Lecture 12: Singular Value Decomposition (SVD)

Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering University of Connecticut

Contact: krishna@engr.uconn.edu (860) 486-2890

ECE 6435
Adv Numerical Methods in Sci Comp
Fall 2008
November 12, 2008

Singular Value Decomposition (SVD))

What is Singular Value Decomposition (SVD)?

\square Properties of SVD

- Computation of SVD
- QR Decomposition $\quad A=Q_{1} R=Q_{1}\left[\begin{array}{l}R_{1} \\ 0\end{array}\right]$
- Bidiagonalization of $R_{1}: R_{1}=Q_{2} B_{1} V_{B}^{T}$
- Implicit QR with Wilkinson shift to diagonalize B

$$
B=\left[\begin{array}{l}
B_{1} \\
0
\end{array}\right]=U_{\Sigma} \Sigma V_{\Sigma}^{T}
$$

Net Result: $A=U \Sigma V^{T} ; Q_{1} \operatorname{Diag}\left(Q_{2} I_{m-n}\right) U_{\Sigma} ; V=V_{B} V_{\Sigma}$

- Sample Applications
- Approximation of a noisy matrix by a matrix of lower rank.
- Orthogonal procrustes problem
- Intersection of null spaces
- Robust Control

What is SVD?

What is Singular Value Decomposition (SVD)?

- Given an $m \times n$ matrix $A \exists$ orthogonal matrices U and V э

$$
\begin{aligned}
& A=U \Sigma V^{T} \\
& U=\left(\underline{u}_{1} \underline{u}_{2} \ldots \underline{u}_{m}\right) \in R^{m m}, V=\left(\underline{v}_{1} \underline{v}_{2} \ldots v_{n}\right) \in R^{n n} \\
& \Sigma=\left[\begin{array}{cc}
\Sigma_{r} & 0 \\
0 & 0
\end{array}\right], \Sigma_{r}=\operatorname{Diag}\left(\sigma_{1} \sigma_{2} \ldots \sigma_{r} 00 \ldots 0\right) ; \sigma_{i} \geq 0 \\
& U U^{T}=U^{T} U=I_{m}, V V^{T}=V^{T} V=I_{n}
\end{aligned}
$$

- $\left\{\sigma_{i}\right\}$ are called singular values of A
- $\left\{\underline{u}_{i}\right\}$ are called left singular values of A

$$
\Rightarrow A^{T} \underline{u}_{i}=\sigma_{i} \underline{y}_{i} \sim \text { analogous to left eigen vectors of } A
$$

- $\left\{\underline{v}_{i}\right\}$ are called right singular values of A
$\Rightarrow A^{T} \underline{v}_{i}=\sigma_{i} \underline{u}_{i} \sim$ analogous to right eigen values of A

Properties of SVD - 1
Relationship to $A A^{T}$ and $A^{T} A$

- $A A^{T}=U \Sigma^{2} U^{T}$
$\Rightarrow A A^{T} U=U \Sigma^{2}$
$\Rightarrow A A^{T} \underline{u}_{i}=\sigma_{i}^{2} \underline{u}_{i}$
$\Rightarrow\left\{u_{i}\right\}$ are eigen vectors of $A A^{T}$
- $A^{T} A=V \Sigma^{2} V^{T}$
$\Rightarrow A^{T} A V=V \Sigma^{2}$
$\Rightarrow A^{T} A \underline{v}_{i}=\sigma_{i}^{2} \underline{v}_{i}$
$\Rightarrow\left\{v_{i}\right\}$ are eigen vectors of $A^{T} A$
Properties of SVD
- $\operatorname{Rank} A=r$
in practice $\sigma_{\mathrm{r}+1} / \sigma_{r} \approx \varepsilon, \varepsilon \sim 10^{-3}-10^{-10}$
- $A \underline{v}_{r+1}=A \underline{v}_{r+2}=\ldots=A \underline{v}_{n}=0$

$$
\Rightarrow N(A)=\operatorname{span}\left\{\underline{v}_{r+1} \underline{v}_{r+2} \cdots \underline{v}_{n}\right\}
$$

Properties of SVD－ 2

$$
R\left(A^{T}\right)=N(A)^{\perp}=\operatorname{span}\left\{\underline{v}_{1} \underline{v}_{2} \cdots \underline{v}_{r}\right\}
$$

－$R(A)=\left\{\underline{y} \in R^{m} \mid \sum_{i=1}^{n} \underline{a}_{i} x_{i}=\underline{y}\right\}$

$$
=\operatorname{span}\left\{\underline{u}_{1} \underline{u}_{2} \cdots \underline{u}_{r}\right\}
$$

$$
N\left(A^{T}\right)=R(A)^{\perp}=\operatorname{span}\left\{\underline{u}_{r+1} \underline{u}_{r+2} \cdots \underline{u}_{m}\right\}
$$

