2 = 0    ===>        K = [ 1/h2   3/2h ]  

                                   
  -  as h → 0, require excessive control energy  

  -  good control scheme when h is large  

•   For ζ = 0.707, ωn = 0.707, h = 0.5  

si = –0.5 ± j0.5  →  zi = esih = 0.53 ± j0.29  

d1= -1.5092,  d2 = 0.6065  →  K = [ 0.3894  0.8843 ] 
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RQ Implementation 

•   Transform (Φ, to controller Hessenberg form,  Hp = QT ΦQ;  p = QT  =  e1 

•   Perform RQ factorization of Hessenberg as follows  

•   Algorithm  

1.  Set H1 = Hp, 

2.  For i =1,2,…,n DO 

3.  Obtain gains  

5.  Compute Kr if needed. 

1

[ ]

i i i i

i i i i

i nn

R Q H I

H Q R I

R





 



 

 



 End 

1

1

1 1 1 2 1 1 2 1
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Set 

For i=1,2,..,n Do

.... ....
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Controllability matrix: 
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Numerically stable 

Implementation of ‘place’ command  
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m + M u t
θ t  = θ t

M M

u tm
d t  = g θ t  + 

M M

g

l l






Example – Inverted Pendulum on a Cart 

θ 
m 

d u 

l 

M 

  Small angle equations: 

θ d



State equation x = [θ, q, d, v]' ;  q =    , v =  

(m+M)g  
   Ml 

0  

0 
m  
M 

–g 

1  

0  

0  

0 

0  

0  

0  

0 

0  

0  

1  

0 

θ  

q  

d  

v 

 0  

  
  
0 

-1  

Ml 

 1  
M 

x  =                                                +           u 

Let m = 0.1, M = 1.0, l = 1m, g ≈ 10m/sec2 

11,  11

Open-loop eigenvalues at  

      s = 0, 0,  

0  
11  
0  
–1 

1  
0  
0  
0 

0  
0  
0  
0 

0  
0  
1  
0 

0  
–1  
0  
1 

x  =                              x +          u 

•   Objective - Find SVFB u = –Kx such that any x(0) → 0    (regulator design, r = 0)  

•   Continuous time design:   u(t) = – [ 77.9  -23.0  -16.9  -13.0 ] x(t) gives a stable CL system 

λi(A – BK) = –2 ± 3j,  –3 ± 2j  

•   Examine discrete time design(s)  
  -  equivalent (average) gains  

  -  direct design with zi = esih 

σ 

jω x = (A – BK) x with CL eigenvalues 
2

2

2

(2 1)2 2
1/

2 2

(2 1 )

2

1 1
( ) ( )

1 ( 1) 1

: ( 1)

; 1,2,..,

n n

n

c c

j k

n n

c c

j k n

n
k c

G s G s
s s

s s
Roots e

s e k n
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1

13

Equivalent Discrete Design, u(k) = –Kx(k) 

•   Expect good performance for h  ≤                                 =         = 0.28  

•   System parameters vs. h (sec) 

m

-77.9  
-72.6  
-65.1  
-53.5  
-43.2  
-34.1  
-26.3  

-23.0  
-21.5  
-19.4  
-16.0  
-13.0  
-10.4  

    -8.05 

-16.9  
-15.3  
-13.0  

    -9.53  
    -6.61  

 -4.17  
    -2.16 

-13.0  
-11.9  
-10.3  

    -7.92  
    -5.81  
    -3.98  
    -2.42 

9.4  
9.1  
8.6  
7.4  
6.5  
5.4  
4.6 

53.6o  
46.7  
39.8  
30.0  
23.1  
17.7  
14.8 

0.00  
0.02  
0.05  
0.10  
0.15  
0.20  
0.25 

h K1 K2 K3 K4 ωc 

      1.0  

| λmax (A  –  B K ) | 

  -  Large decrease in gain magnitudes as h increases 

m

0 0.1 0.2 h 

50 

40 

30 

20 

10 
0 0.1 0.2 h 

10.0 

5.0 

1.0 

     vs. h ωc vs. h 

ω
c 

(r
ad

/s
ec

) 

 O
m

 (
d

eg
) 

