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LQR Controllers 

1. Lyapunov Stability Theory 
• Main theorem for linear systems 

 

2. Numerical Solution of Lyapunov Equation 
 
 

3. Constructive Application of Lyapunov Theorem 
• System stabilization 
• Lyapunov (“bang-bang”) controller 
• Examples 
 

4. Least Squares Optimization 
• Problem definition 

• Optimization algorithm 

• Discrete Riccati equation 

• Frequency-weighted LQR (Full-state feedback) 

• Properties of optimal control system (robustness, asymptotic properties) 
 

5. Examples/Applications 
• k/s2 , Inverted pendulum 
 

6. Rate Weighting 
• Examples 
• Incorporation of time-delay 

7. Mini-max and H Controller 
• Mini-max differential game 
• Synthesizing mini-max controllers 
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Lyapunov Stability Theory - Preliminaries 

•   A general theory for studying stability of linear and nonlinear systems  

  -  Developed ~ 1900; advanced in USA ~ 1960.  
  -  We consider only linear case here.  

  -  A useful lead-in to optimal control.  

•   Quadratic forms  

v(x)= x'P x = p11x1
2 + 2p12x1x2 + ··· + pnnxn

2 

is a quadratic form on x if P is positive definite.  

An n x n matrix P is positive definite (P > 0) if  
        (i)    x'P x   ≥  0 for any  x    Rn  
        (ii)   x'P x  = 0 if and only if x = 0  
        (iii)  P = P' (i.e., symmetric)  

•   Some properties of a positive definite (PD) matrix  

1 - all eigenvalues real,  > 0  =>  P-1 exists  

2 - eigenvectors are orthogonal, ξi'ξj = 0,  i ≠ j  

3 - can find S with S'S = P (e.g., Cholesky decomposition) with S invertible 

4 - for any  x,  

0 <  λmin(P) x'x   ≤  x'P x   ≤  λmax(P) x'x   

•   The equation  x'Px  = c defines an ellipsoid in Rn 

- Ellipsoid axes aligned with {ξi}  
- Length of semi-major/minor axes =  v (x) = x'P x  = c 

Useful  
tests 
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Application to Stability Analysis 

•   Study stability of unforced system  

 x(k+1) = Φ x(k) + Γu(k) 

x(0) = initial state  

•   Suppose we found a quadratic form v(x) =  x'P x  such that when we  monitor v[x(k)] at any 

     sequence of increasing k:  

v(x(0))   >  v( x(1))   >  v(x(2))   > ··· 

c0               c1                c2 

0 

v(x) = c0 = locus of all  x such that  x'P x = c0    

=>  state is on this contour @ k = 0 

v(x) = c1  => state lies somewhere on this contour @ k = 1 

Implication:   x(k) → 0 as k →∞ 

x2 

x1 

k=0 
k=1 

k=2 

•   Result -  

If we can find a positive scalar (quadratic) function v(x) such that v(x) is always decreasing, 

i.e., if k2 > k1, v(x(k2))   <  v(x(k1)) then x(k) → 0.  

  -  Such a v(x) is called a Lyapunov Function.  

  -  Analogous to a generalized "stored energy". 
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Main Theorem for Linear Systems 

•   Existence of a Lyapunov function   ==>  stability and vice-versa  

•   Consider v(x) = x' Px  ,  P > 0  , determine    

 Δv(x) = v (x(k + 1)) – v(x(k)) 

along the system response trajectory x(k+1) = Φ x(k)  

 Δv(x) =  x'(k)Φ'PΦ x(k) –  x'(k)Px(k) =  –x'(k)[P – Φ' PΦ] x(k) 

Q 

  -  if Q  > 0, v(x) ↓  and  x(k) → 0.  But, if Q  > 0 no conclusions can be drawn.  

  =>    Use reverse procedure.  Pick Q  > 0 and solve  

P = Φ'PΦ + Q                                (LEqn)  
then  

Theorem:  x(k+1) = Φx(k) is stable if and only if given any positive definite Q, the solution 

                  P of the equation P = Φ'PΦ + Q is positive definite. 

/ 

•   LEqn represents a set of n(n+1)/2 linear equations:  

  -  Expand RHS term Φ'PΦ  

  -  Solve for pij = pji  for i = 1, ... , n;  j = i, ... , n  

  -  Solution exists provided  λi(Φ)λj(Φ) ≠ 1 

  -  Test if P is positive definite  

•   A slightly weaker condition is Q positive semidefinite (Q ≥ 0), as long as x'Qx ≠ 0 along a  

     system response trajectory. 
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Practical Use of Lyapunov Theorem 
1. To test stability of Φ, pick a Q  > 0 and solve for P.  If P is not positive definite, system is 

      unstable. If P > 0, is stable. Need only do this for one Q. 
Not very practical (there are easier ways to test stability).  

But useful in developing/proving further results . . .  

2.   If system is stable, Theorem gives an easy way to find a Lyapunov function. Pick any Q > 0 

      (e.g., Q = βI) and solve LEqn for P.  Then  v(x) = x'Px is a Lyapunov function, and  

      Δv(x) = – x'Q x.  Different Q yield different P.  

•   Our major efforts will involve finding a v(x) for a stable system, and using it to develop a  

     SVFB control.   