－$A=\sum_{i=1}^{r} \sigma_{i} \underline{u}_{i} \underline{v}_{i}^{T}=U_{r} \sum_{r} V_{r}^{T}$
－one of the best methods of approximating a noisy matrix by a matrix of lower rank
－useful in image compression and spectral estimation
－$\|A\|_{2}=\sqrt{\lambda_{\max }\left(A^{T} A\right)}=\sigma_{\max }$
－Frobenius norm：$\|A\|_{F}=\sqrt{\sum_{i} \sum_{j} a_{i j}^{2}}=\sqrt{\operatorname{tr}\left(A^{T} A\right)}=\sqrt{\sum_{i=1}^{r} \sigma_{i}^{2}}$
－Condition number of $A=\kappa(A)=\sigma_{\max } / \sigma_{\min }$ for 2－norm

SVD \＆LS Solution

－Solves the least squares problem：

$$
\begin{gathered}
A \underline{x}=\underline{b} \\
\underline{x}_{L S}=V \Sigma^{i} U^{T} \underline{b}=\left(\frac{\underline{v}_{1}}{\sigma_{1}} \ldots \frac{\underline{v}_{r}}{\sigma_{r}} 0.0\right)\left[\begin{array}{c}
\underline{u}_{1}^{T} \underline{\underline{b}} \\
\cdot \\
\cdot \\
\underline{u}_{m}^{T} \underline{b}
\end{array}\right]=\sum_{i=1}^{r}\left(\frac{\underline{u}_{i}^{T} \underline{b}}{\sigma_{i}} \underline{v}_{i}\right. \\
\text { Error }:\left\|\underline{b}-A \underline{x}_{L S}\right\|^{2}=\sum_{i=r+1}^{n}\left(\underline{u}_{i}^{T} \underline{b}^{2} \text { sin ce } \underline{b}=\sum_{i=1}^{m}\left(\underline{u}_{i}^{T} \underline{b}^{m} \underline{u}_{i} \Rightarrow\|\underline{b}\|^{2}=\sum_{i=1}^{m}\left(\underline{u}_{i}^{T} \underline{b}\right)^{2}\right.\right. \\
\text { and } A \underline{x}_{L S}=\sum_{i=1}^{r}\left(\underline{u}_{i}^{T} \underline{b}^{T} \underline{u}_{i} \Rightarrow\left\|A \underline{x}_{L S}\right\|^{2}=\sum_{i=1}^{r}\left(\underline{u}_{i}^{T} \underline{b}\right)^{2}\right. \\
\underline{b}^{T} A \underline{x}_{L S}=\sum_{i=1}^{r}\left(\underline{u}_{i}^{T} \underline{b}\right)^{2}
\end{gathered}
$$

－Pseudo inverse：$A^{\dagger}=V \Sigma^{\dagger} U^{T}$ satisfies Moore－Penrose properties

References

- References:

1) G. H. Golub and W. Kahan, "Calculating the singular values and pseudo inverse of a matrix," SIAM J.on NA, 1965, 2, pp.205-224.
2) P. A. Businger and G. H. Golub, "Algorithm $358:$ SVD of a complex matrix," CACM, vol.12, 564-65, 1969.
3) G. H. Golub and C. Reinsch, "SVD and LS solutions," NM, 14, pp.403-420, 1970.
4) T. F. Chan, "An improved algorithm for computing the SVD," ACM Trans.on Math software, 8, pp.72-83, 1982, pp.84-88 same issue.

SVD Computation Steps

The SVD computation consists of three steps:

1) Upper triangularize A via Householder or Givens transformation

$$
A=Q_{1} R=Q_{1}\left[\begin{array}{c}
R_{1} \\
0
\end{array}\right] \Rightarrow Q_{1}^{T} A=\left[\begin{array}{c}
R_{1} \\
0
\end{array}\right]
$$

2) Bidiagonalize $n \times n$ matrix R_{1}

$$
\Rightarrow Q_{2}^{T} R_{1} V_{B}=\left[\begin{array}{cccccccc}
d_{1} & f_{2} & 0 & 0 & . & . & . & 0 \\
0 & d_{2} & f_{3} & . & 0 & . & . & 0 \\
0 & 0 & d_{3} & f_{4} & . & . & . & 0 \\
0 & . & . & . & . & 0 & d_{n-1} & f_{n} \\
0 & . & . & . & . & . & 0 & d_{n}
\end{array}\right] \text { upper bidiagonal }
$$

- Define, $U_{B}^{T}=\operatorname{Diag}\left(Q_{2}^{T}, I_{m-n}^{T}\right) Q_{1}^{T} \Rightarrow U_{B}=Q_{1} \operatorname{Diag}\left(Q_{2}, I_{m-n}\right)$ so,

$$
U_{B}^{T} A V_{B}=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right] \underset{m-n}{n}=B \text { is a bidiagonalization of } A
$$

3) Use implicit QR with Wilkinson shift to diagonalize B

$$
\begin{aligned}
& U_{\Sigma}^{T} B V_{\Sigma}=\operatorname{Diag}\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right) \\
& \sigma_{r+1}=\ldots=\sigma_{n}=0 \text { in theory, but small in practice. So, } U_{\Sigma}^{T} U_{B}^{T} A V_{B} V_{\Sigma}=\Sigma \\
& \Rightarrow U=U_{B} U_{\Sigma}=Q_{1} \operatorname{Diag}\left(Q_{2}, I_{m-n}\right) U_{\Sigma}, V=V_{B} V_{\Sigma}
\end{aligned}
$$