•   Stability analysis 

    jωh

-1

z =e
LG jω  = K zI Φ Γm  -  Examine Bode plot of LG to get ωc and 

  -  To avoid instability, average gain lowers ωc  
=>  Lessens destabilizing effect of discretization delay  
=>  Moves ωc into a region where     LG(jω) is larger 

m  -  Discrete system has a delay of ~ h/2 sec  =>  Reduces      by ωch/2 
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Direct Degital Design 

- Inverted Pendulum 
•   Selection of h ~                 =           = 0.15 to 0.3 sec  0.5  – 1  

| λmax(A) | 11

.5 – 1  

Pick h = 0.18 sec 

(1)  Pole placement @ zi = esih = { 0.60 ± j0.36, 0.55 ± j0.21}  

        =>   discrete gains K = [ –43.8  –13.2  –6.67  –5.91 ]  

(2)  Equivalent discrete design:  K = [ –37.6  –11.4  –5.09  –4.68 ]  

        yields closed-loop poles of Φ – ΓK = { 0.67 ± j0.41, 0.57 ± j0.14 } 

-90 

-180 

-360 

-270 

ω (rad/sec) 

20 

0 

-20 

| L
G

ai
n
 | 

(d
B

) 

0.1 1 10 100 34.9 

ωs =  

Continuous design  
Direct design (1)  
Equivalent discrete design (2) ωs 

2π  
 h 

L
G

ai
n
 (

d
eg

) 

•   ωc pole placement = 6.7 vs. 5.9 for equivalent design.  Both have ~ same  

Continuous system had 56.3o. 
m 19.3 ! 
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Closed-Loop Simulaton, Inverted  

Pendulum, x(0)=[0.2, 0, 1, 0]΄ 
DIGITAL CONTROL #1 (h = 0.18) CONTINUOUS CONTROL 

(a)  Control input 

1 2 
0 

10 

20 

-20 

3 -10 1 2 
0 

10 

20 

-20 

3 -10 

t t 

u(k) u(t) 

(b)  Pendulum angle from vertical, x1(t), rad 

1 2 
0 

0.25 

0.50 

-0.50 

3 -0.25 1 2 
0 

0.25 

0.50 

-0.50 

3 -0.25 

x1(kh) 

t t 

(c)  Cart position from "home", x3(t), meters 

1 2 

0.5 

1.0 

1.5 

-0.5 3 
0 

x3(kh) 

1 2 

0.5 

1.0 

1.5 

-0.5 3 
0 t t 
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Deadbeat Controller, Inverted  

Pendulum, x(0)=[0.2, 0, 1, 0]΄ 
•   Impossible physically in this example, but interesting... 

(a) u(t) (b) x1(t) (c) x3(t) x3, meters 
4 

1 
0 

200 

400 

-400 

-200 
t 

u, kg 

1 
0 

1 

2 

-2 

-1 
t 1 

0 

1 

2 

-2 

-1 
t 

x1, rad 

-3 

3 

-3 

3 x3(kh) x1(kh) 600 

•   Excessive control and state overshoots.  Yet x(4) = 0.  

m 
cω •   And there is virtually no phase-margin (          13.3,         4o). 

•   CL system has virtually no robustness properties.  

•   Best to reserve deadbeat for "slow" systems with h ~ large. 

20 

0 

-20 

| L
G

 | 
(d

B
) 

Loop Gain  
Deadbeat  
Controller 

0.1 1.0 10 100 ω(rad/sec) 

0 

-180 

-360 

 L
G

 (
d

eg
) 

ωc 

| LG(jω) | 

LG(jω) 

gains K = [-190.92  -53.52  -92.48  -41.62]  
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     x̂ k+1 x k u k M  

     ˆ ˆx k+2 x k+1 u k M+1  

 
ε

Aσ

0
e dσBu k 1

     
M

M i 1

i = 1

x̂ k+M x k Φ Γu k i  

     2 x k u k M u k M+1    

   ˆu k Kx k+M 

SVFB with Time Delay  

in Control, τ=Mh+ε 
•   First design  SVFB  u(k) = – Kx(k) assuming τ = 0.  

