Lecture 12

Linear Quadratic Regulator (LQR) Control

Prof. Krishna R. Pattipati
 Assisted by : Kihoon Choi

Dept. of Electrical and Computer Engineering
University of Connecticut
Contact: krishna@engr.uconn.edu (860) 486-2890

ECE 6095-4121
 Dynamic Modeling and Control of Mechatronic Systems

LQR Controllers

1. Lyapunov Stability Theory

- Main theorem for linear systems

2. Numerical Solution of Lyapunov Equation
3. Constructive Application of Lyapunov Theorem

- System stabilization
- Lyapunov ("bang-bang") controller
- Examples

4. Least Squares Optimization

- Problem definition
- Optimization algorithm
- Discrete Riccati equation
- Frequency-weighted LQR (Full-state feedback)
- Properties of optimal control system (robustness, asymptotic properties)

5. Examples/Applications

- $\mathrm{k} / \mathrm{s}^{2}$, Inverted pendulum

6. Rate Weighting

- Examples
- Incorporation of time-delay

7. Mini-max and \mathbf{H}_{∞} Controller

- Mini-max differential game
- \quad Synthesizing mini-max controllers

Lyapunov Stability Theory - Preliminaries

- A general theory for studying stability of linear and nonlinear systems
- Developed ~ 1900; advanced in USA ~ 1960.
- We consider only linear case here.
- A useful lead-in to optimal control.
- Quadratic forms

$$
v(\underline{\mathrm{x}})=\underline{\mathrm{x}}^{\prime} \mathrm{P} \underline{\mathrm{x}}=\mathrm{p}_{11} \mathrm{x}_{1}^{2}+2 \mathrm{p}_{12} \mathrm{x}_{1} \mathrm{x}_{2}+\cdots+\mathrm{p}_{\mathrm{nn}} \mathrm{X}_{\mathrm{n}}^{2}
$$

is a quadratic form on \underline{x} if P is positive definite.
An $n x n$ matrix P is positive definite $(P>0)$ if
(i) $\underline{x}^{\prime} P \underline{x} \geq 0$ for any $\underline{x} \in R^{n}$
(ii) $\underline{x}^{\prime} P \underline{x}=0$ if and only if $\underline{x}=0$
(iii) $\overline{\mathrm{P}}=\mathrm{P}^{\prime}$ (i.e., symmetric)

- Some properties of a positive definite (PD) matrix

Useful $\rightarrow 1$ - all eigenvalues real, $>0 \Rightarrow \mathrm{P}^{-1}$ exists tests 2 - eigenvectors are orthogonal, $\xi_{i} \xi_{j}=0, i \neq j$
$\rightarrow 3$ - can find S with $S^{\prime} S=P$ (e.g., Cholesky decomposition) with S invertible 4 - for any \underline{x},

$$
0<\lambda_{\min }(\mathrm{P}) \underline{x^{\prime}} \underline{x} \leq \underline{x}^{\prime} \mathrm{P} \underline{x} \leq \lambda_{\max }(\mathrm{P}) \underline{\mathrm{x}}^{\prime} \underline{x}
$$

- The equation $\underline{x}^{\prime} P \underline{x}=c$ defines an ellipsoid in R^{n}
- Ellipsoid axes aligned with $\left\{\xi_{i}\right\}$
- Length of semi-major/minor axes $=\sqrt{c / \lambda_{i}}$

$$
v(\underline{\mathrm{x}})=\underline{\mathrm{x}}^{\prime} \mathrm{P} \underline{\mathrm{x}}=\mathrm{c}
$$

Application to Stability Analysis

- Study stability of unforced system

$$
\begin{aligned}
\underline{\mathrm{x}}(\mathrm{k}+1) & =\Phi \underline{\mathrm{x}}(\mathrm{k})+\Gamma \underline{\mathrm{u}}(\mathrm{k}) \\
\underline{\mathrm{x}}(0) & =\text { initial state }
\end{aligned}
$$

- Suppose we found a quadratic form $v(\underline{\mathrm{x}})=\underline{\mathrm{x}}^{\prime} \mathrm{P} \underline{\mathrm{x}}$ such that when we monitor $v[\underline{\mathrm{x}}(\mathrm{k})]$ at any sequence of increasing k :

$v(\underline{\mathrm{x}})=\mathrm{c}_{0}=$ locus of all $\underline{\mathrm{x}}$ such that $\underline{\mathrm{x}} \mathrm{P} \underline{\mathrm{x}}=\mathrm{c}_{0}$ => state is on this contour @ $\mathrm{k}=0$
$v(\underline{\mathrm{x}})=\mathrm{c}_{1} \Rightarrow$ state lies somewhere on this contour @ $\mathrm{k}=1$
Implication: $\underline{\mathrm{x}}(\mathrm{k}) \rightarrow \underline{0}$ as $\mathrm{k} \rightarrow \infty$
- Result -

If we can find a positive scalar (quadratic) function $v(\underline{\mathrm{x}})$ such that $v(\underline{\mathrm{x}})$ is always decreasing, i.e., if $\mathrm{k}_{2}>\mathrm{k}_{1}, v\left(\underline{\mathrm{x}}\left(\mathrm{k}_{2}\right)\right)<v\left(\underline{\mathrm{x}}\left(\mathrm{k}_{1}\right)\right)$ then $\underline{\mathrm{x}}(\mathrm{k}) \rightarrow \underline{0}$.

- Such a $v(\underline{x})$ is called a Lyapunov Function.
- Analogous to a generalized "stored energy".

Main Theorem for Linear Systems

- Existence of a Lyapunov function $==>$ stability and vice-versa
- Consider $v(\underline{x})=\underline{\mathrm{x}}^{\prime} \mathrm{Px}, \mathrm{P}>0$, determine

$$
\Delta v(\underline{\mathrm{x}})=v(\underline{\mathrm{x}}(\mathrm{k}+1))-v(\underline{\mathrm{x}}(\mathrm{k}))
$$

along the system response trajectory $\underline{\mathrm{x}}(\mathrm{k}+1)=\Phi \underline{\mathrm{x}}(\mathrm{k})$

$$
\Delta v(\underline{\mathrm{x}})=\underline{\mathrm{x}}^{\prime}(\mathrm{k}) \Phi^{\prime} \mathrm{P} \Phi \underline{\mathrm{x}}(\mathrm{k})-\underline{\mathrm{x}}^{\prime}(\mathrm{k}) \mathrm{P} \underline{\mathrm{x}}(\mathrm{k})=-\underline{\mathrm{x}}^{\prime}(\mathrm{k}) \underbrace{\left[\mathrm{P}-\Phi^{\prime} \mathrm{P} \Phi\right]}_{\mathrm{Q}} \underline{\mathrm{x}}(\mathrm{k})
$$

- if $\mathrm{Q}>0, v(\underline{\mathrm{x}}) \downarrow$ and $\underline{\mathrm{x}}(\mathrm{k}) \rightarrow \underline{0}$. But, if $\mathrm{Q} \gg 0$ no conclusions can be drawn.
\Rightarrow Use reverse procedure. Pick $\mathrm{Q}>0$ and solve
then

$$
\begin{equation*}
\mathrm{P}=\Phi^{\prime} \mathrm{P} \Phi+\mathrm{Q} \tag{LEqn}
\end{equation*}
$$

Theorem: $\underline{\mathrm{x}}(\mathrm{k}+1)=\Phi \underline{\mathrm{x}}(\mathrm{k})$ is stable if and only if given any positive definite Q , the solution P of the equation $\mathrm{P}=\Phi^{\prime} Р \Phi+\mathrm{Q}$ is positive definite.

- LEqn represents a set of $n(n+1) / 2$ linear equations:
- Expand RHS term Ф'РФ
- Solve for $\mathrm{p}_{\mathrm{ij}}=\mathrm{p}_{\mathrm{ji}}$ for $\mathrm{i}=1, \ldots, \mathrm{n} ; \mathrm{j}=\mathrm{i}, \ldots, \mathrm{n}$
- Solution exists provided $\lambda_{\mathrm{i}}(\Phi) \lambda_{\mathrm{j}}(\Phi) \neq 1$
- Test if P is positive definite
- A slightly weaker condition is Q positive semidefinite ($Q \geq 0$), as long as $\underline{x}^{\prime} Q x \neq 0$ along a system response trajectory.

Practical Use of Lyapunov Theorem

1. To test stability of Φ, pick a $\mathrm{Q}>0$ and solve for P . If P is not positive definite, system is unstable. If $P>0$, is stable. Need only do this for one Q.
Not very practical (there are easier ways to test stability).
But useful in developing/proving further results . . .
2. If system is stable, Theorem gives an easy way to find a Lyapunov function. Pick any $\mathrm{Q}>0$ (e.g., $\mathrm{Q}=\beta \mathrm{I}$) and solve LEqn for P . Then $v(\underline{x})=\underline{x} \underline{x}^{\prime} \underline{x}$ is a Lyapunov function, and $\Delta v(\underline{\mathrm{x}})=-\underline{\mathrm{x}}^{\prime} \mathrm{Q} \underline{\mathrm{x}}$. Different Q yield different P .

- Our major efforts will involve finding a $v(\underline{\mathrm{x}})$ for a stable system, and using it to develop a SVFB control.
Ex.

$$
\underline{\mathrm{x}}(\mathrm{k}+1)=\left[\begin{array}{rr}
0.2 & -0.2 \\
0.1 & 0.5
\end{array}\right] \underline{\mathrm{x}}(\mathrm{k}) ; \text { pick } \mathrm{Q}=\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]
$$

Solve $\mathrm{P}=\Phi^{\prime} \mathrm{P} \Phi+\mathrm{Q}$

$$
\begin{aligned}
& {\left[\begin{array}{ll}
\mathrm{p}_{11} & \mathrm{p}_{12} \\
\mathrm{p}_{12} & \mathrm{p}_{22}
\end{array}\right]=\left[\begin{array}{rr}
0.2 & 0.1 \\
-0.2 & 0.5
\end{array}\right]\left[\begin{array}{ll}
\mathrm{p}_{11} & \mathrm{p}_{12} \\
\mathrm{p}_{12} & \mathrm{p}_{22}
\end{array}\right]\left[\begin{array}{rr}
0.2 & -0.2 \\
0.1 & 0.5
\end{array}\right]+\left[\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right]} \\
& =\left[\begin{array}{lll}
0.04 \mathrm{p}_{11}+0.04 \mathrm{p}_{12}+0.01 \mathrm{p}_{22}+2 & -0.04 \mathrm{p}_{11}+0.08 \mathrm{p}_{12}+0.05 \mathrm{p}_{22} \\
-0.04 \mathrm{p}_{11}+0.08 \mathrm{p}_{12}+0.05 \mathrm{p}_{22} & 0.04 \mathrm{p}_{11}-0.2 \mathrm{p}_{12}+0.25 \mathrm{p}_{22}+2
\end{array}\right] \\
& \left.\begin{array}{l}
0.96 \mathrm{p}_{11}-0.04 \mathrm{p}_{12}-0.01 \mathrm{p}_{22}=2 \\
0.04 \mathrm{p}_{11}+0.92 \mathrm{p}_{12}-0.05 \mathrm{p}_{22}=0 \\
-0.04 \mathrm{p}_{11}+0.2 \mathrm{p}_{12}+0.75 \mathrm{p} 22=2
\end{array}\right\} \Rightarrow \mathrm{p}_{22}=2.1146 . \mathrm{p}_{12}=0.0583, \mathrm{p}_{11}=2.7639 \\
& \text { and } \underline{x^{\prime}} \mathrm{P} \underline{x}=\mathrm{p}_{11} \mathrm{x}_{1}{ }^{2}+2 \mathrm{p}_{12} \mathrm{x}_{1} \mathrm{x}_{2}+\mathrm{p}_{22} \mathrm{x}_{2}{ }^{2} \text { is a Lyapunov function. }
\end{aligned}
$$