Step 1: QR Decomposition

\square Step 1 is Straightforward : involves $\min (m-1, n)$ steps of Householder

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
\times & \times & \times \\
\times & \times & \times \\
\times & \times & \times \\
\times & \times & \times
\end{array}\right]-W_{1}\left[\begin{array}{ccc}
\times & \times & \times \\
0 & \times & \times \\
0 & \times & \times \\
0 & \times & \times
\end{array}\right] W_{2}\left[\begin{array}{ccc}
\times & \times & \times \\
0 & \times & \times \\
0 & 0 & \times \\
0 & 0 & \times
\end{array}\right] W_{3}\left[\begin{array}{ccc}
\times & \times & \times \\
0 & \times & \times \\
0 & 0 & \times \\
0 & 0 & 0
\end{array}\right]=\left[\begin{array}{c}
R_{1} \\
0
\end{array}\right]} \\
& Q_{1}^{T}=W_{m}, W_{m-1}, \ldots, W_{1} ; m^{\prime}=\min (m-1, n)
\end{aligned}
$$

\square Bidiagonalization step involves alternate applications of $W_{1} V_{1} W_{2} V_{2} \ldots$

- Consider a full matrix case first:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times \\
\times & \times & \times & \times
\end{array}\right] \stackrel{\text { pivot on } a_{11}}{W_{1}}\left[\begin{array}{cccc}
\times & \times & \times & \times \\
0 & \times & \times & \times \\
0 & \times & \times & \times \\
0 & \times & \times & \times
\end{array}\right] \xrightarrow[\text { pivot on } a_{12}]{V_{1}}\left[\begin{array}{cccc}
\times & \times & 0 & 0 \\
0 & \times & \times & \times \\
0 & \times & \times & \times \\
0 & \times & \times & \times
\end{array}\right] \text { pivot on } a_{22}} \\
& {\left[\begin{array}{cccc}
\times & \times & 0 & 0 \\
0 & \times & \times & \times \\
0 & 0 & \times & \times \\
0 & 0 & \times & \times
\end{array}\right] \xrightarrow[\text { pivot on } a_{23}]{V_{2}}\left[\begin{array}{cccc}
\times & \times & 0 & 0 \\
0 & \times & \times & 0 \\
0 & 0 & \times & \times \\
0 & 0 & \times & \times
\end{array}\right] \xrightarrow[\text { pivot on } a_{33}]{W_{3}}\left[\begin{array}{cccc}
\times & \times & 0 & 0 \\
0 & \times & \times & 0 \\
0 & 0 & \times & \times \\
0 & 0 & 0 & \times
\end{array}\right] \text { done! }} \\
& \\
& \Rightarrow \text { so need: } \mathrm{W}_{1}, \mathrm{~W}_{2}, \ldots, \mathrm{~W}_{\mathrm{n}-1} \text { on the left, and } \mathrm{V}_{1}, \mathrm{~V}_{2}, \ldots, \mathrm{~V}_{\mathrm{n}-2} \text { on the right }
\end{aligned}
$$

Step 2：Bidiagonalization－ 1

\square But，our matrix is upper Δ ．Are there any simplifications？ Yes！！
－With an upper Δ matrix $\mathrm{W}_{1}=\mathrm{I} \Rightarrow$ no need for first step
－Unfortunately V_{1} destroys upper Δ nature of R_{1}

$$
\begin{aligned}
\text { Recall } V_{1} & =\left[\begin{array}{cc}
1 & 0 \\
0 & \Gamma
\end{array}\right] \Rightarrow R_{1} V_{1}=\left[\begin{array}{cc}
r_{11} & r_{1}^{T} \\
0 & \widetilde{R}
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
0 & \Gamma
\end{array}\right]=\left[\begin{array}{cc}
r_{11} & r_{1}^{T} \Gamma \\
0 & \widetilde{R} \Gamma
\end{array}\right] \\
\text { where } \underline{r}_{1}^{T} & =\left[r_{12} \ldots . r_{1 n}\right]
\end{aligned}
$$

－Apply $V_{1} W_{1} V_{2} W_{3} \ldots V_{n-2} W_{n-1}$ to the $n \times n$ matrix R_{1} only
－So，the process is very good for $m \gg n$ ．
This is typically the case in practice．

Step 2: Bidiagonalization - 2

The algorithm for Bidiagonalization of \boldsymbol{R}_{1} is based on Householder Transformation
$\widetilde{V}_{B}=I$
$Q_{2}=I$
For $k=1,2, \ldots, n-2$ DO
Find Householder matrix \widetilde{V} of order $n-k \ni$

$$
\begin{aligned}
& \left(r_{k+1}, r_{k k+2} \ldots, r_{k n}\right) \widetilde{V}_{k}=(* 00 . .0) \\
& \text { form } V_{B}=V_{B} \cdot \operatorname{Diag}\left(I_{k} \widetilde{V}_{k}\right)=V_{B} V_{K} ; \text { where } V_{K}=\operatorname{Diag}\left(I_{k} \widetilde{V}_{k}\right)
\end{aligned}
$$