Ex. 
 x(k+1) =                   x(k) ;  pick Q = 

0.2  –0.2  
0.1    0.5 

2  0  
0  2 

p11   p12  
p12   p22 

    0.2    0.1  

-0.2    0.5 

p11   p12  
p12   p22 

0.2  –0.2  
0.1    0.5 

2  0  
0  2 

=                                                           + 

Φ, stable (poles at 0.3, 0.4) 

Solve P = Φ'PΦ + Q 

0.04p11 + 0.04p12 + 0.01p22 + 2        –0.04p11 + 0.08p12 + 0.05p22  

–0.04p11 + 0.08p12 + 0.05p22            0.04p11 – 0.2p12 + 0.25p22 + 2 
= 

 0.96p11 - 0.04p12 – 0.01p22 = 2  

 0.04p11 + 0.92p12 – 0.05p22 = 0  

–0.04p11 + 0.2p12 + 0.75p22 = 2 

=> p22 = 2.1146. p12 = 0.0583, p11 = 2.7639 

and x'Px = p11x1
2 + 2p12x1x2 + p22x2

2 is a Lyapunov function. 

P =                               > 0 
     2.1146  0.0583  

0.0583    2.7639 
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Numerical Solution of the Lyapunov Equation 

•   Setting up and solving the n(n+1)/2 system is not practical  

  -  Requires  0(n6 ) operations for large n  

  -  Desire an algorithm requiring 0(n3) operations  

•   If | λi(Φ) | < 1,   i.e., system is stable,  

satisfies P = Φ'PΦ + Q (check by direct substitution)  

  -  if system is unstable, sum diverges → ∞  

•   An efficient way to sum the series  
              P = Q + Φ'Q Φ + (Φ')2Q Φ2 + (Φ')3QΦ3 + (Φ')4 Q Φ4 + ··· 

... 

{
 

Converged 

•   Stop when Pk ≈ Pk-1 or when diagonals (pii)k ≈ (pii)k–1    i = 1, ... , n 

  -  Doubling algorithm 

- After k passes through loop:     P = 1st 2k terms in series 

- P is monotone increasing  
   Pk = Pk–1 + (a  Positive Definite matrix) 

Initialization  

P = Q, X = Φ,  k = 1 

P      P + X'PX 

k = k + 1 

No 

Yes 

← 

X     X2 ← 

? 

1st pass:   Q + Φ'Q Φ  
2nd pass:  Q + Φ'Q Φ + (Φ2)'[Q + Φ'Q Φ]Φ2 
3rd pass:   Q + Φ'Q Φ + ... + (Φ ')7QΦ7 
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k2X Φ

n
10

i

i=1

is d   > 10 ?

 
k k2 1 2 1P Q Φ' QΦ
   

Algorithm to Solve Lyapunov Equation, Dlineq 

•   Imbed a stability test if P → ∞ 

•   Algorithm generally converges in K ~ 10 iterations  

  -    Requires ~  K x (2.5) n3 MADD operations  

  -    When K = 10 , P has 1024 = 210‚ terms, and || Φ1024  || < 10-5          provided all | λi(Φ) | <  0.99  

•   Extremely versatile algorithm  

YES, Stop  
Algorithm non-convergent 

new 

Initializations:  
k = 1, P = Q, X = Φ, TOL = 10-5  

di = –1,   i = 1, ... , n 

Y = PX  
Z = X'Y 

is k  > 30 ? 

NO 

P = P + Z 

(TOL = 10-M => seek M      digit accuracy in P) 

Y = X * X  
X = Y 

is | Pii-di| ≤  TOL * | di+TOL |  
for i = 1, 2, ... , n ? 

NO 

di = Pii for i = 1, 2, ... , n 

NO 

k = k + 1 

new 

YES, Done  
Return P 

YES, Stop  
System is unstable 

Save diag elements of P 
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Constructive Application of  

Lyapunov Theorem to SVFB 

• If x(k+1) = Φx(k) + Γu(k) is completely controllable, u(k) = – K0x(k) results in a stable  

    closed-loop system where,   

K0 = Γ'WM
-1Φ; M is arbitrary ≥ n 

1

M  'W  •   Outline of proof (let                                      )  

(Kleinman, IEEE Transactions AC,  

June, 1974) 

2.   

WM 

3.  Via matrix inversion lemma,  

  

  

4.  Establish that x'WM x is a Lyapunov function for  

by showing that x'ΦΓQ1Γ'Φ'x  > 0 along system response trajectory    x(k+1) =  Φ'x(k) 

5.  By Lyapunov Φ', and hence Φ, has all eigenvalues with | λi(Φ) | < 1  

K0 

•   Corollary:  If the system is not completely controllable, u = –Γ'WM
  Φx  

(  denotes pseudo inverse) will stabilize the controllable modes. 

[OK if system is controllable].  

  
6. Φ= Φ(Φ – ΓΓ'WM

-1Φ)Φ-1  =>  Φ and Φ – ΓK0 have the same eigenvalues  

†

†

1.  Since                                                                       show  
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 Discussion of Stabilization  

Result: K0=Γ′WM
-1Φ 

•   Applicable to multi-input systems, Γ = ΨB → n x m matrix K0= m x n gain matrix  

     (m=number of inputs)  

•   If R = arbitrary m x m positive definite matrix  

where  

-  gives additional degrees of freedom  

•   Alternate representation  

 
M

ii 1

R,M

i 0

W R ' '
 



    

•   Computing VR,M–1  

1.  Pick M = 2p  ≥  n  (best to pick min p such that 2p  > n)  

2.  Go through doubling algorithm p times:  Φ → Φ', Q = ΓR-1Γ'  

3.  Use Cholesky decomposition P = S'S, then VR,M–1 = (XS-1) · (XS-1)'  

•  CL eigenvalues are inside unit circle , but otherwise unspecified.  