Numerical Solution of the Lyapunov Equation

- Setting up and solving the $\mathrm{n}(\mathrm{n}+1) / 2$ system is not practical
- Requires $0\left(n^{6}\right)$ operations for large n
- Desire an algorithm requiring $0\left(\mathrm{n}^{3}\right)$ operations
- If $\left|\lambda_{i}(\Phi)\right|<1$, i.e., system is stable, $\mathrm{P}=\sum_{\mathrm{i}=0}^{\infty}\left(\Phi^{\prime}\right)^{\mathrm{i}} \mathrm{Q} \Phi^{\mathrm{i}}$
satisfies $\mathrm{P}=\Phi^{\prime} \mathrm{P} \Phi+\mathrm{Q}$ (check by direct substitution)
- if system is unstable, sum diverges $\rightarrow \infty$
- An efficient way to sum the series

- Doubling algorithm

- P is monotone increasing $\mathrm{P}_{\mathrm{k}}=\mathrm{P}_{\mathrm{k}-1}+(\mathrm{a}$ Positive Definite matrix $)$
- Stop when $\mathrm{P}_{\mathrm{k}} \approx \mathrm{P}_{\mathrm{k}-1}$ or when diagonals $\left(\mathrm{p}_{\mathrm{ii}}\right)_{\mathrm{k}} \approx\left(\mathrm{p}_{\mathrm{ii}}\right)_{\mathrm{k}-1} \quad \mathrm{i}=1, \ldots, \mathrm{n}$

Algorithm to Solve Lyapunov Equation, Dlineq

- Imbed a stability test if P $\rightarrow \infty$

- Algorithm generally converges in $\mathrm{K} \sim 10$ iterations
- Requires ~ K x (2.5) n^{3} MADD operations
- When $K=10$, P has $1024=2^{10}$, terms, and $\left\|\Phi^{1024}\right\|<10^{-5}$ provided all $\left|\lambda_{i}(\Phi)\right|<0.99$
- Extremely versatile algorithm

Constructive Application of Lyapunov Theorem to SVFB Kleinman, IEEE Transactions AC,

 June, 1974)- If $\underline{\mathrm{x}}(\mathrm{k}+1)=\Phi \underline{\mathrm{x}}(\mathrm{k})+\Gamma \underline{\mathrm{u}}(\mathrm{k})$ is completely controllable, $\underline{\mathrm{u}}(\mathrm{k})=-\mathrm{K}_{0} \underline{\mathrm{x}}(\mathrm{k})$ results in a stable closed-loop system where,
$\mathrm{K}_{0}=\Gamma^{\prime} \mathrm{W}_{\mathrm{M}}{ }^{-1} \Phi ; \mathrm{M}$ is arbitrary $\geq \mathrm{n}$

$$
\mathrm{W}_{\mathrm{M}}=\sum_{\mathrm{i}=0}^{\mathrm{M}} \Phi^{-\mathrm{i}} \Gamma \Gamma^{\prime}\left(\Phi^{\prime}\right)^{-\mathrm{i}}>0 \text { via controllability }
$$

- Outline of proof (let $\tilde{\Phi} \triangleq \Phi-Ф Г \Gamma^{\prime} \mathrm{W}_{\mathrm{M}}{ }^{-1}$)

1. Since $\Phi \mathrm{W}_{\mathrm{M}} \Phi^{\prime}=\mathrm{W}_{\mathrm{M}}+\Phi \Gamma^{\prime} \Phi^{\prime}-\Phi^{-\mathrm{M}} \Gamma \Gamma^{\prime}\left(\Phi^{\prime}\right)^{-\mathrm{M}}$ show

$$
\mathrm{W}_{\mathrm{M}}=\tilde{\Phi} \mathrm{W}_{\mathrm{M}} \tilde{\Phi}^{\prime}+\Phi \Gamma\left[\mathrm{I}-\Gamma^{\prime} \mathrm{W}_{\mathrm{M}}^{-1} \Gamma\right] \Gamma^{\prime} \Phi^{\prime}+\Phi^{-\mathrm{M}} \Gamma \Gamma^{\prime}\left(\Phi^{\prime}\right)^{-\mathrm{M}}
$$

2. $\mathrm{I}-\Gamma^{\prime} \mathrm{W}_{\mathrm{M}}^{-1} \Gamma=\mathrm{I}-\Gamma^{\prime}[\underbrace{\Gamma \Gamma^{\prime}+\Phi^{-1} \mathrm{~W}_{\mathrm{M}-1}\left(\Phi^{\prime}\right)^{-1}}_{\mathrm{W}_{\mathrm{M}}}]^{-1}{ }^{-} \Gamma \triangleq \mathrm{Q}_{1}$
3. Via matrix inversion lemma, $\mathrm{Q}_{1}=\left[\mathrm{I}+\Gamma^{\prime} \Phi^{\prime} \mathrm{W}_{\mathrm{M}-1}^{-1} \Phi \Gamma\right]^{-1} \Rightarrow \mathrm{Q}_{1}>0$
4. Establish that $\underline{x}^{\prime} W_{M} \underline{x}$ is a Lyapunov function for $\tilde{\Phi}^{\prime}$

$$
\mathrm{W}_{\mathrm{M}}=\tilde{\Phi} \mathrm{W}_{\mathrm{M}} \tilde{\Phi}^{\prime}+\Phi \Gamma \mathrm{Q}_{1} \Gamma^{\prime} \Phi^{\prime}+\Phi^{-\mathrm{M}} \Gamma \Gamma^{\prime}\left(\Phi^{\prime}\right)^{-\mathrm{M}}
$$

by showing that $\underline{x}^{\prime} \Phi \Gamma \mathrm{Q}_{1} \Gamma^{\prime} \Phi^{\prime} \underline{\underline{x}}>0$ along system response trajectory $\underline{x}(\mathrm{k}+1)=\widetilde{\Phi}^{\prime} \underline{\underline{x}}(\mathrm{k})$ [OK if system is controllable].
5. By Lyapunov $\widetilde{\Phi}^{\prime}$, and hence $\widetilde{\Phi}$, has all eigenvalues with $\left|\lambda_{i}(\widetilde{\Phi})\right|<1$
6. $\widetilde{\Phi}=\Phi(\Phi-\Gamma \underbrace{\Gamma \Gamma^{\prime} \mathrm{W}_{-1}^{-1}}_{\mathrm{K}_{0}} \Phi) \Phi^{-1} \Rightarrow \widetilde{\Phi}$ and $\Phi-\Gamma \mathrm{K}_{0}$ have the same eigenvalues

- Corollary: If the system is not completely controllable, $u=-\Gamma^{\prime} \mathrm{W}_{\mathrm{M}}{ }^{\dagger} \Phi \underline{\underline{x}}$ (\dagger denotes pseudo inverse) will stabilize the controllable modes.

Discussion of Stabilization

Result: $\mathrm{K}_{0}=\Gamma^{\prime} \mathrm{W}_{\mathrm{M}}{ }^{-1} \Phi$

- Applicable to multi-input systems, $\Gamma=\Psi B \rightarrow \mathrm{n} \times \mathrm{m}$ matrix $\mathrm{K}_{0}=\mathrm{m} \times \mathrm{n}$ gain matrix ($\mathrm{m}=$ number of inputs)
- If $\mathrm{R}=$ arbitrary mx m positive definite matrix

$$
\mathrm{K}_{0}=-\mathrm{R}^{-1} \Gamma^{\prime} \mathrm{W}_{\mathrm{R}, \mathrm{M}}{ }^{-1} \Phi \text { is stabilizing }
$$

where

$$
\mathrm{W}_{\mathrm{R}, \mathrm{M}}=\sum_{\mathrm{i}=0}^{\mathrm{M}} \Phi^{-\mathrm{i}} \Gamma \mathrm{R}^{-1} \Gamma^{\prime}\left(\Phi^{\prime}\right)^{-\mathrm{i}}
$$

- gives additional degrees of freedom
- Alternate representation

$$
\begin{aligned}
& \mathrm{K}_{0}=\left(\mathrm{R}+\Gamma^{\prime} \mathrm{V}_{\mathrm{R}, \mathrm{M}-1} \Gamma\right)^{-1} \Gamma^{\prime} \mathrm{V}_{\mathrm{R}, \mathrm{M}-1} \Phi \\
& \mathrm{~V}_{\mathrm{R}, \mathrm{M}-1}=\Phi^{\prime} \mathrm{W}_{\mathrm{R}, \mathrm{M}-1}^{-1} \Phi
\end{aligned}
$$

- Computing $\mathrm{V}_{\mathrm{R}, \mathrm{M}-1}$

$$
\mathrm{V}_{\mathrm{R}, \mathrm{M}-1}=\Phi^{\prime} \mathrm{W}_{\mathrm{R}, \mathrm{M}-1}-1 \Phi=\left(\Phi^{\prime}\right)^{\mathrm{M}}\left[\sum_{\mathrm{i}=0}^{\mathrm{M}-1} \Phi^{\mathrm{i}} \Gamma \mathrm{R}^{-1} \Gamma^{\prime}\left(\Phi^{\prime}\right)^{\mathrm{i}}\right]^{-1} \Phi^{\mathrm{M}}
$$

1. Pick $\mathrm{M}=2^{\mathrm{p}} \geq \mathrm{n}$ (best to pick min p such that $2^{\mathrm{p}}>\mathrm{n}$)
2. Go through doubling algorithm p times: $\Phi \rightarrow \Phi^{\prime}, \mathrm{Q}=\Gamma \mathrm{R}^{-1} \Gamma^{\prime}$

$$
\mathrm{P}=\sum_{\mathrm{i}=0}^{2^{\mathrm{P}}-1} \Phi^{\mathrm{i}} \mathrm{Q}\left(\Phi^{\prime}\right)^{\mathrm{i}} ; \quad \mathrm{X}=\left(\Phi^{\prime}\right)^{2^{\mathrm{P}}}
$$

3. Use Cholesky decomposition $\mathrm{P}=\mathrm{S}^{\prime} \mathrm{S}$, then $\mathrm{V}_{\mathrm{R}, \mathrm{M}-1}=\left(\mathrm{XS}^{-1}\right) \cdot\left(\mathrm{XS}^{-1}\right)^{\prime}$

- CL eigenvalues are inside unit circle , but otherwise unspecified.
- Not a design method for feedback control, rather a starting point.