Case 1:  M > 0,  ε = 0  
x(k+1) = Φ x(k) + Γ u(k–M) 

•   Predictor controller  

prediction of state at time (k  +  M)h   
from x(k) and u(k – 1), ... , u(k – M)  

  -  Present control u(k) will have its first effect on x(k+1+M)  

  -  Need to store past controls in a pushdown stack  

  -  Requires a good knowledge of Φ, Γ to perform accurate         propagation of x(k)  

Case 2:  M = 0,   ε  > 0  (0 ≤  ε <  h)  

•   Use                u(k) = – K x(kh + ε)  

=>  u(k) =  – Kx x(k) – Ku u(k–1) 

  -  Modification to structure only, propagation "hidden"  

  -  Identical to earlier equations when ε = h–  (corresp to M = 1) 

x(kh + ε)  =  eAε x(k) + 
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ε
Aε Aσ

e e 0
0

x e x + e dσBv 

Implementation of Delay  

Compensator, General Case 
•   Basic Idea:  construct u(k) so that τ sec later, u(kh + τ) ≈ – Kx(kh + τ)  

=>   input u(k) =  – K x(kh+ τ)  now  
•   Algorithm:  Enter with x(k) = current state measurement  

u(k–1) = last control generated  

  -  Need to set up a delay stack (initialized to zero)  

V = [v0, v1, ··· , vM]  =  [ u(k–1–M)    u(k–M)     ···     u(k–1) ]  

  -  Propagat xe ahead M time steps and apply control u = –Kxe 

^ 

  -  Propagate current state ahead ε sec:  xe = x(kh + ε)  ^ 

x(kh + ε)  =  eAε x(k) + ^  
ε

Aσ

0
e dσBu k 1 M 

Do for i = 1, ... , M  

  xe ←Φ xe +Γvi 

Set vM = u(k–1)  

xe = x(k) 
Put last control  

on stack 

State propagation  

(bypass if M = 0) 

Do for i = 1, ... , M  
vi-1 = vi 

Stack pushdown 

u(k) = Krr(k) – Kxe  Control 

State propagation  

(bypass if ε = 0) 

•   Algorithm can be rearranged for greater efficiency (need to store ΦjΓ) 

^ xe =  x(kh  + ε  +  Mh) =  x(kh  +  τ)  ^ 
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M

i 1 M

i = 1

Φ Γu k i  = ξ k Φ ξ k M   

Comparison with Smith  

Predictor Structure (ε=0) 
•   Define system "model"  

  

ξ(k+1)  = Φ ξ(k) + Γ u(k) 

ξ(k) ~ crude estimate of  x(k  +  M)  

 
M

i 1

i = 1

Φ Γu k i => ξ(k) = ΦM ξ(k – M) + 

•   x(k+M) = Prediction estimate:  

 x(k+M) = ΦM [x(k) – ξ(k–M)] + ξ(k) 

  
                                

•   Loop structure 

^ 

control u(k) = – K x(k + M) ^ 

^ 

^ x(k+M) 
–K 

Z-M 

Model 

System 

ΦM 

u(k) 

 x(k) 

ξ(k+1) = Φξ(k) + Γu(k) 

ξ(k) 

– ξ(k–M) 

x(k+1) = Φx(k) + Γu(k–M) 

+ 

+ 

+ 

•   Nearly identical to Smith predictor ( x  ~  y)  

  -  Preferable to use state propagation formula, especially if system is open-loop unstable and   
Φ, Γ are not perfectly known. 
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Example – Inverted Pendulum 

h = 0.18 sec    K = [ -43.8  -13.2  -6.67  -5.91 ]  (gains obtained via pole placement)  

  -  Select τ = 0.18 (corresponds to M = 1, ε  = 0).  

System is highly unstable unless delay is compensated.  

compare with response of system with no delay 

              ωc = 6.7,      = 19.3o  =>  τmax =      /ωc ≈ 0.05 sec  m m


  -  Simulation x(0) = [ 0.1  0  1.0  0 ] = [ θ,  θ, d, d]  



0.5 1.0 1.5 2.0 2.5 3.0 

0 

-0.39 

-0.33 

-0.20 

-0.13 

-0.06 

0.06 

0.13 

0.20 

0.26 

-0.26 

0.5 1.0 1.5 2.0 2.5 3.0 

0.92 

-0.18 

0 

0.37 

0.55 

0.73 

1.10 

1.29 

1.47 

1.66 

0.18 

Delay, τ = 0.18 

Delay, τ = 0.18 

Pendulum angle, θ(t), rad Cart position, d(t), meters 

t(sec) 

t(sec) 

•   System "drifts" for first τ sec, then is controlled to zero.  

•   In ideal case, state response for k > M is identical to an undelayed response with an initial 

condition x(M) = ΦM x(0), and shifted by Mh sec.  