Find Householder \widetilde{W}_{k+1} of order $n-k$ э

$$
\begin{aligned}
& \widetilde{W}_{k+1}\left(\begin{array}{c}
r_{k+1, k+1} \\
\cdot \\
\cdot \\
r_{n, k+1}
\end{array}\right)=\left[\begin{array}{c}
k \\
0 \\
\cdot \\
0
\end{array}\right] \\
& Q_{2}=Q_{1} \operatorname{Diag}\left(I_{k}, \widetilde{W}_{k+1}\right) ; \text { where } \widetilde{W}_{k+1}=\operatorname{Diag}\left(I_{k}, \widetilde{W}_{k+1}\right)
\end{aligned}
$$

end

- Computational load: $O\left(4 n^{3} / 3\right)$ operations

Diagonalization of Bidiagonal - 1

- Storage considerations

1) Store V_{k} in upper Δ form.
2) Store W_{k} in lower Δ form.
3) Store d_{i} and f_{i} of bidiagonal matrix as two vectors.

- Finally, compute $U_{B}=Q_{1} \operatorname{Diag}\left(Q_{2} I_{m-n}\right)$
$\square \quad$ Step 3 Involves diagonalization of the Bidiagonal

$$
\left[\begin{array}{cccc}
d_{1} f_{2} & & & \\
& d_{2} & f_{3} & \\
& & & \\
& & d_{n-1} & f_{n} \\
& & & d_{n}
\end{array}\right]
$$

- Basically, there are two approaches
$\square \quad$ Bad Approach
- Know that $T=B^{T} B$ is tridiagonal where $B=\left[\begin{array}{c}B_{1} \\ 0\end{array}\right]$
- Use symmetric QR to diagonalize $B^{T} B=B_{1}^{T} B_{1}$

$$
V_{\Sigma}^{T} B^{T} B V_{\Sigma}=\Sigma^{2}
$$

- Upper triangularize $B V_{\Sigma}$ via Householder.

$$
U_{\Sigma}^{T} B V_{\Sigma}=R
$$

- Note that $B V_{\Sigma} \Sigma^{-1}$ is orthogonal

$$
\begin{aligned}
& \Rightarrow U_{\Sigma}^{T} B V_{\Sigma}=R \Rightarrow \text { column of } R \text { are orthogonal } \\
& \quad \Rightarrow R \text { is diagonal }=\Sigma
\end{aligned}
$$

Diagonalization of Bidiagonal - 2

$$
\text { So, } U_{\Sigma}^{T} B V_{\Sigma}=\Sigma
$$

- But, $\kappa\left(B^{T} B\right)=[k(B)]^{2}=>$ No Good!
\square Good Approach:
- However, the bad approach provides us a direct method via the implicit Qtheorem.
- Idea: we apply the implicit QR -step on T such that the first column of V_{Σ} is the same in both of the following decompositions:

$$
\begin{array}{lr}
V_{\Sigma}^{T} B^{T} B V_{\Sigma}=\Sigma^{2} \\
U_{\Sigma}^{T} B \widehat{V}_{\Sigma}=\Sigma=R & \Rightarrow V_{\Sigma}=\hat{V}_{\Sigma} \quad \text { if first column is the same } \\
\text { (from the implicit Q- theorem) }
\end{array}
$$

\square So, the diagonalization of bidiagonal matrix consists of three steps:

- Find the Eigenvalue λ of 2×2 submatrix, i.e., $(n-1, n)$ subblock of $T=B^{T} B$ that is closer to $d_{n}^{2}+f_{n}^{2}=t_{n n}$

$$
\left[\begin{array}{ccccccc}
d_{1} & 0 & 0 & \cdot & \cdot & 0 & \\
f_{2} & d_{2} & \cdot & \cdot & 0 & & \\
& f_{3} & & & & & \\
0 & \cdot & \cdot & \cdot & & d_{n-1} & 0 \\
& 0 & \cdot & \cdot & \cdot & f_{n} & d_{n}
\end{array}\right]\left[\begin{array}{ccccccc}
d_{1} & f_{2} & 0 & \cdot & \cdot & \cdot & 0 \\
0 & d_{2} & f_{3} & \cdot & \cdot & \cdot & 0 \\
& & & & & d_{n-1} & f_{n} \\
& & & & & 0 & a_{n}
\end{array}\right]=\left[\begin{array}{cccc}
d_{1}^{2} & d_{1} f_{2} & \\
d_{1} f_{2} & d_{2}^{2}+f_{2}^{2} & & \\
& & d_{n-1}^{2}+f_{n-1}^{2} & d_{n-1} f_{n} \\
& & & d_{n-1} f_{n}
\end{array} d_{n}^{2}+f_{n}^{2}\right]
$$

Diagonalization of Bidiagonal - 3

$$
\begin{aligned}
& \alpha=\left(d_{n-1}^{2}+f_{n-1}^{2}-d_{n}^{2}-f_{n}^{2}\right) / 2 \\
& \mu=d_{n}^{2}+f_{n}^{2}-\left(d_{n-1}^{2} f_{n-1}^{2}\right) /\left[\alpha+\operatorname{sign}(\alpha) \sqrt{\alpha^{2}+d_{n-1}^{2} f_{n-1}^{2}}\right]
\end{aligned}
$$