Examples of System
 Stabilization, Scalar u, R=1(Cont'd)

- Inverted pendulum on cart, $\mathrm{h}=0.18$

$$
\mathrm{A}=\left[\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
11 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0
\end{array}\right], \quad \mathrm{B}=\left[\begin{array}{r}
0 \\
-1 \\
0 \\
1
\end{array}\right] \rightarrow \Phi=\left[\begin{array}{rrrr}
1.18 & 0.19 & 0 & 0 \\
2.10 & 1.18 & 0 & 0 \\
-.017 & -.001 & 1 & .18 \\
-.19 & -.017 & 0 & 0
\end{array}\right], \quad \Gamma=\left[\begin{array}{r}
-.017 \\
-.19 \\
.016 \\
.181
\end{array}\right]
$$

Continuous system's open-loop poles @ $0,0, \pm \sqrt{11}$
Pick $\mathrm{M}=8=2^{3}: \mathrm{K}_{0}=\left[\begin{array}{llll}-47.4 & -14.7 & -6.89 & -6.75\end{array}\right]$
CL poles of $\Phi-\Gamma \mathrm{K}_{0}= \begin{cases}0.57 \pm \mathrm{j} 0.30 & \left(\zeta=0.67, \omega_{\mathrm{n}}=3.62\right) \\ 0.48 \pm \mathrm{j} 0.065 & \left(\zeta=0.98, \omega_{\mathrm{n}}=4.08\right)\end{cases}$
with decreased $\mathrm{M}=5$:
$\frac{\text { with decreased M }=5:}{\mathrm{K}_{\mathrm{o}}=[-87.9-26.7-25.8-17.0]} \rightarrow\left\{\begin{array}{l}0.31 \pm \mathrm{j} 0.39\left(\zeta=0.61, \omega_{\mathrm{n}}=6.3\right) \\ 0.34 \pm \mathrm{j} 0.10\left(\zeta=0.97, \omega_{\mathrm{n}}=6.0\right)\end{array}\right.$
=> as M increases, K_{o} decreases and we get slower CL response

Lyapunov Controllers

- Consider a stable SISO system with bounded control

$$
\underline{\mathrm{x}}(\mathrm{k}+1)=\Phi \underline{\mathrm{x}}(\mathrm{k})+\Gamma \mathrm{u}(\mathrm{k}) ;|\mathrm{u}(\mathrm{k})| \leq \mathrm{c}_{1}
$$

- Obtain a Lyapunov function $v(\underline{\mathrm{x}})=\underline{\mathrm{x}}^{\prime} \mathrm{P} \underline{\mathrm{x}}$ for free part

$$
\mathrm{P}=\Phi^{\prime} \mathrm{P} \Phi+\mathrm{Q}
$$

$\mathrm{Q}=$ arbitrary PD matrix

- Along trajectory of controlled system,

$$
\Delta v(\underline{x})=\underline{x}^{\prime}(\mathrm{k}+1) \mathrm{P} \underline{\mathrm{x}}(\mathrm{k}+1)-\underline{\mathrm{x}}^{\prime}(\mathrm{k}) P \underline{\mathrm{x}}(\mathrm{k})=\underline{\mathrm{x}}^{\prime}(\mathrm{k})[\overbrace{\left.\Phi^{\prime} \mathrm{P} \Phi-\mathrm{P}\right]}] \mathrm{x}^{\prime}(\mathrm{k})+2 \mathrm{u}(\mathrm{k}) \Gamma^{\prime} \mathrm{P} \Phi \underline{\mathrm{x}}(\mathrm{k})+\mathrm{u}^{2}(\mathrm{k}) \Gamma^{\prime} \mathrm{P} \Gamma
$$

- Idea: Pick $u(k)$ to drive $\underline{x}(k) \rightarrow \underline{0}$ even faster than open-loop.

Make $\Delta v(\underline{\mathrm{x}})$ as negative as possible. Set $\partial[\Delta v(\underline{\mathrm{x}})] / \partial \mathrm{u}(\mathrm{k})=0$:
$-\mathrm{u}(\mathrm{k})=-\left(\Gamma^{\prime} \mathrm{P}\right)^{-1} \Gamma^{\prime} \mathrm{P} \mathrm{\Phi} \mathrm{\underline{x}(k)}$ if $|\mathrm{u}(\mathrm{k})|<\mathrm{c}_{1}$
$-u(k)=-c_{1} \cdot \operatorname{sgn}\left[\left(\Gamma^{\prime} P \Gamma\right)^{-1} \Gamma^{\prime} P \Phi \underline{x}(k)\right]$ if $|u(k)| \geq c_{1}$

- Algorithm: $\mathrm{K}=\left(\Gamma^{\prime} Р Г\right)^{-1} \Gamma^{\prime} Р \Phi$

1. Compute $\mathrm{w}=-\mathrm{K} \underline{\mathrm{x}}(\mathrm{k})$
2. If $|w|<c_{1}$ set $u(k)=w$, else $u(k)=c_{1} \operatorname{sgn}(w)$

- As $\mathrm{h} \rightarrow 0, \mathrm{u}(\mathrm{k}) \rightarrow$ "bang-bang" controller; $\mathrm{u}(\mathrm{k})= \pm \mathrm{c}_{1}$
- Different $\mathrm{Q} \rightarrow$ different P and $\mathrm{K} \Rightarrow \mathrm{Q}=$ "design" parameters

$$
\Delta v(\underline{\mathrm{x}})=-\underline{\mathrm{x}}^{\prime}\left[\mathrm{Q}+\Phi^{\prime} \mathrm{P} \Gamma\left(\Gamma^{\prime} \mathrm{P} \Gamma\right)^{-1} \Gamma^{\prime} \mathrm{P} \Phi\right] \underline{\mathrm{x}} \quad \text { in linear region }
$$

- Does increasing $q_{i i}$ speed up the response?, i.e., drive $x_{i} \rightarrow 0$ faster

Example - Lightly Damped System

$\dot{\dot{x}}=\left[\begin{array}{cc}0 & 1 \\ -10 & -0.5\end{array}\right] \underline{x}+\left[\begin{array}{c}0 \\ 10\end{array}\right] u, y=\left[\begin{array}{cc}1 & 0\end{array}\right] \underline{x} ;$ open-loop $\zeta \approx .08, \omega_{n}=\sqrt{10} ; \quad \underline{x}(0)=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\prime}$

- Open-loop system response

- Lyapunov digital design, $\mathrm{h}=\frac{0.5}{\left|\lambda_{\text {max }}(\mathrm{A})\right|} \approx 0.15$

$$
\begin{aligned}
\text { Pick } \mathrm{Q} & =\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] \Rightarrow \mathrm{P}=\left[\begin{array}{cc}
74.0 & 0.448 \\
0.448 & 7.85
\end{array}\right] \\
\mathrm{K} & \left.=\left(\Gamma^{\prime} \mathrm{P} \Gamma\right)^{-1} \Gamma^{\prime} \mathrm{P} \Phi=\left[\begin{array}{ll}
-0.469 & 0.631
\end{array}\right] \Rightarrow \text { \{poles of } \Phi-\Gamma \mathrm{K} @ 0,0.887\right\}
\end{aligned}
$$

- Response with unconstrained u (dominant 1st order mode)

Constrained Response, $\underline{x}(0)=\left[\begin{array}{ll}1 & 0\end{array}\right]^{\prime}$

- $|\mathrm{u}(\mathrm{k})| \leq 0.30$

- $|\mathrm{u}(\mathrm{k})| \leq 0.15$

- "Bang-bang" behavior until $|\mathrm{K} \underline{\mathrm{x}}(\mathrm{k})| \leq \mathrm{c}_{1}$, whereupon closed-loop linear response takes over.
- Modification of $\mathrm{q}_{11}, \mathrm{q}_{22}$ has small effect on response.

General comments:

- System must be open-loop stable to compute P
- Very little control over time response or poles
- Lyapunov controller useful in cases where h ~ large
- Applicable to multi-input case, $u_{i}=-c_{i} \operatorname{sat}\left[K_{i} \underline{x}(k) / c_{i}\right]$
- Assures CL system stability even when control is limited - not necessarily true in other SVFB design approaches.

Introduction to Least Squares Optimization

$$
\begin{aligned}
\underline{\mathrm{x}}(\mathrm{k}+1) & =\Phi \underline{\mathrm{x}}(\mathrm{k})+\Gamma \underline{\mathrm{u}}(\mathrm{k}) ; \quad \underline{\mathrm{x}}(0)=\text { initial state } \\
\mathrm{u}(\mathrm{k}) & =\text { unconstrained }
\end{aligned}
$$

- Objective: Determine a SVFB control $\underline{u}(k)=-\operatorname{Kx}(k)$ so that $\underline{x}(k) \rightarrow \underline{0}$ "nicely" => stability and more
- Pole placement approach
- Don't necessarily know where good $\lambda_{i}(\bar{\Phi})$ pole locations are
- Resulting system may have low \mid RD \mid or ϕ_{m}
- Needed gains often too big ==> need to manage $|\underline{\mathrm{u}}(\mathrm{k})|$
- Optimal control approach
- Express mathematically what you are trying to achieve
(1) Each $\mathrm{x}_{\mathrm{i}}(\mathrm{k}) \rightarrow 0$ nicely: consider minimizing

$$
I S E=\sum_{k=0}^{\infty} q_{11} x_{1}^{2}(k)+\cdots+q_{n n} x_{n}^{2}(k)=\sum_{k=0}^{\infty} \underline{x}^{T}(k) Q \underline{x}(k)
$$

$\mathrm{q}_{\mathrm{ii}} \sim$ scale factors to weight relative importance of different errors, $\mathrm{q}_{\mathrm{ii}} \geq 0$
$\mathrm{Q}=$ positive (semi) definite, usually diagonal
(2) Don't want $\mathrm{u}(\mathrm{k})$ to be too large: conserve energy $\mathrm{E}=\sum_{k=0}^{\infty} \underline{u}^{T}(k) R \underline{u}(k)$
(3) Combine into a composite criterion, $\mathrm{J}=\mathrm{ISE}+\mathrm{E}$

$$
J=\sum_{k=0}^{\infty}\left[\underline{x}^{T}(k) Q \underline{x}(k)+\underline{u}^{T}(k) R \underline{u}(k)\right]
$$

$\mathrm{R}>0$ adjusts tradeoff between speed of response and magnitude of control input.