  -  Not a design method for feedback control, rather a starting point.  
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Examples of System  

Stabilization, Scalar u, R=1 

     Γ'VM–1Φ  K0 =     

•   Satellite system (double integrator) 

A =           ; B = 
0  1  
0  0 

0  
1 

1  1  
0  1 

Φ =           ;   Γ = 
0.5  
1 

h = 1 

M = 22 = 4 

0.20  0.40  
0.40  1.05 

V3 =                    ;    K0 = [ 0.20  0.70 ] 

CL poles of Φ – ΓK0 = 0.6 ± j0.2  =>  ζ = 0.82, ωn = 0.56  

As M is increased K0 decreases, and CL poles → 1, 1  

M = 8:  K0 = [ 0.067  0.411 ]  =>  zi = 0.78 ± j0.13; ζ = 0.82, ωn = 0.29  

M = 16:  K0 = [ 0.02  0.225 ]  =>  zi = 0.88 ± j0.076; ζ = 0.82, ωn = 0.15  

    where  

(I + Γ'VM–1Γ)-1 
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with increased M = 12:  
Ko = [-31.5  -9.67  -1.99 -2.90] → 

with decreased M = 5:  
Ko = [-87.9  -26.7  -25.8 -17.0] → 

=>  as M increases, Ko decreases and we get slower CL response  

0.74 ± j0.16  (ζ = 0.79, ωn = 2)  
0.54 ± j0.12 (ζ = 0.94, ωn = 3.5) 

0.31 ± j0.39 (ζ = 0.61, ωn = 6.3)  
0.34 ± j0.10 (ζ = 0.97, ωn = 6.0) 

11Continuous system's open-loop poles @ 0, 0, ± 

Pick M = 8 = 23:  K0 = [ -47.4  -14.7  -6.89  -6.75 ]  

CL poles of Φ – ΓK0 =  

•   Inverted pendulum on cart, h = 0.18 

0.57 ± j0.30     (ζ = 0.67, ωn = 3.62)  
0.48 ± j0.065   (ζ = 0.98, ωn = 4.08) 

0  
0  
1  
0 

0  
0  
0  
0 

1  
0  
0  
0 

0  
11  
0  

–1 

A =                      ,  B =          → Φ =                                        ,   Γ = 

0  
-1  
0  
1 

–.017  
–.19  
.016  
.181 

0  
0  

.18  
0 

0  
0  
1  
0 

0.19  
1.18  

–.001  
–.017 

1.18  
2.10  

–.017  
–.19 

Examples of System  

Stabilization, Scalar u, R=1(Cont’d) 
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Lyapunov Controllers 

•   Consider a stable SISO system with bounded control  

x(k+1) = Φ x(k) + Γu(k);  | u(k) | ≤  c1 

                            

•   Obtain a Lyapunov function v(x) =  x'P x for free part  

P = Φ'PΦ + Q 
Q = arbitrary PD matrix  

•   Along trajectory of controlled system,  

Δv(x)  =  x'(k+1)Px(k+1) –  x'(k)Px(k)  = x'(k) [Φ'PΦ – P ] x'(k) + 2u(k)Γ'PΦx(k) + u2(k) Γ'PΓ 

–Q 

•   Idea:  Pick u(k) to drive x(k) → 0 even faster than open-loop.  

Make Δv(x) as negative as possible. Set                                      :  

  -  u(k) = – (Γ'PΓ)-1Γ'PΦx(k)  if |u(k)|  <   c1 

  -  u(k) = – c1 · sgn [(Γ'PΓ)-1Γ'PΦx(k)]  if |u(k)|  ≥  c1 

•   Algorithm:  K = (Γ'PΓ)-1Γ'PΦ  

1.  Compute w = – Kx(k)  

2.  If | w | <  c1 set u(k) = w, else u(k) = c1sgn(w)  

•   As h → 0,  u(k) → "bang-bang" controller; u(k) = ± c1  

•   Different Q → different P and K  =>  Q = "design" parameters  

Δv(x) = – x' [Q + Φ'PΓ(Γ'PΓ)-1Γ'PΦ] x   in linear region  

  -  Does increasing qii speed up the response?, i.e., drive xi → 0 faster 
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 max

0.5
0.15

λ A


Example – Lightly Damped System 

    0       1  
–10  –0.5 

 0  
10 x =                    x +          u ,  y = [ 1  0 ]x ;   10open-loop ζ  ≈ .08, ωn =         ;    x(0) = [ 1  0 ]' 

•   Open-loop system response 

2 
0 

0.5 

1.0 

3 

-0.5 

4 

output y(t) 

t(sec) 

-1.0 

1 6 7 8 5 9 

•   Lyapunov digital design, h = 

Pick Q =            => P = 1   0  
0   1 

74.0      0.448  
  0.448  7.85 

K = (Γ'PΓ)-1Γ'PΦ = [ –0.469  0.631 ]  => {poles of Φ – ΓK @ 0, 0.887} 

•   Response with unconstrained u  

(dominant 1st order mode) 

(b) input u(kh) 

1 2 
0 

0.2 

0.4 

3 4 5 
t 

0.6 

0.8 

(a) output y(t) 

1 2 
0 

0.5 

1.0 

3 4 5 
t 

1.5 
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Constrained Response, x(0)=[1  0]’ 
•   | u(k) |  ≤  0.30 

(a) input u(kh) (b) output y(t) 

1 2 
0 

0.2 

0.4 

3 

-0.2 

4 5 

1 2 
0 

0.5 

1.0 

3 
-0.5 

4 5 t t 

•   | u(k) |  ≤  0.15 

(b) output y(t) (a) input u(kh) 

1 2 
0 

0.5 

1.0 

3 
-0.5 

4 5 t 1 2 
0 

0.2 

0.4 

3 
-0.2 

4 5 t 

•   "Bang-bang" behavior until | K x(k) |  ≤  c1, whereupon closed-loop linear response takes over.   

•   Modification of q11, q22 has small effect on response.  