- Compute

$$
\begin{aligned}
& \left(\begin{array}{cc}
c_{1} & s_{1} \\
-s_{1} & c_{1}
\end{array}\right)\left[\begin{array}{l}
d_{1}^{2}-\mu \\
d_{1} f_{2}
\end{array}\right]=\binom{*}{0} \\
& \Rightarrow \text { pivot on } d_{1}^{2}-\mu \text { and zero out } d_{1} f_{2} \\
& \Rightarrow \text { apply } J_{21} \text { to } B \text { on the right where } J_{21}^{T}=\left(\begin{array}{cc}
c_{1} & s_{1} \\
-s_{1} & c_{1}
\end{array}\right. \\
& B \leftarrow B J_{21}=\left[\begin{array}{lllll}
d_{1} & f_{2} & & & \\
& d_{2} & f_{3} & & \\
& & & d_{n-1} & f_{n} \\
& & & & d_{n}
\end{array}\right]\left[\begin{array}{ccccc}
c_{1} & -s_{1} & & \\
s_{1} & c_{1} & & \\
& & 1 & \\
& & & 1
\end{array}\right] \\
& 1 \\
& 1) \\
& =\left[\begin{array}{ccccc}
d_{1} c_{1}+f_{2} s_{1} & -d_{1} s_{1}+f_{2} c_{1} & & & \\
d_{2} s_{1} & d_{2} c_{1} & f_{3} & & \\
& & d_{4} & & \\
& & & d_{n-1} & f_{n} \\
& & & & d_{n}
\end{array}\right] \text { w } \\
& \text { where } \square \Rightarrow \text { unwanted element }
\end{aligned}
$$

- Chase away unwanted element via $U_{1}^{T}=J_{21}^{T}$ etc...

Diagonalization of Bidiagonal - 4

- To illustrate the idea, consider the following 4×4 example

Example:

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
\times & \times & 0 & 0 \\
0 & \times & \times & 0 \\
0 & 0 & \times & \times \\
0 & 0 & 0 & \times
\end{array}\right] \frac{\text { implicit } \mathrm{Q}}{\text { step } V_{1}}\left[\begin{array}{cccc}
\times & \times & 0 & 0 \\
\square & \times & \times & 0 \\
0 & 0 & \times & \times \\
0 & 0 & 0 & \times
\end{array}\right] \frac{U_{1}^{T}}{}\left[\begin{array}{cccc}
\times & \times & + & 0 \\
0 & \times & \times & 0 \\
0 & 0 & \times & \times \\
0 & 0 & 0 & \times
\end{array}\right]\left[\begin{array}{cccc}
\times & \times & 0 & 0 \\
0 & \times & \times & 0 \\
0 & \square & \times & \times \\
0 & 0 & 0 & \times
\end{array}\right]} \\
& \xrightarrow[U_{2}^{T}]{ }\left[\begin{array}{cccc}
\times & \times & 0 & 0 \\
0 & \times & \times & \square \\
0 & 0 & \times & \times \\
0 & 0 & 0 & \times
\end{array}\right] \stackrel{V_{3}}{ }\left[\begin{array}{ccccc}
\times & \times & 0 & 0 \\
0 & \times & \times & 0 \\
0 & 0 & \times & \times \\
0 & 0 & \square & \times
\end{array}\right] \stackrel{U_{3}^{T}}{ }\left[\begin{array}{cccc}
\times & \times & 0 & 0 \\
0 & \times & \times & 0 \\
0 & 0 & \times & \times \\
0 & 0 & 0 & \times
\end{array}\right] \text { done! }
\end{aligned}
$$

\square In general:

$$
U_{n-1}^{T} \cdots U_{1}^{T} B V_{1} \ldots V_{n-1}=\bar{B}
$$

where \bar{B} is the new bidiagonal matrix and $\widetilde{V}_{\Sigma}=V_{1} \ldots V_{n-1}$
$V_{1}=$ implicit Q-step
since $\widetilde{V}_{\Sigma} \underline{e}_{1}=V_{\Sigma} \underline{e}_{1}$ where $V_{\Sigma}^{T} B^{T} B V_{\Sigma}=\Sigma$
$\Rightarrow \widetilde{V}_{\Sigma}=V_{\Sigma}$ from the implicit Q-theorem

What Happens If?