=>  from k ≥ M, predictor control is "perfect"  (assuming you know Φ and Γ). 
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Robust MIMO Pole Placement : State Feedback - 1 

•   Kautsky’s Algorithm  

•   In MIMO, we have mn degrees of freedom, but only n pole locations.  Use the remaining  

     degrees of freedom to minimize the conditioning of the closed-loop eigen vector matrix. 

2 2

1/2

2

2

1

Recall Eigen value conditioning:

|| || || ||
; , ,

| |

Right eigen vector of ; Left eigen vector of 

: ( ) min max ; ( ) min ;( ) (

jj j

j T

jj

j j

n

j j
K Kj

i

y xd
s parameter in K

d y x

x K y K

Metrics i J s ii J s iii
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1 2

1

1

1 1 1 2

1 1 1

1 1 1 1 2

Let ( , ,..., ) be pole locations

If is the matrix of eigen vectors: ( - )

Suppose we do  decomposition of :
0

, . , 0

n

T T T

diag

T K T T K T T

R
QR Q R Q Q

so R K Q T T K R Q T T Also Q K
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2

2

2 2

One way of picking  is find ; 1,2,..,  and pick directions from these.

So, 
0

One approach: Form an arbitray . Replace column

T

T

j

T Tj

j j j j j j j

Q T T

T N I Q j n

I Q L V L V N I Q
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Robust  Pole Placement Algorithm  

•   Kautsky’s Algorithm  

•   Step 1: Do QR decomposition of 

•   Step 2:  For j=1,2,..,n Do 

Compute  Vj  by doing QR decomposition of  

 

          End 

•   Step 3:  Select from           one from each an independent vector set to form T.    

     Now iterate until  

 

 

 

 

•   Compute gains: 

 

                                

1 2 1 1

2

2

[ , ,.., , ,.., ]
0 || ||

1 1
:

|| ||| |

T

jj jj

j j n j jj T

jj

j T T

jjj j

V V uZ
t t t t t U u new t

V u

Note s
V uu t
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  2
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1{ }n

j jV 

2( ) stabilizes.k T

 1 1

1 1

TK R Q T T   

MATLAB place 

 implements this 
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Application Example 

•   Chemical Reactor Example: n=4, m=2 

 

                                

 Continuous-time system

    1.3800   -0.2077    6.7150   -5.6760

   -0.5814   -4.2900         0    0.6750
;

    1.0670    4.2730   -6.6540    5.8930

    0.0480    4.2730    1.3430   -2.1040

A B



 
 
 
 
 
 

         0    5.6790     1.9910     -0.200

    1.1360    1.1360     0.0635     -0.500
; ( ) ;  desired ( )

         0         0    -5.0566    -5.0566

   -3.1460         0    -8.6659   

i iA A 

   
   
     
   
   
     -8.6659

 0.2/ || || 0.0154  select 0.01sec

 Discretized system

    1.0142   -0.0018    0.0651   -0.0546

   -0.0057    0.9582   -0.0001    0.0067

    0.0103    0.0417    0.9363    0.0563

h A h

 
 
 
 
 
 

    



 

     0.0009    0.0572 1.0201

    0.0110    0.0110 1.0006
; ; ( ) ;desired 

   -0.0007    0.0005 0.9507

    0.0004    0.0417    0.0129    0.9797    -0.0309    0.0003 0.9170

i

     
     
        
     
     
     

0.9980

0.9950
( )

0.9507

0.9170

   -0.5261    0.0834    0.7273   -0.5877

    0.1325   -0.9186    0.1731   -0.0692     0.0428    0.8
 Gains  = ;

    0.5030    0.6180    0.4966   -0.3457

i

K T



 
 
  
 
 
 

 
  

 
2

082   -0.2123    0.2540
; ( ) 2.5237

    0.8214    0.2057    0.4402    0.5555

   -0.2162   -0.5455    0.4819    0.5306

T
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Summary of Pole Placement  

Design by SVFB 

•   Valid for continuous or discrete design  

  -  Ackermann formula to find K  

  -  Transform K→ K if design developed on     and h ~ small  

  -  Need to select all n pole locations  

•   SVFB does not modify system zeros  

  -  Can combine compensator H(z) and SVFB to adjust/move zeros  

C  

Advantages  

  -  Straightforward design methodology  

  -  Direct control over CL pole locations  

  -  Uses all available information in the feedback  

  -  Ability to design deadbeat control  

  -  Possible to extend to MIMO systems, but cumbersome  

=> 

Disadvantages  

  