General Comments

- Linear quadratic (LQ) optimal control problem

Find $\mathbf{u}(\mathrm{k})=-\mathrm{K} \underline{\mathrm{x}}(\mathrm{k})$ to minimize $J=\sum_{k=0}^{\infty}\left[\underline{x}^{T}(k) Q \underline{x}(k)+\underline{u}^{T}(k) R \underline{u}(k)\right] ; Q \geq 0 ; R>0$

- General quadratic cost functional
- Historical use (from Gauss, Wiener, Kalman, etc.)
- Physical appeal: larger deviations from nominal are weighted more heavily
- Physical interpretation: energy is generally $\sim x_{i}{ }^{2}, u_{i}{ }^{2}$
- Mathematically tractable ("easy" to take $\partial / \partial \mathrm{K}$)
- Most overworked problem in modern control theory
- Properties of J
- $\mathbf{J} \geq 0$, zero only if $\underline{x}(0)$ is such that free response satisfies $\underline{x}^{\prime}(0)\left(\Phi^{\prime}\right)^{k} Q(\Phi)^{k} \underline{x}(0) \equiv 0$
- Any feedback control that gives a finite value to J must necessarily be stabilizing
- If $\mathrm{R}=0$, "optimal" control would try to place CL poles at $\mathrm{z}_{\mathrm{i}} \rightarrow 0$ (drive $\underline{x}(0) \rightarrow \underline{0}$ as fast as possible)
Special case: if only concerned about output deviations, consider minimizing

$$
\begin{aligned}
& \text { sider minimizing } \mathrm{J}=\sum_{\mathrm{k}=0}^{\infty} \underline{\mathrm{y}}^{T}(\mathrm{k}) \mathrm{Q}_{1} \underline{\mathrm{y}}(k)+\underline{u}^{T}(k) R \underline{u}(k) \\
& \text { since } \mathrm{y}(\mathrm{k})=\mathrm{C} \underline{\mathrm{x}}(\mathrm{k}), \quad J=\sum_{k=0}^{\infty} \underline{x}^{T}(k) \underbrace{}_{\underbrace{C^{T} Q_{1} C}}] \underline{x}(k)+\underline{u}^{T}(k) R \underline{u}(k)
\end{aligned}
$$

=> a "special" case of general state weightings

Optimization Approach

- An expression for J
- Let $\underline{u}(k)=-K \underline{x}(k)$ be any FB control such that CL system $\underline{x}(k+1)=(\Phi-\Gamma K) \underline{x}(k)$, is stable, then

$$
\begin{gathered}
\underline{\mathrm{x}}(\mathrm{k})=(\Phi-\Gamma \mathrm{K})^{\mathrm{k}} \underline{\mathrm{x}}(0), \quad \underline{\mathrm{u}}(\mathrm{k})=-\mathrm{K} \underline{\mathrm{x}}(\mathrm{k}) \\
\mathrm{J}=\underline{\mathrm{x}}^{\prime}(0) \underbrace{\left[\sum_{\mathrm{k}=0}^{\infty}(\Phi-\Gamma \mathrm{K})^{\mathrm{k}}\left(\mathrm{Q}+\mathrm{K}^{\prime} \mathrm{RK}\right)(\Phi-\Gamma \mathrm{K})^{\mathrm{k}}\right] \underline{\mathrm{x}}(0)}_{\mathrm{P}_{\mathrm{k}}} \\
\text { tem is stable, }
\end{gathered}
$$

- Since CL system is stable,
(1) P_{k} satisfies the linear (Lyapunov) equation

$$
\mathrm{P}_{\mathrm{k}}=(\Phi-\Gamma \mathrm{K})^{\prime} \mathrm{P}_{\mathrm{k}}(\Phi-\Gamma \mathrm{K})+\mathrm{Q}+\mathrm{K}^{\prime} \mathrm{RK}
$$

(2) P_{k} is positive (semi) definite symmetric

- P_{k} is called the cost matrix associated with gain K

$$
J=\underline{x}^{\prime}(0) P_{k} \underline{x}(0) \text { for any } \underline{x}(0)
$$

- P_{k} does not depend on $\underline{x}(0)$ but only on feedback gains $K, P_{k} \leftrightarrow K$
- Design approach
- Find the gain K^{*} that gives the "smallest" cost matrix in a positive defines sense, i.e., if $\mathrm{K}^{*} \leftrightarrow \mathrm{P}_{\mathrm{k}^{*}} \triangleq \mathrm{P}^{*}$ then for any K with $\mathrm{K} \leftrightarrow \mathrm{P}_{\mathrm{k}}$

$$
\underline{x}^{\prime} \mathrm{P}^{*} \underline{\mathrm{x}} \leq \underline{\mathrm{x}}^{\prime} \mathrm{P}_{\mathrm{k} \underline{\mathrm{x}}} \text { for all } \underline{\mathrm{x}}
$$

- Develop an iterative approach to find K^{*}. Start with gain $K_{0} \leftrightarrow P_{0}$, try to find a gain $\mathrm{K}_{1} \leftrightarrow \mathrm{P}_{1}$ so that $\mathrm{P}_{1}<\mathrm{P}_{0}$, ie., K_{1} is "more optimal" than K_{0}.

Method for Obtaining K_{1} from P_{0}

－Start with a stabilizing gain $\mathrm{K}_{0} \leftrightarrow \mathrm{P}_{0}$

$$
\mathrm{P}_{0}=\left(\Phi-\Gamma \mathrm{K}_{0}\right)^{\prime} \mathrm{P}_{0}\left(\Phi-\Gamma \mathrm{K}_{0}\right)+\mathrm{Q}+\mathrm{K}_{0}{ }^{\prime} \mathrm{RK}_{0}
$$

－if $K_{1} \leftrightarrow P_{1}$（assuming K_{1} is stabilizing）

$$
\mathrm{P}_{1}=\left(\Phi-\Gamma \mathrm{K}_{1}\right)^{\prime} \mathrm{P}_{1}\left(\Phi-\Gamma \mathrm{K}_{1}\right)+\mathrm{Q}+\mathrm{K}_{1}{ }^{\prime} \mathrm{RK}_{1}
$$

－Difference $\delta \mathrm{P}=\mathrm{P}_{0}-\mathrm{P}_{1}$ satisfies

$$
\begin{aligned}
& \delta \mathrm{P}=\left(\Phi-\Gamma \mathrm{K}_{1}\right)^{\prime} \delta \mathrm{P}\left(\Phi-\Gamma \mathrm{K}_{1}\right)+\left(\mathrm{K}_{0}-\mathrm{K}_{1}\right)^{\prime}\left(\mathrm{R}+\Gamma^{\prime} \mathrm{P}_{0} \Gamma\right)\left(\mathrm{K}_{0}-\mathrm{K}_{1}\right) \\
&\left.+\left(\mathrm{K}_{0}-\mathrm{K}_{1}\right)^{\prime}\left[\left(\mathrm{R}+\Gamma^{\prime} \mathrm{P}_{0} \Gamma\right) \mathrm{K}_{1}-\Gamma^{\prime} \mathrm{P}_{0} \Phi\right]+\left[\left(\mathrm{R}+\Gamma^{\prime} \mathrm{P}_{0} \Gamma\right) \mathrm{K}_{1}-\Gamma^{\prime} \mathrm{P}_{0} \Phi\right)\right]^{\prime}\left(\mathrm{K}_{0}-\mathrm{K}_{1}\right) \\
& \Rightarrow \text { if select } \quad \mathrm{K}_{1}=\left(\mathrm{R}+\Gamma^{\prime} \mathrm{P}_{0} \Gamma\right)^{-1} \Gamma^{\prime} \mathrm{P}_{0} \Phi
\end{aligned}
$$

then by Lyapunov（if the CL matrix $\Phi-\Gamma \mathrm{K}_{1}$ is stable）：$\delta \mathrm{P}>0$ ；
i．e．，$P_{1}<P_{0}\left(\underline{x}^{\prime} P_{1} \underline{x} \leq \underline{x}^{\prime} P_{0} \underline{x}\right)$ ，so K_{1} is＂better＂than K_{0} ．
－If K_{1} is selected as shown $\Phi-\Gamma \mathrm{K}_{1}$ is stable
－Rewrite equation for P_{0}

$$
\mathrm{P}_{0}=\left(\Phi-\Gamma \mathrm{K}_{1}\right)^{\prime} \mathrm{P}_{0}\left(\Phi-\Gamma \mathrm{K}_{1}\right)+\mathrm{Q}+\mathrm{K}_{1} \mathrm{RK}_{1}+\left(\mathrm{HK}_{0}-\Gamma^{\prime} \mathrm{P}_{0} \Phi\right)^{\prime} \mathrm{H}^{-1}\left(\mathrm{HK}_{0}-\Gamma^{\prime} \mathrm{P}_{0} \Phi\right) ; \mathrm{H} \triangleq \mathrm{R}+\Gamma^{\prime} \mathrm{P}_{0} \Gamma
$$

－Since $\mathrm{Q}_{\text {eff }}>0$ and $\mathrm{P}_{0}>0 \Rightarrow \Phi-\Gamma \mathrm{K}_{1}$ is stable by Lyapunov
－Continue the process！$K_{1} \rightarrow P_{1} \rightarrow K_{2} \rightarrow P_{2} \rightarrow \cdots$
－Each $\mathrm{P}_{\mathrm{i}}<\mathrm{P}_{\mathrm{i}-1}=>\left\{\mathrm{P}_{\mathrm{i}}\right\}$ converge to P^{*} $\left\{K_{i}\right\}$ converge to K^{*}
－Each P_{i} is positive（semi）definite
－No $\widetilde{\mathrm{P}}$ can be＜ $\mathrm{P}^{*}=>\mathrm{K}^{*}$ is unique

The Discrete Riccati Equation

- Main algorithm to find optimal gains
- Select any K_{0} such that $\Phi-\Gamma \mathrm{K}_{0}$ is stable
- then

$$
K^{*}=\lim _{\mathrm{i} \rightarrow \infty} \mathrm{~K}_{\mathrm{i}}=\text { optimal gain }
$$

where

$$
K_{i+1}=\left(\mathrm{R}+\Gamma^{\mathrm{T}} \mathrm{P}_{\mathrm{i}} \Gamma\right)^{-1} \Gamma^{\mathrm{T}} \mathrm{P}_{\mathrm{i}} \Phi ; \quad \mathrm{i}=0,1, \ldots
$$

and P_{i} is the cost matrix associated with gain K_{i}

$$
\mathrm{P}_{\mathrm{i}}=\left(\Phi-\Gamma \mathrm{K}_{\mathrm{i}}\right)^{\mathrm{T}} \mathrm{P}_{\mathrm{i}}\left(\Phi-\Gamma \mathrm{K}_{\mathrm{i}}\right)+\mathrm{Q}+\mathrm{K}_{\mathrm{i}}^{\mathrm{T}} \mathrm{R} \mathrm{~K}_{\mathrm{i}}
$$

- At convergence:

$$
\begin{aligned}
& \mathrm{K}^{*}=\left(\mathrm{R}+\Gamma^{\mathrm{T}} \mathrm{P}^{*} \Gamma\right)^{-1} \Gamma^{\mathrm{T}} \mathrm{P}^{*} \Phi \\
& \mathrm{~J}_{\min }=\underline{\mathrm{x}}^{\prime}(0) \mathrm{P}^{*} \underline{\mathrm{x}}(0) \\
& \mathrm{P}^{*}=\left(\Phi-\Gamma \mathrm{K}^{*}\right)^{\mathrm{T}} \mathrm{P}^{*}\left(\Phi-\Gamma \mathrm{K}^{*}\right)+\mathrm{Q}+\mathrm{K}^{* \mathrm{~T}} \mathrm{RK}^{*}
\end{aligned}
$$

and

$$
\mathrm{P}^{*}=\Phi^{\prime}\left[\mathrm{P}^{*}-\mathrm{P} * \Gamma\left(\mathrm{R}+\Gamma^{\mathrm{T}} \mathrm{P} * \Gamma\right)^{-1} \Gamma^{\mathrm{T}} \mathrm{P}^{*}\right] \Phi+\mathrm{Q}
$$

$$
\begin{aligned}
P^{*} & =\Phi^{T} P^{*}\left(I+\Gamma R^{-1} \Gamma^{T} P^{*}\right)^{-1} \Phi+Q \\
& =\Phi^{T}\left(P^{*-1}+\Gamma R^{-1} \Gamma^{T}\right)^{-1} \Phi+Q
\end{aligned}
$$