- Q: What happens when d_{k} or $f_{k+1}=0$?

$$
f_{k+1}=0 \Rightarrow B=\left[\begin{array}{cc}
B_{1} & 0 \\
0 & B_{2}
\end{array}\right]
$$

\Rightarrow so work with subproblems
$d_{k}=0 \Rightarrow$ apply a series of Given rotations to zero out f_{k+1}

$$
\left[\begin{array}{ccccc}
\mathrm{x} & \mathrm{x} & 0 & 0 & 0 \\
0 & \mathrm{x} & \mathrm{x} & 0 & 0 \\
0 & 0 & 0 & \mathrm{x} & 0 \\
0 & 0 & 0 & \mathrm{x} & \mathrm{x} \\
0 & 0 & 0 & 0 & \mathrm{x}
\end{array}\right] \xrightarrow{\boldsymbol{J}_{34}^{T}}\left[\begin{array}{ccccc}
\mathrm{x} & \mathrm{x} & 0 & 0 & 0 \\
0 & \mathrm{x} & \mathrm{x} & 0 & 0 \\
0 & 0 & 0 & 0 & \mathrm{x} \\
0 & 0 & 0 & \mathrm{x} & \mathrm{x} \\
0 & 0 & 0 & 0 & \mathrm{x}
\end{array}\right] \xrightarrow{J_{35}^{T}}\left[\begin{array}{ccccc}
\mathrm{x} & \mathrm{x} & 0 & 0 & 0 \\
0 & \mathrm{x} & \mathrm{x} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \mathrm{x} & \mathrm{x} \\
0 & 0 & 0 & 0 & \mathrm{x}
\end{array}\right]
$$

Overall Diagonalization Process

\square The above ideas can be summarized as the following:

- Golub-Kahan SVD step

$$
\begin{aligned}
& t_{n n}=d_{n}^{2}+f_{n}^{2} \\
& \mu=t_{n n}+\alpha+\operatorname{sign}(\alpha) \sqrt{\alpha^{2}+d_{n-1}^{2} f_{n-1}^{2}}=t_{n n}-\left(d_{n-1}^{2} f_{n}^{2}\right) /\left[\alpha+\operatorname{sign}(\alpha) \sqrt{\alpha^{2}+d_{n-1}^{2} f_{n-1}^{2}}\right] \\
& y=d_{i}^{2}-\mu, \quad z=d_{1} f_{2}
\end{aligned}
$$

$$
\text { For } k=1,2, \ldots, n-1 \quad \text { DO }
$$

- Determine $\left(c_{k} s_{k}\right)$ э

$$
\left(\begin{array}{ll}
y & z
\end{array}\right)\left(\begin{array}{cc}
c_{k} & -s_{k} \\
s_{k} & c_{k}
\end{array}\right)=\left(\begin{array}{ll}
* & 0
\end{array}\right) \quad, B \leftarrow B V_{k} \quad y=b_{k k}, z=b_{k+1, k}
$$

- Determine $\left(c_{k} s_{k}\right)$ э

$$
\begin{aligned}
& \left(\begin{array}{cc}
c_{k} & s_{k} \\
-s_{k} & c_{k}
\end{array}\right)\binom{y}{z}=\binom{*}{0} \quad B \leftarrow U_{k}^{T} B \\
& \text { if } k<n-1 \text { then } \\
& y=b_{k, k+1}, z=b_{k, k+2}
\end{aligned}
$$

end if

Putting it all Together

The overall SVD algorithm

- Compute QR factorization of $A \quad A=Q_{1}\left(\begin{array}{l}R_{1} \\ 0 \\ 0\end{array}\right)$

$$
\Rightarrow Q_{1}^{T} R_{1} V_{B}=B_{1} \quad \text { upper bidiagonal }
$$

- DO for ever

$$
U_{B}^{T}=\operatorname{Diag}\left(Q_{2}^{T}, I_{m-n}\right) Q_{1}^{T} \quad \text { or } U_{B}=Q_{1} \operatorname{Diag}\left(Q_{2}, I_{m-n}\right) \quad U_{B}^{T} A V_{B}=\left[\begin{array}{c}
B_{1} \\
0
\end{array}\right]=B
$$

$$
\text { set } a_{i, i+1} \text { to zero if }\left|a_{i, i+1}\right| \leq \varepsilon\left(\left|a_{i i}\right|+\left|a_{i+1, i+1}\right|\right) \text { for any } i=1, \ldots n-1
$$

- Find the largest q and smallest p э

$$
A=\left[\begin{array}{ccc}
A_{11} & 0 & 0 \\
0 & A_{22} & 0 \\
0 & 0 & A_{33} \\
0 & 0 & 0
\end{array}\right] \begin{gathered}
p \\
n-p-q \\
q \\
m-n
\end{gathered} \text { where } A_{33} \text { is diagonal and } A_{22} \text { has nonzero super diagonal, }
$$

if $\mathrm{q}=\mathrm{n}$, quit
else, if any diagonal entry of A_{22} is zero, zero the super diagonal entry in the same row else Apply Golub-Kahan SVD step to A_{22}

$$
A \leftarrow \operatorname{Diag}\left(I_{p}, U^{T}, I_{q+m+n}\right) A \operatorname{Diag}\left(I_{p}, V, I_{q}\right) \quad \text { end if }
$$

end if
end DO

Matrix Approximation

－SVD Properties and Applications：
－Approximation of a noisy matrix
－Suppose we have a noisy A matrix（e．g．，an image）and want to select a filtered A
－The need for such filtering occurs in image restoration， feature selection（also called subset selection problem）
$-\operatorname{Consider} A_{k}=\sum_{i=1}^{k} \sigma_{i} \underline{u}_{i} \underline{V}_{i}^{T}$

$$
\sigma_{k+1}=\left\|A-A_{k}\right\|_{2} \leq\|A-B\|_{2} \text { for any } B \ni \operatorname{rank}(B)=k
$$