General comments:  

  -  System must be open-loop stable to compute P  

  -  Very little control over time response or poles  

  -  Lyapunov controller useful in cases where h ~ large  

  -  Applicable to multi-input case, ui = –ci sat[Kix(k)/ci]  

  -  Assures CL system stability even when control is limited – not necessarily true in other 

     SVFB design approaches.   
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Introduction to Least Squares Optimization 

x(k+1) = Φx(k) + Γu(k);    x(0) = initial state 

u(k) = unconstrained  

•   Objective:  Determine a SVFB control u(k) = – Kx(k) so that x(k) → 0  
"nicely" => stability and more  

•    Pole placement approach  

  -  Don't necessarily know where good λi(Φ) pole locations are  

m  -  Resulting system may have low | RD | or 

  -  Needed gains often too big ==>  need to manage | u(k) |  

•   Optimal control approach  

  -  Express mathematically what you are trying to achieve  

(1)  Each xi(k) → 0 nicely:  consider minimizing  

qii  ~  scale factors to weight relative importance of different errors, qii ≥  0  

Q = positive (semi) definite, usually diagonal  

(2)  Don't want u(k) to be too large:  conserve energy  

                                                                               

(3)  Combine into a composite criterion,  J = ISE + E  

R  > 0 adjusts tradeoff between speed of response and magnitude of control input.  
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General Comments 

•   Linear quadratic (LQ) optimal control problem  

Find u(k) = – Kx(k) to minimize  

•   General quadratic cost functional  

  -  Historical use (from Gauss, Wiener, Kalman, etc.)  

  -  Physical appeal: larger deviations from nominal are weighted more heavily  

  -  Physical interpretation: energy is generally ~ xi
2, ui

2  

  -  Mathematically tractable ("easy" to take            )  

  -  Most overworked problem in modern control theory  

•   Properties of J  

  -  J  ≥ 0, zero only if  x(0) is such that free response satisfies   

  -  Any feedback control that gives a finite value to J must necessarily be stabilizing   

  -  If R =0, "optimal" control would try to place CL poles at zi → 0  

(drive  x(0) →  0 as fast as possible)  

Special case:  if only concerned about output deviations,   

consider minimizing  

since y(k) = C x(k),   

=>  a "special" case of general state weightings 
Q 

     1

0

   ( )
TT T

k

J x k C Q C x k u k Ru k




   

     
0

  ( ) ; 0; 0
TT

k

J x k Qx k u k Ru k Q R
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Optimization Approach 

•   An expression for J  

  -  Let u(k) = – Kx(k) be any FB control such that CL system  x(k+1) = (Φ – ΓK) x(k), is stable,  

                           

  -  Since CL system is stable,  

(1)  Pk satisfies the linear (Lyapunov) equation  

Pk = (Φ – ΓK)'Pk(Φ – ΓK) + Q + K'RK 

(2)  Pk is positive (semi) definite symmetric  

Pk 

x(k) = (Φ – ΓK)kx(0),    u(k) = – Kx(k) then 

•   Pk is called the cost matrix associated with gain K  

J = x'(0) Pk x(0) for any x(0)  

  -  Pk does not depend on x(0) but only on feedback gains K, Pk ↔  K  

•   Design approach  

x'P*x   ≤  x'Pkx    for all x  

  -  Develop an iterative approach to find K*.  Start with gain K0  ↔   P0, try to find a gain 

     K1 ↔ P1 so that P1 < P0, ie., K1 is “more optimal” than K0. 

  -  Find the gain K* that gives the "smallest" cost matrix in a positive defines sense, i.e., 

     if  K* ↔ Pk*    P* then for any K with K ↔ Pk 
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Method for Obtaining K1 from P0 

•   Start with a stabilizing gain  K0 ↔  P0  

P0 = (Φ – ΓK0)'P0(Φ – ΓK0) + Q + K0'RK0 

  -  if K1 ↔  P1 (assuming K1 is stabilizing)  

P1 = (Φ – ΓK1)'P1(Φ – ΓK1) + Q + K1'RK1 

•   Difference δP = P0 – P1 satisfies  

    δP = (Φ – ΓK1)'δP(Φ – ΓK1) + (K0 – K1)'(R+Γ'P0Γ) (K0 – K1)  

+ (K0–K1)’ [(R+Γ'P0Γ)K1 – Γ'P0Φ] + [(R+Γ'P0Γ)K1 – Γ'P0Φ)]' (K0–K1)  

=>  if select  
K1 = (R + Γ'P0Γ)-1Γ’P0Φ 

then by Lyapunov (if the CL matrix Φ–ΓK1 is stable):  δP  > 0;  

i.e., P1 <  P0 ( x'P1 x  ≤  x'P0 x), so K1 is "better" than K0.  

•   If K1 is selected as shown Φ – ΓK1 is stable  

  -  Rewrite equation for P0  

P0 = (Φ – ΓK1)'P0(Φ – ΓK1) + Q + K1'RK1   + (HK0–Γ'P0Φ)'H-1(HK0–Γ'P0Φ);  H    R + Γ'P0Γ  

  -  Since Qeff  > 0  and  P0 > 0  =>  Φ – ΓK1 is stable by Lyapunov  

•   Continue the process!  K1 → P1 → K2 → P2 → ···  

  -  Each Pi  <  Pi-1  =>  {Pi} converge to P*  

{Ki} converge to K*  

  -  Each Pi is positive (semi) definite  

  -  No P can be <  P*  =>  K* is unique 
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The Discrete Riccati Equation 

•   Main algorithm to find optimal gains  

  -  Select any K0 such that Φ – ΓK0 is stable  
  -  then  K* = lim  Ki = optimal gain 

i→∞ 

where  Ki+1 = (R  +  ΓTPiΓ)-1ΓTPiΦ ;     i = 0, 1, ...                 

and Pi is the cost matrix associated with gain Ki  

Pi = (Φ – ΓKi)
T Pi(Φ – ΓKi) + Q + Ki

T RKi 

•   At convergence:  
K* = (R  +  ΓTP*Γ)-1ΓTP*Φ 

Jmin =  x'(0)P* x(0) 

and                     P* = (Φ – ΓK*)TP*(Φ – ΓK*) + Q + K*T RK*  

P* = Φ' [P* – P*Γ(R + ΓTP*Γ)-1ΓTP*]Φ + Q 

Referred to as the "discrete algebraic Riccati equation" (DARE)  

  -  Alternate schemes, besides the iterative one, exist for solving  the DARE directly.  