- Alternate schemes, besides the iterative one, exist for solving the DARE directly.
- $\mathrm{P}^{*}=$ the unique positive definite solution of the DARE.
- Computing P^{*} via the iterative algorithm
- Requires only a subroutine to solve Lyapunov equation
- $\mathrm{K}_{\mathrm{i}} \rightarrow \mathrm{K}^{*}$ quadratically, $\left\|\mathrm{K}_{\mathrm{i}+1}-\mathrm{K}^{*}\right\|<\mathrm{c}\left\|\mathrm{K}_{\mathrm{i}}-\mathrm{K}^{*}\right\|^{2}$
- Convergence typically in ~ 10 iterations \{depends upon how close $\left|\lambda_{\max }\left(\Phi-\Gamma \mathrm{K}_{\mathrm{i}}\right)\right|$ are to 1$\}$
- If desire N digit accuracy in P^{*}, need to solve Lyapunov equation to $\mathrm{N}+1$ digit accuracy
- Use stabilization algorithm to obtain K_{0}
$\mathrm{K}^{*}=\mathrm{mx} \mathrm{n}$ optimal FB gain matrix

Two input (control \& disturbances)
-Two output (error and measured output)

- Cross-weights in cost functional $(\mathrm{M}=\mathrm{n} \times \mathrm{m})$

$$
\mathrm{J}=\sum_{\mathrm{k}=0}^{\infty}\left[\underline{\mathrm{x}}^{T}(\mathrm{k}) \mathrm{Q} \underline{\mathrm{x}}(\mathrm{k})+2 \underline{\mathrm{x}}^{T}(\mathrm{k}) \mathrm{M} \underline{\mathrm{u}}(\mathrm{k})+\underline{\mathrm{u}}^{T}(\mathrm{k}) \operatorname{R} \underline{\mathrm{u}}(\mathrm{k})\right]
$$

- Usually arises when weighting a "generalized" output (or error function in TITO formulation)

$$
\underline{y}(\mathrm{k})=\mathrm{F} \underline{x}(\mathrm{k})+\mathrm{D} \underline{\mathrm{u}}(\mathrm{k})
$$

- Optimal control is:u $(\mathrm{k})=-\left(\mathrm{R}+\Gamma^{\mathrm{T}} \widetilde{\mathrm{P}} * \Gamma\right)^{-1} \Gamma^{\widetilde{T}} \widetilde{\mathrm{P}} * \Phi \underline{\mathrm{x}}(\mathrm{k})-\mathrm{R}^{-1} \mathrm{M}^{\mathrm{T}} \underline{\mathrm{x}}(\mathrm{k})$
where $\widetilde{\mathrm{P}}^{*}$ satisfies DARE

$$
\begin{aligned}
& \widetilde{\mathrm{P}}^{*}=\widetilde{\Phi}^{\mathrm{T}} \tilde{\mathrm{P}}^{*}-\widetilde{\mathrm{P}}^{*} \Gamma\left(\mathrm{R}+\Gamma^{\mathrm{T}} \widetilde{\left.\left.\mathrm{P}^{*} \Gamma\right)^{-1} \tilde{\Gamma}^{\prime} \mathrm{P}^{*}\right] \Phi+\widetilde{\mathrm{Q}}}\right. \\
& \widetilde{\Phi}=\Phi-\Gamma \mathrm{R}^{-1} \mathrm{M}^{\mathrm{T}} ; \widetilde{\mathrm{Q}}=\mathrm{Q}-\mathrm{MR}^{-1} \mathrm{M}^{\mathrm{T}} \geq 0
\end{aligned}
$$

- Translation of continuous cost functional

$$
\begin{aligned}
& \mathrm{J}_{\mathrm{c}}=\int_{0}^{\infty}\left[\underline{\mathrm{x}}^{T}(\mathrm{t}) \mathrm{Q}_{1} \underline{\mathrm{x}}(\mathrm{t})+\underline{\mathrm{u}}^{T}(\mathrm{t}) \mathrm{R}_{1} \underline{\mathrm{u}}(\mathrm{t})\right] \mathrm{dt}=\sum_{\mathrm{k}=\infty}^{\infty}\left[\underline{\underline{x}}^{T}(\mathrm{k}) \mathrm{Qx}(\mathrm{k})+2 \underline{\mathrm{x}}^{T}(\mathrm{k}) \mathrm{M} \underline{\mathbf{u}}(\mathrm{k})+\underline{u}^{T}(\mathrm{k}) \mathrm{R} \underline{\mathrm{u}}(\mathrm{k})\right] \\
& \mathrm{Q}=\int_{0}^{\mathrm{h}} \mathrm{e}^{\mathrm{A}^{T} \sigma} \mathrm{Q}_{1} \mathrm{e}^{\mathrm{A} \sigma} \mathrm{~d} \sigma \sim \frac{\mathrm{~h}}{2}\left[\Phi^{T} \mathrm{Q}_{1} \Phi+\mathrm{Q}_{1}\right] \quad \mathrm{M}=\int_{0}^{\mathrm{h}} \mathrm{e}^{\mathrm{A}^{T} \sigma} \mathrm{Q}_{1} \int_{0}^{\mathrm{h}} \mathrm{e}^{\mathrm{A} \xi} \mathrm{Bd} \xi \mathrm{~d} \sigma \sim \frac{\mathrm{~h}}{2} \Phi^{\prime} \mathrm{Q}_{1} \Gamma \\
& \mathrm{R}=\mathrm{hR}_{1}+\int_{0}^{\mathrm{h}}\left[\int_{0}^{\sigma} \mathrm{e}^{\mathrm{A} \xi} \mathrm{Bd} \xi\right]^{T} \mathrm{Q}_{1}\left[\int_{0}^{\sigma} \mathrm{e}^{\mathrm{A} \xi} \mathrm{Bd} \xi\right] \mathrm{d} \sigma \sim \mathrm{hR}_{1}+\frac{\mathrm{h}}{2} \Gamma^{\prime} \mathrm{Q}_{1} \Gamma \\
& \\
& \text { (easier to use gain equivalence } \left.\left.\left.\mathrm{K}\right|_{\text {continuous }} \rightarrow \widetilde{\mathrm{K}}^{*}\right|_{\text {discrete }}\right)
\end{aligned}
$$

LQR with Frequency Weighted Cost Functional

- Recall Parseval's theorem for discrete-time systems (one-sided)

$$
\sum_{k=0}^{\infty} \underline{g}^{T}(k) \underline{g}(k)=\frac{h}{\pi} \int_{0}^{\pi / h} \underline{G}^{T}\left(e^{-j \omega h}\right) \underline{G}\left(e^{j \omega h}\right) d \omega
$$

- LQR with frequency weighted cost functional
$\mathbf{J}_{\mathrm{c}}=\frac{h}{\pi} \int_{0}^{\pi / h}\left[\underline{y}^{T}\left(e^{-j \omega h}\right) W_{1}^{T}\left(e^{-j \omega h}\right) W_{1}\left(e^{j \omega h}\right) \underline{y}\left(e^{j \omega h}\right)+\underline{u}^{T}\left(e^{-j \omega h}\right) W_{2}^{T}\left(e^{-j \omega h}\right) W_{2}\left(e^{j \omega h}\right) \underline{u}\left(e^{j \omega h}\right)\right] d \omega$
$W_{1}\left(e^{j \omega h}\right)$ and $W_{2}\left(e^{j \omega h}\right)$ are frequency weights
- Transform the cost functional back to time domain via the following steps: $\begin{aligned} & \text { Typically, } \\ & W_{1}(z)=w_{1}(z) I_{p} \\ & W_{2}(z)=w_{2}(z) I_{m}\end{aligned}$
Represent $\underline{y}_{1}(z)=W_{1}(z) \underline{y}(z) \Rightarrow W_{1}(z)=C_{1}\left(z I-\Phi_{1}\right)^{-1} \Gamma_{1}+D_{1}$
Similarly, $\underline{y}_{2}(z)=W_{2}(z) \underline{u}(z) \Rightarrow W_{2}(z)=C_{2}\left(z I-\Phi_{2}\right)^{-1} \Gamma_{2}+D_{2}$
$\Rightarrow \mathbf{J}_{\mathbf{c}}=\frac{h}{\pi} \int_{0}^{\pi / h}\left[\underline{y}^{T}\left(e^{-j \omega h}\right) W_{1}^{T}\left(e^{-j \omega h}\right) W_{1}\left(e^{j \omega h}\right) \underline{y}\left(e^{j \omega h}\right)+\underline{u}^{T}\left(e^{-j \omega h}\right) W_{2}^{T}\left(e^{-j \omega h}\right) W_{2}\left(e^{j \omega h}\right) \underline{u}\left(e^{j \omega h}\right)\right] d \omega$

$$
=\sum_{\left.\substack{k=0 \\ \underline{y}_{1}} \underline{y}_{1}^{T}(k) \underline{y}_{1}(k)+\underline{y}_{2}^{T}(k) \underline{y}_{2}(k)\right], \text { victem }}
$$

- Augmented system

$$
\left.\left[\begin{array}{c}
\underline{x}(k+1) \\
\underline{x}_{1}(k+1) \\
\underline{x}_{2}(k+1)
\end{array}\right]=\left[\begin{array}{ccc}
\Phi & 0 & 0 \\
\Gamma_{1} C & \Phi_{1} & 0 \\
0 & 0 & \Phi_{2}
\end{array}\right]\left[\begin{array}{c}
\underline{x}^{x}(k) \\
\underline{x}_{1}(k) \\
\underline{x}_{2}(k)
\end{array}\right]+\left[\begin{array}{c}
\Gamma \\
0 \\
\Gamma_{2}
\end{array}\right] \underline{u}(k) \Rightarrow \underline{X}_{a}(k+1)=\Phi_{a} \underline{X}_{a}(k)+\Gamma_{a} \underline{u}(k)\right]
$$

$$
\begin{aligned}
& \text { Cross-weighted cost functional } \\
& \mathrm{J}_{\mathrm{c}}=\sum_{k=0}^{\infty} \underline{Y}_{a}^{T}(k) \underline{Y}_{a}(k) \\
& =\sum_{k=0}^{\infty}\left[\underline{X}_{a}^{T}(k) C_{a}^{T} C_{a} \underline{X}_{a}(k)+\right. \\
& \left.2 \underline{X}_{a}^{T}(k) C_{a}^{T} D_{a} \underline{u}(k)+\underline{u}^{T}(k) D_{a}^{T} D_{a} \underline{u}(k)\right]
\end{aligned}
$$

$$
\left[\begin{array}{l}
\underline{y}_{1}(k) \\
\underline{y}_{2}(k)
\end{array}\right]=\left[\begin{array}{ccc}
D_{1} C & C_{1} & 0 \\
0 & 0 & C_{2}
\end{array}\right]\left[\begin{array}{l}
\underline{x}^{x}(k) \\
\underline{x}_{1}(k) \\
\underline{x}_{2}(k)
\end{array}\right]+\left[\begin{array}{c}
0 \\
D_{2}
\end{array}\right] \underline{u}(k) \Rightarrow \underline{Y}_{a}(k)=C_{a} \underline{X}_{a}(k)+D_{a} \underline{u}(k)
$$

Dynamic compensator:
$u(k)=-K_{a} \underline{X}_{a}(k)$

$$
=-K_{x} \underline{x}(k)-K_{1} \underline{x}_{1}(k)-K_{2} \underline{x}_{2}(k)
$$

Application of the Optimal Control

- We can show $\underline{u}(k)=-K^{*} \underline{x}(k)$ is the optimal control, not just the linear optimal one.
- The closed-loop $\underline{x}(\mathrm{k}+1)=\Phi \underline{\mathrm{x}}(\mathrm{k})-\Gamma^{*} \underline{\mathrm{x}}(\mathrm{k})$ must be stable.
- Selection of weightings
- Major design step in method's application
- Initial design:

$$
\mathrm{q}_{\mathrm{ii}}=\text { relative weighting on state } \mathrm{x}_{\mathrm{i}}=\frac{1}{\left|\mathrm{x}_{\mathrm{i}, \max }\right|^{2}}
$$

where $x_{i, \max }=$ maximum desired (or anticipated) value of $x_{i}(k)$. If unconcerned about x_{i} deviations from zero, set $\mathrm{q}_{\mathrm{ii}}=0$.