\Rightarrow among all matrices of rank k, A_{k} is the closest to A ．
－Proof ：suppose B has rank k ．

```
    then can find \mp@subsup{\underline{x}}{k+1}{}\cdots\mp@subsup{\underline{x}}{n}{}\niN(B)=\operatorname{span}{\mp@subsup{\underline{x}}{k+1}{}\cdots\mp@subsup{\underline{x}}{n}{}}
    span {\mp@subsup{\underline{x}}{k+1}{}\ldots\mp@subsup{\underline{x}}{n}{}}\cap\operatorname{span}{\mp@subsup{\underline{v}}{1}{}\ldots\mp@subsup{\underline{v}}{k+1}{}}\not=0
    suppose \underline{z}\ni}\operatorname{span}{\mp@subsup{\underline{x}}{k+1}{}\cdots\mp@subsup{\underline{x}}{n}{}}\cap\operatorname{span}{\mp@subsup{\underline{v}}{1}{\ldots}\mp@subsup{\underline{v}}{k+1}{}
    and}|\mp@subsup{\underline{z}}{2}{}\mp@subsup{|}{2}{}=
    then B\underline{z}=0
```

$$
\begin{aligned}
& \quad A \underline{z}=\sum_{i=1}^{k+1} \sigma_{i}\left(\underline{\underline{i}}_{i}^{T} \underline{z}\right) \underline{u}_{i} \\
& \|A-B\|_{2}^{2} \geq\|(A-B) \underline{z}\|_{2}^{2}=\|A \underline{z}\|_{2}^{2}=\sum_{i=1}^{k+1} \sigma_{i}^{2}\left(\underline{v}_{i}^{T} \underline{z}\right)^{2} \geq \sigma_{k+1}^{2} \\
& \Rightarrow \text { minimum value when } B=\sum_{i=1}^{k} \sigma_{i} \underline{u}_{i} \underline{v}_{i}^{T}
\end{aligned}
$$

- Q: how to pick k ? we pick k э

$$
\begin{aligned}
& A=\sum_{\mathrm{i}=1}^{\mathrm{k}} \sigma_{\mathrm{i}} u_{i} \underline{v}_{i}^{T} \text {, where } k \ni \frac{\sigma_{k}}{\sigma_{k+1}} \text { is a large quantity } \\
& \Rightarrow \text { a sudden drop in singular values signifies rank deficiency }
\end{aligned}
$$

- Orthogonal "Procrustes" problem
- Suppose have an $m \times p$ matrix A from experiment 1 and have another $m \times p$ matrix B from experiment 2
- Q: Can I get A from B by rotation, i.e., is $A=B Q$?

$$
\begin{aligned}
& \min \|A-B Q\|_{F} \text { s.t } Q^{T} Q=I_{n} \\
& \min \operatorname{tr}\left(A^{T} A\right)+\operatorname{tr}\left(B^{T} B\right)-2 \operatorname{tr}\left(Q^{T} B^{T} A\right) \text { s.t } Q^{T} Q=I_{n}
\end{aligned}
$$

Orthogonal Procrustes Problem - 2

$$
\begin{aligned}
\Rightarrow & \max Q^{T} B^{T} A \\
& \text { s.t } Q^{T} Q=I_{n}
\end{aligned}
$$

- One way of finding Q involves letting U and V be orthogonal matrices such that
$U^{T} B^{T} A V=\Sigma=\operatorname{diag}\left(\sigma_{1} \sigma_{2} \ldots \sigma_{n}\right)$
$\operatorname{tr}\left(Q^{T} B^{T} A\right)=\operatorname{tr}\left(Q^{T} U \Sigma V^{T}\right)=\operatorname{tr}\left(V^{T} Q^{T} U \Sigma\right)=\operatorname{tr}(Z \Sigma)$
$=\sum_{i=1}^{p} \sigma_{i} z_{i i} \leq \sum_{i=1}^{p} \sigma_{i}$
\Rightarrow We achieve the upper bound when $z_{i i}=1, \mathrm{i}=1,2, \ldots n$
$\Rightarrow V^{T} Q^{T} U=I_{n}$ or $Q=U V^{T}$
- Alternatively, form the Lagrangian function

$$
\begin{aligned}
\Rightarrow & \operatorname{tr}\left(Q^{T} U \Sigma V^{T}\right)+\operatorname{tr}\left(\Lambda\left(I_{n}-Q^{T} Q\right)\right) / 2 \\
& U \Sigma V^{T}-Q \Lambda=0 \\
& Q^{T} U \Sigma V^{T}=\Lambda \quad \text { or }\left(I_{n}-Q Q^{T}\right) U \Sigma V^{T}=0
\end{aligned}
$$

solution : $Q=U V^{T}$, since $U \Sigma V^{T}-U V^{T} V U^{T} U \Sigma V^{T}=0$

$$
\Lambda=V \Sigma V^{T}>0
$$

Hessian $=-\Lambda \Rightarrow$ maximum at $Q=U V^{T}$

Intersection of Null Spaces - 1

- Recall that $N(A)=\{\underline{x} \mid A \underline{x}=0\}$
- Hence, finding a basis for $N(A) \cap N(B)$ implies

$$
m\binom{A}{p} \underline{x}=0 \Leftrightarrow \underline{x} \in N(A) \cap N(B)
$$