  -  P* = the unique positive definite solution of the DARE.  

•   Computing P* via the iterative algorithm  

  -  Requires only a subroutine to solve Lyapunov equation  

  -  Ki → K* quadratically, || Ki+1 – K* || <  c || Ki –K* ||2  

  -  Convergence typically in ~ 10 iterations {depends upon how close  |λmax(Φ – ΓKi)| are to 1}  

  -  If desire N digit accuracy in P*, need to solve Lyapunov equation to N+1 digit accuracy 

  -  Use stabilization algorithm to obtain K0 

* * 1 * 1

* 1 1 1

( )

     = ( )

T T

T T

P P I R P Q

P R Q
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h σ σ
Aξ Aξ

1 1 1 1
0 0 0

h
R = hR  + e Bdξ Q e Bdξ dσ    hR  + Γ'Q Γ

2

T

   
        

h h
A σ Aξ

1 1
0 0

h
M e Q e Bdξdσ  Φ'Q Γ

2

T

  
h

A σ Aσ

1 1 1
0

h
Q e Q e dσ  Q Q

2

T T    

           
k 0

J x k Qx k 2x k Mu k u k Ru kT T T




    

                   c 1 1
0

k

J x t Q x t u t R u t dt x k Qx k  + 2x k Mu k  + u k Ru kT T T T T




        

Cross-weighted and Continuous Cost Functionals 

K* = m x n optimal FB gain matrix  

•   Cross-weights in cost functional (M = n x m)  

y(k) = Fx(k) + Du(k)  

u(k) = – (R + ΓT  P*Γ)-1ΓTP*Φx(k) – R-1MT x(k)       

  where P* satisfies DARE 

-  Usually arises when weighting a "generalized“ output  (or error function in TITO formulation)  

-  Optimal control is: 

P* = ΦT [P* – P*Γ(R+ΓTP*Γ)-1Γ'P*]Φ + Q 

Φ = Φ – ΓR-1MT ;   Q = Q – MR-1MT  ≥ 0     

•   Translation of continuous cost functional  

                            

(easier to use gain equivalence K*|continuous   →  K*|discrete )  

Two input (control & disturbances) 

-Two output (error and measured output) 
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/

c 1 1 2 2
0

1 2

J [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )]

( ) and ( ) are frequency weights

h T Tj h T j h j h j h j h T j h j h j h

j h j h

h
y e W e W e y e u e W e W e u e d

W e W e


       

 




    

LQR with Frequency Weighted Cost Functional 
•  Recall  Parseval’s theorem for discrete-time systems (one-sided) 

 

 

•  LQR with frequency weighted cost functional  

 

 

 

 

• Transform the cost functional back to time domain via the following steps: 

 

 

 

 

 

 

• Augmented system 

/

0
0
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h
g k g k G e G e d
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0

1

Represent ( ) ( ) ( ) ( ) ( )

Similarly, ( ) ( ) ( ) ( ) ( )

J [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )]

         = [ ( )

h T Tj h T j h j h j h j h T j h j h j h

T

k

y z W z y z W z C zI D

y z W z u z W z C zI D

h
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1 2 2
0
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T

y k y k y k
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1 1 1

1
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c

0

0

1 21 2

Cross-weighted cost functional

J = ( ) ( )

   = [ ( ) ( )

  2 ( ) ( ) ( ) ( )]

Dynamic compensator:

( ) ( )

        = ( ) ( ) ( )

T

a a

k

T T

a aa a

k

T TT T

a a a a a

aa

x

Y k Y k

X k C C X k

X k C D u k u k D D u k

u k K X k

K x k K x k K x k
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( ) ( )

( ) ( )

p

m
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W z w z I







Copyright ©2006-2012  by K. Pattipati  23 

Application of the Optimal Control 

•   We can show u(k) = – K* x(k) is the optimal control, not just the linear optimal one.  

•   The closed-loop x(k+1) = Φx(k) – ΓK* x(k) must be stable.  

•   Selection of weightings  

  -  Major design step in method's application  

  -  Initial design:  

qii = relative weighting on state xi 
    1  

| xi,max |
2 

= 

where xi,max = maximum desired (or anticipated) value of xi(k). If unconcerned about 

xi deviations from zero, set qii = 0. 

  -  Adjust control weighting rii to achieve desired balance between control usage and response 

      speed. Initially,      1  

| uimax |
2 

rii = 

  -  "Tune" qii, rii to obtain desired CL time response starting with representative x(0)s   

=>  increase qjj to decrease RMS xj decrease rii  to increase CL speed of response 

       trade-off errors in xj ↔ xi via qjj vs. qii 

•   Basically, approach is time-domain oriented, but   

m  -  Examine CL pole locations,     , ωc, etc.  

•   Other "techniques" and "rules" exist for picking weights. 
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  Properties of the Optimal CL system - 1  

(1)   Closed-loop pole locations  

•   Closed-loop poles are the n  roots inside unit circle of  

det  [ R + Γ'(z-1I – Φ')-1Q(zI – Φ)-1Γ ] = 0 

  -  In single input case, if Q = C'C (output weighting only), closed-loop poles satisfy  

R + G(z-1) G(z) = 0 

=>  optimal CL poles of Φ – ΓK* are not arbitrary  

-  As R → 0, CL poles follow a locus of constant damping ζ = .707, until R = R0 = 0.025.  