- Adjust control weighting r_{ii} to achieve desired balance between control usage and response speed. Initially,

$$
\mathrm{r}_{\mathrm{ii}}=\frac{1}{\left|\mathrm{u}_{\mathrm{imax}}\right|^{2}}
$$

- "Tune" $q_{i i}, r_{i i}$ to obtain desired CL time response starting with representative $\underline{x}(0) s$
\Rightarrow increase $q_{j j}$ to decrease RMS x_{j} decrease $r_{i i}$ to increase CL speed of response trade-off errors in $x_{j} \leftrightarrow x_{i}$ via $q_{j j}$ vs. $q_{i i}$
- Basically, approach is time-domain oriented, but
- Examine CL pole locations, ϕ_{m}, ω_{c}, etc.
- Other "techniques" and "rules" exist for picking weights.

Properties of the Optimal CL system－ 1

（1）Closed－loop pole locations
－Closed－loop poles are the n roots inside unit circle of

$$
\operatorname{det}\left[\mathrm{R}+\Gamma^{\prime}\left(\mathrm{z}^{-1} \mathrm{I}-\Phi^{\prime}\right)^{-1} \mathrm{Q}(\mathrm{zI}-\Phi)^{-1} \Gamma\right]=0
$$

－In single input case，if $\mathrm{Q}=\mathrm{C}^{\prime} \mathrm{C}$（output weighting only），closed－loop poles satisfy

$$
\mathrm{R}+\widetilde{\mathrm{G}}\left(\mathrm{z}^{-1}\right) \widetilde{\mathrm{G}}(\mathrm{z})=0
$$

＝＞optimal CL poles of $\Phi-\Gamma \mathrm{K}^{*}$ are not arbitrary
－Example：Satellite system，$\widetilde{\mathrm{G}}(\mathrm{z})=\frac{1}{2} \frac{(\mathrm{z}+1)}{(\mathrm{z}-1)^{2}}$ ，output weighting only

Root locus of CL poles R：$\infty \rightarrow 0$

$$
1+\frac{1}{4 \mathrm{R}} \frac{\mathrm{z}(\mathrm{z}+1)^{2}}{(\mathrm{z}-1)^{4}}=0
$$

（Consider branches with $|z|<1$ only）
－As $\mathrm{R} \rightarrow 0$ ，CL poles follow．a locus of constant damping $\zeta=.707$ ，until $\mathrm{R}=\mathrm{R}_{0}=0.025$ ．
Then，for $\mathrm{R}<\mathrm{R}_{0}$ have 2 real roots on $(-1,0)$ ！
$=>$ too small a value of R will give oscillatory CL response．
－General property as $\mathrm{R} \rightarrow 0$ ：（single input case with $\mathrm{Q}=\mathrm{C}^{\prime} \mathrm{C}$ ）
－Assume $\widetilde{\mathrm{G}}(\mathrm{z})$ has r zeros $\delta_{1}, \delta_{2}, \ldots, \delta_{\mathrm{r}}$
－As $\mathrm{R} \rightarrow 0, \mathrm{r}$ closed－loop poles $\rightarrow \mathrm{r}$ zeros of $\widetilde{\mathrm{G}}(\mathrm{z}) \widetilde{\mathrm{G}}\left(\mathrm{z}^{-1}\right)$ inside or on unit circle．
The remaining $\mathrm{n}-\mathrm{r}$ poles $\rightarrow \mathrm{z}=0$ ．（in ex． $\mathrm{r}=1, \delta_{1}=-1$ ）
－i．e．，if δ_{i} is a zero of $\widetilde{\mathrm{G}}(\mathrm{z})$ ，a CL pole $\rightarrow \delta_{1}$ or $1 / \delta_{\mathrm{i}}$（whichever has magnitude <1 ）as $\mathrm{R} \rightarrow 0$ ．

Properties of the Optimal CL system - 2

(2) Return difference and phase margin

- Loop gain properties, $\mathrm{LG}(\mathrm{z})=\mathrm{K}^{*}(\mathrm{zI}-\Phi)^{-1} \Gamma$
- via algebraic manipulations on Riccati equation:

$$
\left[\mathrm{I}+\mathrm{LG}\left(\mathrm{z}^{-1}\right)\right]^{\prime}\left(\mathrm{R}+\Gamma^{\prime} \mathrm{P}^{*} \Gamma\right)[\mathrm{I}+\mathrm{LG}(\mathrm{z})]=\mathrm{R}+\Gamma^{\prime}\left(\mathrm{z}^{-1} \mathrm{I}-\Phi^{\prime}\right)^{-1} \mathrm{Q}(\mathrm{zI}-\Phi)^{-1} \Gamma
$$

- in single input case, factor $\mathrm{Q}=\mathrm{S}^{\prime} \mathrm{S}$

$$
\begin{aligned}
& \quad \widetilde{\mathrm{G}}_{\text {eff }}(\mathrm{z}) \triangleq \mathrm{S}(\mathrm{zI}-\Phi)^{-1} \Gamma \\
& {\left[\widetilde{\mathrm{G}}_{\text {eff }}(\mathrm{z})=\widetilde{\mathrm{G}}(\mathrm{z}) \text { if } \mathrm{Q}=\mathrm{C}^{\mathrm{T}} \mathrm{C}\right]} \\
& \quad|1+\mathrm{LG}(\mathrm{z})|^{2}=\frac{\mathrm{R}+\widetilde{\mathrm{G}}_{\mathrm{eff}}^{\prime}\left(\mathrm{z}^{-1}\right) \widetilde{\mathrm{G}}_{\text {eff }}(\mathrm{z})}{\mathrm{R}+\Gamma^{\prime} \mathrm{P} * \Gamma} \geq \frac{\mathrm{R}}{\mathrm{R}+\Gamma^{\prime} \mathrm{P}^{*} \Gamma}=\rho^{2} \quad(\rho<1) \\
& \Rightarrow \mid \text { Return difference }\left|=\left|1+\mathrm{K}^{*}(\mathrm{zI}-\Phi)^{-1} \Gamma\right|_{\mathrm{z}=\text { e eioh }^{\text {ion }} \geq \rho}\right.
\end{aligned}
$$

- Phase margin, ϕ_{m}, properties

Example - Satellite (Double Integral) System, $\mathrm{h}=1$

$$
\underline{\mathrm{x}}(\mathrm{k}+1)=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] \underline{\mathrm{x}}(\mathrm{k})+\left[\begin{array}{l}
0.5 \\
1.0
\end{array}\right] \underline{\mathrm{u}}(\mathrm{k}) ; \mathrm{y}(\mathrm{k})=\mathrm{x}_{1}(\mathrm{k}) ; \underline{\mathrm{x}}(0)=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

$\mathrm{q}_{11}=1, \mathrm{q}_{22}=0$ (interested in output $\rightarrow 0$), $\mathrm{R}=$ design parameter $\underline{R=1}$ yields sluggish response $\cdot \underline{R}=0.1$ gives faster response $\cdot \underline{R}=0.01$ generates CL

Example - Inverted Pendulum on a Cart, $\mathrm{h}=0.18 \mathrm{sec}$
 $$
\underline{\mathrm{x}}=\left[\begin{array}{lll} \theta, & \dot{\theta}, & \mathrm{d}, \\ \dot{\mathrm{~d}} \end{array}\right]^{\prime}
$$

Initial design

$$
\left.\begin{array}{l}
\theta_{\max }^{\approx} \approx 0.5 \mathrm{rad} \\
\mathrm{~d}_{\max } \approx 1 \mathrm{~meter}
\end{array}\right\} \Rightarrow \mathrm{Q}=\operatorname{diag}\left[\begin{array}{llll}
4 & 0 & 1 & 0
\end{array}\right]
$$

Select $\mathrm{R}=1 \mathrm{~F} \mathrm{~K}^{*}=\left[\begin{array}{llll}-22.9 & -6.98 & -0.487-1.08\end{array}\right]$

$$
\text { CL poles }=\left\{\begin{array}{l}
0.55 \pm \mathrm{j} 0.03\left(\zeta \approx 1, \omega_{\mathrm{n}}=3.3\right) \\
0.88 \pm \mathrm{j} 0.11\left(\zeta \approx 0.7, \omega_{\mathrm{n}}=0.95\right)
\end{array} \quad \rho=0.487 \Rightarrow \phi_{\mathrm{m}} \geq 28.2^{\circ}\right.
$$

- Reduce weighting on u to speed response $\theta(\mathrm{t}) \rightarrow 0$ (will require more control input).