- One way of finding such a basis is:
- Perform SVD of $\binom{A}{B}=U_{A B} \Sigma V_{A B}^{T}$
$-\binom{A}{B} \underline{v}_{k}=0$ for $k=r+1, \ldots, n$
- Another way involves simpler steps
- Let $Z=\left(\underline{z}_{1} \ldots \underline{z}_{n-r}\right)=\left(\underline{v}_{r+1} \ldots \underline{v}_{n}\right)$ be an orthonormal basis for $N(A)$
- Find an orthonormal basis for $N(B Z)=\left(\underline{w}_{1} \ldots \underline{w}_{q}\right)=W$
where $W=n-r \times q$ matrix
- Then, columns of ($Z W$) form an orthonormal basis or $N(A) \cap N(B)$

Intersection of Null Spaces - 2

- Proof: Since $A Z=0$ and $B Z W=0$

$$
\begin{aligned}
& R(Z W) \in N(A) \cap N(B) \\
& \text { suppose } \underline{x} \in N(A) \cap N(B) \\
& \Rightarrow \underline{x}=Z \underline{\alpha}=\sum_{i=1}^{n} \alpha_{i} \underline{z}_{i} \text { for some nonzero } \alpha_{i} \\
& \text { since } \underline{0}=B \underline{x}=B Z \underline{\alpha} \\
& \quad \Rightarrow \underline{\alpha}=\sum_{i=1}^{q} b_{i} \underline{w}_{i}
\end{aligned}
$$

then
$\underline{x}=Z \underline{\alpha}=Z W \underline{b} \in R(Z W)$
So, found a basis for $N(A) \cap N(B)$

- To find basis $N(A) \cap N(B)$ find $N(A)$ and $N\left[B \operatorname{span}\left(\underline{\nu}_{r+1} \cdots \underline{v}_{n}\right)\right]$

Robust Control

Robust Control

- $U(s)=K(s)[\underline{r}-\underline{v}-\underline{y}]$
- $Y(s)=G(s) K(s)[\underline{r}-\underline{v}-\underline{y}]+\underline{d}$

$$
\Rightarrow Y(s)=[I+G(s) K(s)]^{-1} G(s) K(s)(\underline{R}(s)-\underline{V}(s))+[I+G(s) K(s)]^{-1} \underline{D}(s)
$$

- Assume for simplicity that $\underline{d}=\underline{v}=\underline{0}$

$$
\Rightarrow Y(s)=[I+G(s) K(s)]^{-1} G(s) K(s) R(s)=T_{C L}(s) R(s)
$$

- Consider an equivalent open loop system:

- $K_{o}(s)=(I+K G)^{-1} K$
- use $(I+G K)^{-1} G K=(I+K G)^{-1} K G$
$-K_{o}(s) G(s)=(I+G K)^{-1} G K=I-(I+G K)^{-1}=(I+K G)^{-1} K G \Rightarrow K_{o}(s)=(I+K G)^{-1} K$
- $Y(s)=T_{O L} R(s)$

Let us consider the sentivity of open-loop and closed-loop systems to changes in $G(s)$

Robust Control \& SVD

$-G(s) \rightarrow G(s)+\Delta G(s)=G^{\prime}(s)$
$-\Delta T_{C L}(s)=\left(I+G^{\prime} K\right)^{-1} \Delta T_{O L}(s)$
$-\left(I+G^{\prime} K\right)^{-1}$ is called inverse return difference operator

- For robustness, we want $\left(I+G^{\prime} K\right)^{-1}$ "small"
- Single-input single-output (SISO) systems
$-|1+G(j \omega) K(j \omega)|$ large for all $\omega \leq \omega_{0}$ where ω_{0} is active frequency range
- Larger return difference (RD)
=> greater robustness to parameter variations
- Multi-input multi-output (MIMO) systems
- Make $\sigma_{\max }[I+G(j \omega) K(j \omega)]^{-1}$ small (or)

Make $\sigma_{\text {min }}[I+G(j \omega) K(j \omega)]$ large
Large RD => large loop gains GK => tight loops =>good performance

Key Tradeofis in Robust Control

- Note: Output due to $\underline{v} \Rightarrow(I+G K)^{-1} G K V(s)$
\Rightarrow errors due to \underline{v} pass through, if $G K$ is large
- Note: $U(s)=K(s)(I+G K)^{-1}(R(s)-V(s)-Y(s))$

$$
\approx \mathrm{G}^{-1}(\underline{r}-\underline{v}-\underline{y})
$$

\Rightarrow so, for some ω э $\sigma_{\text {max }}(G(j \omega)) \ll 1$, we get amplification of command inputs and measurement noise.

- Key robust control system design tradeoffs

Control saturation
Sensor noise amplification
Disturbance reduction
\square For more information read:
Doyle and Stein, T-AC Feb. 1981 and papers on robustness and H_{∞} - designs in Transactions on Automatic Control.