   Then, for R < R0 have 2 real roots on (–1, 0)! 
. 

•   Example:  Satellite system, G(z) =                  , output weighting only 1  
2 

 (z +1)  

(z – 1)2 

Root locus of CL poles R:  ∞ → 0 

1 +                      = 0 
    1  

4R 

z(z +1)2  

    (z–1)4 

1 –1 

R = ∞ R = 0 (Consider branches with |z|  < 1 only) 

=> too small a value of R will give oscillatory CL response.  

•   General property as R → 0: (single input case with Q = C'C)  

- Assume G(z) has r zeros δ1, δ2, ..., δr  

- As R → 0, r closed-loop poles → r zeros of  G(z)G(z-1) inside or on unit circle.  

  The remaining n – r poles → z = 0. (in ex. r = 1, δ1 = –1) 

- i.e., if δi is a zero of G(z), a CL pole → δ1 or 1/δi (whichever has magnitude < 1) as R → 0. 
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m

  Properties of the Optimal CL system - 2  

  

•   Loop gain properties, LG(z) = K*(zI–Φ)-1Γ  

  - via algebraic manipulations on Riccati equation:  

[I + LG(z-1)]'(R + Γ'P*Γ)[I + LG(z)] = R + Γ'(z-1I – Φ')-1Q(zI – Φ)-1Γ 

  -  in single input case, factor Q = S'S  

Geff(z)      S(zI  – Φ)-1Γ  

[Geff(z)  =  G(z)  if Q = CT C]  

=>  | Return difference | = | 1 + K*(zI – Φ)-1Γ | 
z  =  ejωh  

(2)   Return difference and phase margin 

| 1 + LG(z) |2 =                               ≥                     =  ρ2     (  ρ  < 1 ) 
R + G′eff(z

-1)Geff(z)  

     R + Γ'P*Γ 

     R  

R + Γ'P*Γ 

≥  ρ     

m•   Phase margin,     , properties 

ρ < 1 

–1 

Im LG 

Re LG 

ω 

locus of      LG(z)     
            z = ejωh 

locus of points  

| 1 + LG | = ρ 

  =>             ≥  2 sin-1(ρ/2)        

ρ 

1 

1 
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Example – Satellite  

(Double Integral) System, h=1 

x(k+1) =             x(k) +          u(k) ;  y(k) = x1(k) ;   x(0) = 1   1  
0   1 

0.5  
1.0 

1  
0 

q11 = 1, q22 = 0 (interested in output → 0), R = design parameter 

u(kh) = –[0.5  1.0] x(kh) 

•   R = 1 yields sluggish response 

x1(t),    = x1(kh) 

1 

2 

0 

1.0 

3 

-1.0 

4 5 t 

1 2 

0 

0.5 

1.0 

3 

-0.5 

4 5 t 

•   R = 0.1 gives faster response 

u(kh) = –[ 0.965  1.39]x(kh) 

1 2 

0 

1.0 

2.0 

3 

-1.0 

4 5 t 

x1(t),    = x1(kh) 

1 2 
0 

0.5 

1.0 

3 

-0.5 

4 5 t 

•   R = 0.01 generates CL  

     response with "ripple" 

u(kh) = –[1.46  1.71]x(kh) 

1 2 
0 

1.0 

2.0 

3 

-1.0 

4 5 t 

x1(t),    = x1(kh) 

1 

2 
0 

0.5 

1.0 

3 

-0.5 

4 5 t 

=> Examine CL pole locations as a function of Q, R 
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x = θ,   θ,   d,   d
 

 

 Example – Inverted Pendulum  

on a Cart, h=0.18 sec 

Initial design  

Select R = 1  =>  K* = [ –22.9  –6.98  –0.487  –1.08 ] 

                 θmax  ≈  0.5 rad  
                 dmax  ≈  1 meter  

=>  Q = diag [ 4  0  1  0 ] 

CL poles = 
0.55 ±  j0.03  (ζ ≈  1, ωn = 3.3)  
0.88 ±  j0.11  (ζ ≈  0.7, ωn = 0.95) 

m      ρ = 0.487  =>        ≥ 28.2o 

2 

4 

6 

0 

u(kh) 

– 2 

– 0.2 

– 0.1 

0 

d(t) · 0.1, cart position (m) 
0.1 

0.2 

1 2 

3 4 t(sec) 

1 

2 

3 4 t(sec) 

θ(t), pendulum angle (rad) 

  -  Reduce weighting on u to speed response θ(t) → 0 (will require more control input).   
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Inverted Pendulum II 
2nd Design iteration, R = 0.1  

CL poles = 
0.53 ± j0.09 (ζ = 0.96,  ωn = 3.5)  
0.80 ± j0.16 (ζ = 0.73,  ωn = 1.59) 

m     ρ = 0.439  =>       ≥ 25.4o 

K* = [ –28.4   – 8.67   – 1.39   – 2.20 ] 

  

2 

4 

6 

0 

u(kh) 

– 2 

– 0.2 

– 0.1 

0 

d(t) · 0.1, cart position (m) 0.1 

0.2 

1 2 3 4 t(sec) 

1 2 3 4 t(sec) 

θ(t), pendulum angle (rad) 

8 

– 4 

•   Further possibilities  
  -  Further decrease R (e.g., R = .01 yields ~ 3 sec setting time with 1½ → 2 times the amount 
     of control) 

  -  Modify θ:d = 0.5:1 ratio (minor effect)  

m  -  As R → 0:      ↓ ,  |u(kh)| ↑ ,   ts ↓  and  θ(t) overshoot ↑ 
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 Inverted Pendulum,  

Phase Margin Analysis 
•   R = 0.1 

  1.708z3 – 4.084z2 + 3.197z – 0.8066  

z4 – 4.367z3 + 6.734z2 – 4.367z + 1.0 
LG(z) =  K*(zI – Φ)-1Γ = 

m

-90 

-180 

-360 

L
G

(j
ω

),
 d

eg
 

-270 

ω (rad/sec) 

20 

0 

-20 

| L
G

(j
ω

)|
, 
d
B

 

0.1 1 10 100 

 = 25.6o 

ωc= 5.8 

m  -  Formula       ≥ 2 sin-1(ρ/2) reasonably tight (25.4 vs. 25.6 !)  