Inverted Pendulum II

2nd Design iteration, $\mathrm{R}=0.1$

$$
\mathrm{K}^{*}=\left[\begin{array}{llll}
-28.4 & -8.67 & -1.39 & -2.20
\end{array}\right]
$$

CL poles $=\left\{\begin{array}{l}0.53 \pm j 0.09\left(\zeta=0.96, \omega_{\mathrm{n}}=3.5\right) \\ 0.80 \pm \mathrm{j} 0.16\left(\zeta=0.73, \omega_{\mathrm{n}}=1.59\right)\end{array} \quad \rho=0.439 \Rightarrow \phi_{\mathrm{m}} \geq 25.4^{\circ}\right.$

- Further possibilities
- Further decrease R (e.g., $\mathrm{R}=.01$ yields $\sim 3 \mathrm{sec}$ setting time with $11 / 2 \rightarrow 2$ times the amount of control)
- Modify $\theta: d=0.5: 1$ ratio (minor effect)
- As R $\rightarrow 0: \phi_{\mathrm{m}} \downarrow,|\mathrm{u}(\mathrm{kh})| \uparrow, \quad \mathrm{t}_{\mathrm{s}} \downarrow$ and $\theta(\mathrm{t})$ overshoot \uparrow

Inverted Pendulum， Phase Margin Analysis

－ $\mathrm{R}=0.1$

－Formula $\phi_{\mathrm{m}} \geq 2 \sin ^{-1}(\rho / 2)$ reasonably tight（ 25.4 vs． 25.6 ！）
－As $\mathrm{h} \rightarrow 0, \rho \rightarrow 1$ and $\phi_{\mathrm{m}} \geq 60^{\circ}$ as for optimal continuous design
－Generally as gains increase，ϕ_{m} decreases
－For single input systems，optimal control design．．．pole placement design with the same poles．
－But note that pole placement can achieve CL pole locations where an optimal design will not／can not

- Basically a "smart" pole placement SVFB design
- SVFB does not modify system zeros
- Based on minimizing a quadratic criterion
- Function of state and control deviations
=> Advantages
- Straightforward design methodology
- Design parameters (Q, R) relate to CL response
- Directly applicable to MIMO systems
- Small number of design parameters
- Has a guaranteed lower bound on ϕ_{m}
- CL system is always stable
- Numerous extensions can/have been done
e.g., integral FB via a small weight on $x_{I}{ }^{2}(k)=\left[\sum_{i=1}^{k} x_{m}(i)\right]^{2}$
e.g., command following via weighting $[\mathrm{Cx}(\mathrm{k})-\mathrm{r}(\mathrm{k})]^{2}$
=> Disadvantages
- Requires fairly extensive software to do design (dlqr,DARE routines)
- Do not have direct control over CL pole locations (some choices of Q, R can give poles on $\mathrm{z}<0$)
- Weighting selection process is largely trial and error
- Quadratic criterion not always best
- Need to measure or estimate all states

Weighting of Control Rate

- Usual optimal FB control has high bandwidth
- Can give problems if actuators are rate-limited
- Often not necessary if system dynamics are "slow"
- Weight $\Delta(\mathrm{k})=[\mathrm{u}(\mathrm{k})-\mathrm{u}(\mathrm{k}-1)] / \mathrm{h}$ in cost functional

$$
\mathrm{J}=\sum_{\mathrm{k}=0}^{\infty}\left[\underline{\mathrm{x}}^{T}(\mathrm{k}) \mathrm{Q} \underline{\mathrm{x}}(\mathrm{k})+\mathrm{Ru}^{2}(\mathrm{k}-1)+\mathrm{G} \Delta^{2}(\mathrm{k})\right]
$$

- Develop augmented system dynamics, $\mathrm{x}_{\mathrm{n}+1}(\mathrm{k})=\mathrm{u}(\mathrm{k}-1)$

$$
\begin{gathered}
\mathrm{u}(\mathrm{k})=\mathrm{u}(\mathrm{k}-1)+\mathrm{h} \Delta(\mathrm{k}) \\
\Rightarrow \quad \underline{\mathrm{x}}(\mathrm{k}+1)=\Phi \underline{\mathrm{x}}(\mathrm{k})+\Gamma \mathrm{u}(\mathrm{k}-1)+\mathrm{h} \Gamma \Delta(\mathrm{k}) \\
\mathrm{x}_{\mathrm{n}+1}(\mathrm{k}+1)=\mathrm{x}_{\mathrm{n}+1}(\mathrm{k})+\mathrm{h} \Delta(\mathrm{k})
\end{gathered}
$$

let $\chi(\mathrm{k})=[\underline{\mathrm{x}}(\mathrm{k}), \mathrm{u}(\mathrm{k}-1)] \mathrm{T}$,

$$
\begin{aligned}
\chi(\mathrm{k}+1) & =\underbrace{\left[\begin{array}{cc}
\Phi & \Gamma \\
0 & 1
\end{array}\right]}_{\Phi_{\mathrm{a}}} \chi(\mathrm{k})+\underbrace{\left[\begin{array}{c}
\Gamma \\
1
\end{array}\right]}_{\Gamma_{\mathrm{a}}} \Delta(\mathrm{k}) ; \chi(0)=\left[\begin{array}{c}
\underline{\mathrm{x}}(0) \\
0
\end{array}\right] \\
\mathrm{J} & =\sum_{\mathrm{k}=0}^{\infty}\left[\underline{\chi}^{T}(\mathrm{k}) \mathrm{Q}_{\mathrm{a}} \underline{\chi}(\mathrm{k})+\mathrm{G} \Delta^{2}(\mathrm{k})\right] \\
\operatorname{diag}^{2}[\mathrm{Q} & \mathrm{R}]
\end{aligned}
$$

- Solve "augmented" optimal control problem $\chi(\mathrm{k})$ <=> $\underline{\mathrm{x}}(\mathrm{k}), \Delta(\mathrm{k})<=>\mathrm{u}(\mathrm{k})$
- Augmented system is controllable wr to Δ, if original system was controllable wr to u

$$
\Delta(\mathrm{k})=-\mathrm{K}_{\mathrm{a}} \chi(\mathrm{k})=-\mathrm{K}_{\mathrm{x}} \underline{\mathrm{x}}(\mathrm{k})-\mathrm{K}_{\mathrm{u}} \mathrm{u}(\mathrm{k}-1)
$$

- Alternate structure $u(k)=\left(1-\mathrm{hK}_{\mathrm{u}}\right) \mathrm{u}(\mathrm{k}-1)-\mathrm{hK}_{\mathrm{x}} \underline{\mathrm{x}}(\mathrm{k})$

Properties of Rate Weighted Controller

$$
\mathrm{u}(\mathrm{k})=\left(1-\mathrm{h} \mathrm{~K}_{\mathrm{u}}\right) \mathrm{u}(\mathrm{k}-1)-\mathrm{h} \mathrm{~K}_{\mathrm{x}} \underline{\mathrm{x}}(\mathrm{k})
$$

- Analogous to $\mathrm{FB} v=\dot{u}=-k_{x} \underline{x}-k_{u} u$ put through a first-order filter $\frac{\mathrm{a}}{\mathrm{s}+\mathrm{a}}$ with $\mathrm{a} \sim \mathrm{K}_{\mathrm{u}}$
- As G $\rightarrow 0, \mathrm{~K}_{\mathrm{u}} \rightarrow 1 / \mathrm{h}, \mathrm{K}_{\mathrm{x}} \rightarrow \mathrm{K}^{*} / \mathrm{h}$ and original SVFB control is recovered
- Highly recommended for all physical systems
- Adds robustness to design
- Generally gives slightly smaller ω_{c}
- Provides ability to manage CL bandwidth
- Effect trade-off between $\dot{\mathrm{u}}$ and $\mathrm{u}, \underline{\mathrm{x}}$
- Example: Inverted pendulum on a cart, $\underline{x}=\left[\begin{array}{llll}\theta & \dot{\theta} & d & \dot{d}\end{array}\right]$
- add a rate weighting to previous design

$$
\begin{aligned}
& \mathrm{Q}=\operatorname{diag}\left[\begin{array}{llll}
4 & 0 & 1 & 0
\end{array}\right], \mathrm{R}=0.1 \\
& \mathrm{G}=0.0081=\left|\frac{\mathrm{h}}{\Delta \mathrm{u}_{\max }}\right|^{2} \text { with } \Delta \mathrm{u}_{\max }=2
\end{aligned}
$$

- FB control with rate weighting

$$
\begin{aligned}
& \mathrm{u}(\mathrm{k})=\left(1-\mathrm{h} \mathrm{~K}_{\mathrm{u}}\right) \mathrm{u}(\mathrm{k}-1)-\mathrm{h} \mathrm{~K}_{\mathrm{x}} \underline{\mathrm{x}}(\mathrm{k}) \\
& \mathrm{K}_{\mathrm{u}}=4.97 ; \mathrm{K}_{\mathrm{x}}=\left[\begin{array}{llll}
-109.5 & -33.4 & -3.61 & -6.29
\end{array}\right] \\
& \Rightarrow \mathrm{K}_{\mathrm{x}} / \mathrm{K}_{\mathrm{u}}=\left[\begin{array}{llll}
-22.0 & -6.72 & -0.726 & -1.27
\end{array}\right]
\end{aligned}
$$

- By analogy recall K^{*} for $G=0$

$$
\mathrm{K}^{*}=\left[\begin{array}{llll}
-28.4 & -8.67 & -1.39 & -2.20
\end{array}\right]
$$

=> gains decrease to compensate for added filtering

Compensation for Fractional Time Delay

$$
\tau=\mathrm{Mh}+\varepsilon ; \mathrm{M}=0
$$

- Recall model for < 1 step (computational) delay

$$
\begin{aligned}
& \chi(\mathrm{k}) \triangleq[\underline{\mathrm{x}}(\mathrm{k}), \mathrm{u}(\mathrm{k}-1)]^{\prime}=\text { augmented state } \\
& \chi(\mathrm{k}+1)=\left[\begin{array}{cc}
\Phi & \Gamma_{1} \\
0 & 0
\end{array}\right] \chi(\mathrm{k})+\left[\begin{array}{c}
\Gamma_{0} \\
1
\end{array}\right] \mathrm{u}(\mathrm{k})
\end{aligned}
$$

- Can apply optimal control design directly to augmented model when $G=0 ; Q_{a}=[Q, 0]$. [Gives same results as $u(k h)=-K^{*} \underline{\hat{x}}(k h+\varepsilon)$]
- Alternate time delay model
- Replace $\mathrm{u}(\mathrm{k})=>\mathrm{u}(\mathrm{k}-1)+\mathrm{h} \Delta(\mathrm{k}) ;$ note $\Gamma_{0}+\Gamma_{1}=\Gamma$

$$
\chi(\mathrm{k}+1)=\left[\begin{array}{ll}
\Phi & \Gamma \\
0 & 1
\end{array}\right] \chi(\mathrm{k})+\mathrm{h}\left[\begin{array}{c}
\Gamma_{0} \\
1
\end{array}\right] \Delta \mathrm{u}(\mathrm{k})
$$

- In desired form for weighting $\Delta(\mathrm{k})$
- Identical to augmented model but with a modified $\Gamma_{\mathrm{a}} . \quad$ (When $\varepsilon=\mathrm{h}^{-}, \Gamma_{0}=0$.)

$$
\Delta(\mathrm{k})=-\mathrm{K}_{\mathrm{u}} \mathrm{u}(\mathrm{k}-1)-\mathrm{K}_{\mathrm{x}} \underline{\mathrm{x}}(\mathrm{k})
$$

=> Natural fit between fractional delay model and weighting of control rate. Excellent for $\varepsilon<$ h, i.e., compensation of up to one time-step delay.