  -  Need to measure or estimate all states  

  -  More complex design than series compensation  

  -  No direct control over CL time response (still requires trial and          error with CL simulation)  

  -  Not always clear where to place all n poles  

m c,  ω  -  No direct control over 

=> 
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t

* *

1 m m m n n n +1 m m
0

u t Kx t K x t x K x t K x σ x dσ              

Command Inputs to SVFB Systems 

•   Consider continuous case for simplicity  
x(t) = A x(t) + Bu(t) 

u(t) = – Kx(t) 

  -  Closed-loop A–BK has poles at desired locations  

•   Desire xm = m-th component of  x(t) → xm* in steady-state  

•   Idea:  Use control  u(t) = – K1x1(t) – ··· – Km [xm(t) – xm*] – ··· – Knxn(t) 

u(t) =  Kmxm* –  Kx(t) 

like Krr(t) with r(t) = constant 

– K 

System 

u 

x1 xm 

xm* 

··· 

+ 

+ 

x(t) = (A – BK) x(t)             + BKmxm* 

•   Steady-state  x :  xss = – (A – BK)-1 B Kmxm*   

                             
xm,ss=  – em' (A – BK)-1 B Kmxm* ;  em' = [ 0 0 ... 1 ... 0 ] 

-  Generally xm,ss ≠ xm*  

=>  Adjust xm* → βxm* and pick β so that xm,ss = xm
* 

or consider use of integral control 

m-th element 
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t

m
0

x σ dσ 

      *

a a a a m mx t  = A x t  + B u t  + a x

m *

m

n+1 m n+1

x A 0 x a B
x u

x e ' 0 x 0 0

         
           

        

Integral Control in SVFB 

am= m-th column of A, (often am =  0, especially if xm is a position variable)  

•   Define       xn+1(t) = 

xn+1(t) = xm(t) ;    xn+1(0) = 0  

integral of error in xm  
from desired ss value 

•   Augmented (n +1)-st order system, xa = [x,  xn+1]'   

•   Augmented system may not be controllable. Examine 

[ Ba  AaBa ··· Aa
nBa] =     B    AB     ···     AnB        =  (n +1) x (n +1)  

 0    em' B   ···   em' An-1B       Controllability matrix 

•   Selection of u(t) = – Ka xa(t) = – K x(t) – Kn+1xn+1(t)  

  -  Design K as before, to place poles of A–BK = A  

  -  Kn+1 ~  small gain on integral error  

•   CL characteristic polynomial, | sI – Aa + Ba Ka | 

  -  Select Kn+1 so that pole is in LHP. 

sI – A  
–em'  

BKn+1  
s 

= | sI – A | · | s + em' (sI – A)-1 B Kn+1 | = |sI  –  Aa|  
  
                ~ (s – em'A-1BKn+1 ) for small Kn+1 

•   Define xm(t)|new = xm(t)|old – xm
*      error in state xm  x(t)  = A x(t) + amxm* + Bu(t) 
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Example – Integral Control 

1 

 s +1 

1 

 s 
u 

x1 
x2 

u = – [ 1  2 ] x  places CL poles 
at s = – 1 ± j 

x1 = Motor shaft velocity 
x2 = Shaft angular position 

(1)  Desire x1(t) → x1* in ss (obvious problem since x2 → ∞) 

Introduce integral control, x1    x1,e, obtain augmented state equation 

  -  Uncontrollable, cannot have a stable system if x1 = constant 
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xa =                     xa +           x1* +        u  ;  | Hc | =                  = 0! 
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(2)  Desire x2(t)→ x2* in ss.  Introduce integral control, x2 → x2,e  
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x σ dσu = – [ K1  K2  K3 ] xa  = – K1x1 –K2x2 – K3 

let [ K1  K2 ] = [ 1  2 ] = same as before for primary poles; K3 = ε ~ small 

xa =                     xa +           x2* +        u  ;  | Hc | ≠ 0 
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| sI – Aa | = s(s2 + 2s + 2) + ε   ~  (s2  + 2s + 2) (s + ε/2) 

-  Too much gain on   -term is NG when simply added in 

Alternate approach -  Pick [ K1  K2  K3 ] to place all 3 CL poles  

in LHP -- but this destroys association K3 ↔ new pole @ s ~ 0 
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