•   For single input systems, optimal control design…pole placement design with the same poles.  

  -  But note that pole placement can achieve CL pole locations where an optimal design will 
     not/can not  

  -  As h → 0,  ρ →  1 and      ≥ 60o as for optimal continuous design  m

  -  Generally as gains increase,     decreases   m
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2

k
2

I m

i =1

x k x i
 

  
 


Summary of Optimal  

Control Design Method 

e.g., integral FB via a small weight on 

e.g., command following via weighting [Cx(k)  –  r(k)]2 

Advantages  

  -  Straightforward design methodology  

  -  Design parameters (Q, R) relate to CL response  

  -  Directly applicable to MIMO systems  

  -  Small number of design parameters  

m  -  Has a guaranteed lower bound on 

  -  CL system is always stable  

  -  Numerous extensions can/have been done 

•   Basically a "smart" pole placement SVFB design  
  -  SVFB does not modify system zeros  

•   Based on minimizing a quadratic criterion  

  -  Function of state and control deviations 

=> 

Disadvantages  

  -  Requires fairly extensive software to do design  (dlqr,DARE routines) 

  -  Do not have direct control over CL pole locations (some choices of  Q, R can give poles 
     on z < 0) 

  -  Weighting selection process is largely trial and error  

  -  Quadratic criterion not always best  

  -  Need to measure or estimate all states 

=> 
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       2 2

k=0

J = x k Qx k  + Ru k 1  + GΔ kT


  

Weighting of Control Rate 

•   Usual optimal FB control has high bandwidth  
  -  Can give problems if actuators are rate-limited  

  -  Often not necessary if system dynamics are "slow"  

•   Weight Δ(k) = [u(k) – u(k–1)]/h  in cost functional  

•   Develop augmented system dynamics, xn+1(k) = u(k–1)  

u(k)  =  u(k–1) + hΔ(k)  
=>  x(k+1) = Φx(k) + Γu(k–1) + hΓΔ(k) 

xn+1(k+1) = xn+1(k) + hΔ(k) 

•   Solve "augmented" optimal control problem  χ(k)  <=>  x(k),   Δ(k)  <=>  u(k)  

  -  Augmented system is controllable wr to Δ , if original system was controllable wr to u  

Δ(k) = – Ka χ(k) = – Kx x(k) – Ku u(k–1) 

  -  Alternate structure  u(k) = (1 – hKu )u(k–1) – hKx x(k) 

let χ(k) = [ x(k), u(k–1)]T, 

Φa 

χ(k+1)  =             χ(k) +  h        Δ(k) ;  χ(0) = 
Φ  Γ 

0   1 

 Γ  

1 
x(0)  
  0 

Γa 

diag [ Q   R ] 

     2

a

k=0

J = χ k Q χ k  + GΔ kT


 
 



Copyright ©2006-2012  by K. Pattipati  32 

Properties of Rate Weighted Controller 

u(k) = (1–hKu)u(k–1)  –  hKx x(k) 

•   Analogous to FB                         put through a first-order filter          , with a ~ Ku  

•   As G → 0, Ku → 1/h,  Kx → K*/h and original SVFB control is recovered  

•   Highly recommended for all physical systems 

a  

s + a 

  -  Adds robustness to design  

  -  Generally gives slightly smaller ωc  

  -  Provides ability to manage CL bandwidth  
  -  Effect trade-off between  u  and  u,  x 

•   Example:  Inverted pendulum on a cart,  

  -  add a rate weighting to previous design  

Q = diag [ 4  0  1  0 ], R = 0.1  

G = 0.0081 =                with  Δumax = 2    h      2  
Δumax 

  -  FB control with rate weighting  

u(k) = (1 – hKu)u(k–1) – hKx x(k)  



Ku  = 4.97 ;  Kx = [–109.5  –33.4  –3.61  –6.29 ] 

Kx/Ku = [–22.0   –6.72   –0.726   –1.27 ]  

  -  By analogy recall K*  for G = 0  

K* = [–28.4    –8.67    –1.39    –2.20 ]  
=>  gains decrease to compensate for added filtering 

x = θ   θ   d   d 
 

x uv u k x k u   
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 Simulation Results –  

Rate Weighting Controller 

•   Decrease in magnitude of Δumax (from 7.4 to ≈ 4.5)  

  -  Accompanied by slower system response, but with ≈ same overshoots  

  -  Similar to a time scaling effect  

•   Increasing G to 0.09 further slows response  
                             ts ≈ 6 sec,  Δumax ≈ 3.2  

  -  We soon reach a point of diminished return 

1 2 3 4 t(sec) 

2 

4 

6 

0 

– 2 

– 0.2 

– 0.1 

0 

0.1 

0.2 

1 2 3 4 t(sec) 

θ(t), pendulum angle(rad) 

8 

– 4 

 x(0) = [ 0.2   0   1   0 ] 
G = 0.0081, R = 0.1  
G = 0, R = 0.1 

u(kh) 
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Compensation for Fractional Time Delay 

^ 

τ = Mh + ε ;  M = 0  
•   Recall model for <  1 step (computational) delay  

χ(k)      [x(k), u(k–1)] '  =  augmented state 

χ(k+1) =             χ(k) +         u(k) 
Φ  Γ1 

0   0 
 Γ0  
  1 

  -  Can apply optimal control design directly to augmented model when G = 0;  Qa = [Q,  0].  