- For $M \geq 1$ apply state prediction ideas

$$
\Delta(\mathrm{k})=-\mathrm{K}_{\mathrm{u}} \mathrm{u}(\mathrm{k}-1)-\mathrm{K}_{\mathrm{x}} \underline{\hat{\underline{\hat{X}}}}(\mathrm{k}+\mathrm{M})
$$

$\underline{\hat{X}}(k+M)=$ prediction of \underline{x} at step $k+M$, obtained by propagating

$$
\underline{\mathrm{x}}(\mathrm{k}+1)=\Phi \underline{\mathrm{x}}(\mathrm{k})+\Gamma_{1} \mathrm{u}(\mathrm{k}-1-\mathrm{M})+\Gamma_{0} \mathrm{u}(\mathrm{k}-\mathrm{M})
$$

Minimax H_{∞} Controller - 1

$$
\underline{\mathrm{x}}(\mathrm{k}+1)=\Phi \underline{\mathrm{x}}(\mathrm{k})+\Gamma \underline{\mathrm{u}}(\mathrm{k})+\mathrm{E} \underline{\mathrm{~d}}(\mathrm{k}) ; \quad \underline{\mathrm{x}}(0)=\text { initial state; } \underline{\mathrm{d}}(\mathrm{k}) \text { is unknown but bounded }
$$

- Objective: Determine a SVFB control $\underline{u}(k)=-K \underline{x}(k)$ and worst case $\underline{d}(k)$ so that $\underline{x}(k) \rightarrow \underline{0}$. It turns out that the worst case $\underline{d}(k)==-K_{d} \underline{x}(k)$, but we won't feed it back.
$J=\min _{\underline{u}} \max _{\underline{d}} \sum_{k=0}^{\infty}\left[\underline{x}^{T}(k) Q \underline{x}(k)+\underline{u}^{T}(k) R \underline{u}(k)-\gamma^{2} \underline{d}^{T}(k) \underline{d}(k)\right] \sim$ Minimax criterion
\Rightarrow finds the worst case disturbance if can find smallest $\gamma \Rightarrow H_{\infty}$-full state feedback controller
- An expression for J assuming [$\Phi-\Gamma \mathrm{K}-\mathrm{E} \mathrm{K}_{\mathrm{d}}$] is stable. Actually, need $\Phi-\Gamma \mathrm{K}$ to be stable
$J=\sum_{k=0}^{\infty} \underline{x}^{T}(k)\left[Q+K^{T} R K-\gamma^{2} K_{d}^{T} K_{d}\right] \underline{x}(k)=\underline{x}^{T}(0) P_{k} \underline{x}(0)=\operatorname{Trace}\left(P_{k} \underline{x}(0) \underline{x}^{T}(0)\right)$
where P_{k} satisfies the Lyapunov equation $P_{k}=\left(\Phi-\Gamma K-E K_{d}\right)^{T} P_{k}\left(\Phi-\Gamma K-E K_{d}\right)+Q+K^{T} R K-\gamma^{2} K_{d}^{T} K_{d}$
- Design approach
- Find the gains K^{*} and $K_{d} *$ that optimize the cost matrix in a positive definite sense
- Following the LQ optimization approach used earlier or Hamiltonian approach next

$$
\begin{array}{l|l}
K^{*}=-R^{-1} \Gamma^{T} P^{*}\left(I_{n}+S P^{*}\right)^{-1} \Phi \\
K_{d}^{*}=-\frac{1}{\gamma^{2}} E^{T} P^{*}\left(I_{n}+S P^{*}\right)^{-1} \Phi & \begin{aligned}
& P^{*} \text { is the solution of Discrete Algebraic Riccati Equation: } \\
& P^{*}=\Phi^{T} P^{*}\left(I_{n}+S P\right)^{-1} \Phi+Q \\
&=\Phi^{T} P \Phi-\Phi^{T} P \Gamma_{a}\left(R_{a}+\Gamma_{a}^{T} P \Gamma_{a}\right)^{-1} \Gamma_{a}^{T} P \Phi+Q \\
& \text { where } \Gamma_{a}=[\Gamma E] \text { and } \mathrm{R}_{a}=\operatorname{Diag}\left(R,-\gamma^{2} I_{l}\right)
\end{aligned} \\
\text { where } S=\Gamma R^{-1} \Gamma^{T}-\frac{1}{\gamma^{2}} E E^{T} &
\end{array}
$$

- May not have a solution for all $\gamma \Rightarrow$ need to find the range $\left[\gamma_{\min }, \infty\right]$

Minimax H_{∞} Controller - 2

- The closed-loop system matrix $\Phi-\Gamma \mathrm{K}$ is stable if $\left[\Phi-\Gamma \mathrm{K}-\mathrm{E} \mathrm{K}_{\mathrm{d}}\right]$ is stable.

Define Lyapunov function $V(\underline{x}(k))=\underline{x}^{T}(k) P^{*} \underline{x}(k)$
Need to prove $V(\underline{x}(k+1))-V(\underline{x}(k))<0$

$$
\begin{aligned}
& \text { know } \underline{x}^{T}(k)\left[\left(\Phi-\Gamma K-E K_{d}\right)^{T} P^{*}\left(\Phi-\Gamma K-E K_{d}\right)-P^{*}\right] \underline{x}(k)<0 \\
& \Rightarrow-\underline{x}^{T}(k)\left[Q+K^{T} R K-\frac{1}{\gamma^{2}} K_{d}^{T} K_{d}\right] \underline{x}(k)<0 \Rightarrow-\underline{x}^{T}(k)\left[Q+K^{T} R K\right] \underline{x}(k)<0
\end{aligned}
$$

- Hamiltonian approach

Problem : $\min _{\underline{\underline{u}}} \max _{\underline{d}} \frac{1}{2} \sum_{k=0}^{\infty}\left[\underline{x}^{T}(k) Q \underline{x}(k)+\underline{u}^{T}(k) R \underline{u}(k)-\gamma^{2} \underline{d}^{T}(k) \underline{d}(k)\right] s . t \underline{x}(k+1)=\Phi \underline{x}(k)+\Gamma \underline{u}(k)+E \underline{d}(k)$
Define Hamiltonian:

$$
H(\underline{x}(k), \underline{\lambda}(k+1), \underline{u}(k), \underline{d}(k))=\frac{1}{2}\left(\underline{x}^{T}(k) Q \underline{x}(k)+\underline{u}^{T}(k) R \underline{u}(k)-\gamma^{2} \underline{d}^{T}(k) \underline{d}(k)\right)+\underline{\lambda}^{T}(k+1)[\Phi \underline{x}(k)+\Gamma \underline{u}(k)+E \underline{d}(k)]
$$

Optimality conditions:

$$
\begin{aligned}
& \nabla_{\underline{\hat{\lambda}}(k+1)} H=\underline{x}(k+1)=\Phi \underline{x}(k)+\Gamma \underline{u}(k)+E \underline{d}(k) \\
& \nabla_{\underline{x}(k)} H=\underline{\lambda}(k)=Q \underline{x}(k)+\Phi^{T} \underline{\lambda}(k+1) \\
& \nabla_{\underline{u}(k)} H=R \underline{u}(k)+\Gamma^{T} \underline{\lambda}(k+1)=\underline{0} \Rightarrow \underline{u}(k)=-R^{-1} \Gamma^{T} \underline{\lambda}(k+1) \\
& \nabla_{\underline{d}(k)} H=-\gamma^{2} \underline{d}(k)+E^{T} \underline{\lambda}(k+1)=\underline{0} \Rightarrow \underline{d}(k)=\frac{1}{\gamma^{2}} E^{T} \underline{\lambda}(k+1) \\
& {\left[\begin{array}{c}
\underline{x}(k+1) \\
\underline{\lambda}(k)
\end{array}\right]=\left[\begin{array}{cc}
\Phi & -S \\
Q & \Phi^{T}
\end{array}\right]\left[\begin{array}{c}
\underline{x}(k) \\
\underline{\lambda}(k+1)
\end{array}\right] ; S=\left(\Gamma R^{-1} \Gamma^{T}-\frac{E E^{T}}{\gamma^{2}}\right) \quad \begin{array}{l}
\underline{x}(k+1)=\Phi \underline{x}(k)-S P^{*} \underline{x}(k+1) \Rightarrow \underline{x}(k+1)=\left(I_{n}+S P^{*}\right)^{-1} \Phi \underline{x}(k) \\
\Rightarrow P^{*}=Q+\Phi^{T} P^{*}\left(I_{n}+S P^{*}\right)^{-1} \Phi
\end{array}} \\
& \Rightarrow\left[\begin{array}{c}
\underline{x}(k+1) \\
\underline{\lambda}(k+1)
\end{array}\right]=\underbrace{\left[\begin{array}{cc}
\Phi+S\left(\Phi^{T}\right)^{-1} Q & -S\left(\Phi^{T}\right)^{-1} \\
-\left(\Phi^{T}\right)^{-1} Q & \left(\Phi^{T}\right)^{-1}
\end{array}\right]}_{\text {Hanilonian is a Symplectic matrix }}\left[\begin{array}{c}
\underline{x}(k) \\
\underline{\lambda}(k)
\end{array}\right] \\
& \text { If we let } \underline{\lambda}(k)=P^{*} \underline{x}(k) \text {, } \\
& P^{*} \underline{x}(k)=Q \underline{x}(k)+\Phi^{T} P^{*} \underline{x}(k+1) \\
& \begin{array}{l}
\underline{x}(k+1)=\Phi \underline{x}(k)-S P^{*} \underline{x}(k+1) \Rightarrow \underline{x}(k+1)=\left(I_{n}+S P^{*}\right)^{-1} \Phi \underline{x}(k) \\
\Rightarrow P^{*}=Q+\Phi^{T} P^{*}\left(I_{n}+S P^{*}\right)^{-1} \Phi
\end{array}
\end{aligned}
$$

Computing Minimax Controller

- Main algorithm to find minimax controller gains

Step 1: Pick a value of $\gamma>0$ and compute the eigen values of the Hamiltonian
Step 2: Check if Hamiltonian has any eigen values on the unit circle.
If it does, increase γ and go to Step 1 with this γ. Else, go to Step 3.
Step 3: Solve the discrete Riccati equation for P^{*}. Do Cholesky decomposition of P^{*}. If it is not positive definite, increase γ and go to Step 1. Else go to Step 4.
Step 4: Check if $\Phi-\Gamma K$ is stable. If it is not, increase γ and go to Step 1. Else, we have found a minimax controller.

- Application to $\mathrm{F}-8$ Example with $\mathrm{Q}_{1}=\mathrm{I}_{5}$ and $\mathrm{R}_{1}=0.01 \mathrm{I}_{2}$ in the continuous domain.
- Discretize the system with $\mathrm{h}=0.01 \Rightarrow \mathrm{Q}=\frac{\mathrm{h}}{2}\left[\Phi^{\prime} \mathrm{Q}_{1} \Phi+\mathrm{Q}_{1}\right] ; M=\frac{\mathrm{h}}{2} \Phi^{\prime} \mathrm{Q}_{1} \Gamma ; R=h R_{1}+\frac{\mathrm{h}}{2} \Gamma^{\prime} Q_{1} \Gamma$
- Form the Hamiltonian matrix. I found starting with a large value of γ better. DARE routine tells you when it can't order eigen values when they are close to unit circle
- I found $\gamma=0.165$ found the gains, but 0.160 didn't. Then, via bisection, you can find the smallest γ for which you can get stable controller is $\mathbf{0 . 1 6 3 5}$. This corresponds to full state feedback H_{∞} controller. For γ greater than this minimum, it is a minimax controller.
- Gain matrix (This controller will have a bias due to disturbances. Need integral control)

$$
\left.\begin{array}{rllll}
\mathrm{K}=[-6.0591 & -1.7236 & -4.2557 & 3.3119 & -1.2936 \\
& -1.9994 & 8.1329 & -0.5474 & 4.9811
\end{array}-0.3053\right]
$$

Closed-loop Eigen values: [0.1813 0.9912-0.004i $0.9912+0.004 i \quad 0.92520 .9927]$