[Gives same results as u(kh) = – K*x(kh + ε)]  

•   Alternate time delay model  

  -  Replace u(k) => u(k–1) + hΔ(k) ;  note Γ0 + Γ1 = Γ  

χ(k+1) =             χ(k) + h        Δu(k) 
Φ  Γ 

0   1 
 Γ0  
  1 

  -  In desired form for weighting Δ(k)  

  -  Identical to augmented model but with a modified Γa.  (When ε = h-, Γ0 = 0.)  

Δ(k) =  – Kuu(k–1) – Kx x(k)  

=>  Natural fit between fractional delay model and weighting of  control  rate.   

      Excellent for   ε  <  h,  i.e., compensation of up to one time-step delay.  

•   For M  ≥ 1 apply state prediction ideas 

^  x(k + M) = prediction of  x at step k + M, obtained by propagating  

x(k + 1) = Φx(k) + Γ1u(k – 1 – M) + Γ0u(k – M) 

^ Δ(k) = – Kuu(k – 1) – Kxx(k + M) 
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Minimax H Controller - 1 

x(k+1) = Φx(k) + Γu(k) + E d(k) ;    x(0) = initial state;  d(k) is unknown but bounded 

       2

0

min max   ( ) ( ) max

inds the worst case disturbance if can find smallest -full state feedback controller

T TT

u d
k

J x k Qx k u k Ru k d k d k Mini criterion

f H











   
 

 



•  Objective:  Determine a SVFB control u(k) = – Kx(k) and worst case d(k) so that x(k) → 0. 

    It turns out that the worst case d (k) = = – Kd x(k) , but we won’t feed it back.  

    

  

•   An expression for J assuming [ - K-E Kd ] is stable .  Actually, need  - K to be stable    

     

      
 2

0

2

 

( )[ ] ( ) (0) (0) (0) (0)

where satisfies the Lyapunov equation ( ) ( )

T T TT T

d d k k

k

T T T

k k d k d d d

J x k Q K RK K K x k x P x Trace P x x

P P K EK P K EK Q K RK K K









    

       



•   Design approach 

    

       

  -  Find the gains K* and Kd * that optimize the cost matrix in a positive definite sense 

  -  Following the LQ optimization approach used earlier or Hamiltonian approach next 

* 1 * * 1

* * * 1

2

1

2

( )

1
( )

1
  where  = 

T

n

T

d n

T T

K R P I SP

K E P I SP

S R EE





 





    

   

  

*

* * 1

1

2

 is the solution of Discrete Algebraic Riccati Equation:

( )

     = ( )

where [ ] and R ( , )

T

n

T T T T

a a a a a

a a l

P

P P I SP Q

P P R P P Q

E Diag R I





   

      

    

•   May not have a solution for all  need to find the range [min , ] 
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Minimax H Controller - 2 

*

* *

2

Define Lyapunov function ( ( )) ( ) ( )

Need to prove ( ( 1)) ( ( )) 0

( )[( ) ( ) ] ( ) 0

1
( )[ ] ( ) 0 ( )[ ] ( ) 0

T

T T

d d

T TT T T

d d

V x k x k P x k

V x k V x k

know x k K EK P K EK P x k

x k Q K RK K K x k x k Q K RK x k




  

       

        

•  The closed-loop system matrix  - K is stable if [ - K-E Kd ] is stable.    

•   Hamiltonian approach 

           

          

2

0

2

1
Problem : min max   ( ) ( ) . . 1 ( ) ( )

2

Define Hamiltonian:

1
( ( ), ( 1), ( ), ( ))   ( ) ( ) ( 1)[ ( ) ( )]

2

Optimality conditions:

T TT

u
k

d

T T TT

x k Qx k u k Ru k d k d k s t x k x k u k Ed k

H x k k u k d k x k Qx k u k Ru k d k d k k x k u k Ed k
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Hamiltonian is a Symplectic matrix
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Computing Minimax Controller 

•   Main algorithm to find minimax controller gains  

 Step 1: Pick a value of  > 0 and compute the eigen values of the  Hamiltonian  

 Step 2:  Check if Hamiltonian has any eigen values on the unit circle. 

              If it does, increase  and go to Step 1 with this .  Else, go to Step 3. 

Step 3:  Solve the discrete Riccati equation for P*.  Do Cholesky decomposition of  P* .  

             If it is not positive definite, increase   and go to Step 1. Else go to Step 4. 

Step 4:  Check if  - K is stable.  If it is not, increase   and go to Step 1.  Else, we have 

              found a minimax controller. 

 •   Application to F-8 Example with Q1 = I5 and R1 = 0.01 I2 in the continuous domain.  

•  Discretize the system with h=0.01   

•   Form the Hamiltonian matrix.  I found starting with a large value of  better.  DARE 

     routine tells you when it can’t order eigen values when they are close to unit circle 

•   I found  = 0.165 found the gains, but 0.160 didn’t.  Then, via bisection, you can find the 

     smallest  for which you can get stable controller is 0.1635.   This corresponds to full 

     state feedback H controller.  For  greater than this minimum, it is a minimax controller. 

•  Gain matrix (This controller will have a bias due to disturbances. Need integral control) 

   K=[-6.0591   -1.7236   -4.2557    3.3119   -1.2936 

         -1.9994    8.1329   -0.5474    4.9811   -0.3053]  

Closed-loop Eigen values: [0.1813 0.9912 - 0.004i   0.9912 + 0.004i   0.9252  0.9927 ] 
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