Lecture 2: Computing $e^{A t}$

Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering University of Connecticut

Contact: krishna@engr.uconn.edu (860) 486-2890

ECE 6435

Adv Numerical Methods in Sci Comp
Fall 2008
September 3, 2008

. What is the need for Computing $e^{\text {alt }}$? $=1$

\square What is the need for computing $e^{A t}$?

- $e^{A t}$ is a transcendental function that arises in a variety of applications. A representative set of examples are as follows:
I. . $\underline{\dot{x}}(t)=A \underline{x}(t)+B \underline{u}(t) \Rightarrow \underline{x}(t)=e^{A t} \underline{x}_{0}+\int^{t} e^{A(t-\sigma)} B u(\sigma) d \sigma$
II. Discrete-time version: $u(t)$ piecewise constant over $t \in[k \delta,(k+1) \delta)$

$$
\underline{x}_{k+1}=\Phi \underline{x}_{k}+\Gamma \underline{u}_{k}, \quad \Phi=e^{A \delta}, \quad \Gamma=\int_{0}^{\delta} e^{A \sigma} B d \sigma
$$

III. $\underline{\dot{x}}=A \underline{x}(t)+B \underline{u}(t)+E \underline{w}(t) ; \underline{x}(0)=N\left(\underline{x}_{0}, X_{0}\right)$

$$
\begin{aligned}
& \qquad \underline{w}(t)=\text { zero-mean white Gaussian noise with covariance } \\
& E\left\{\underline{w}(t) \underline{w}^{T}(\sigma)\right\}=W \delta(t-\sigma) \\
& \text { Define } X(t)=E\left\{\underline{x}(t) \underline{x}^{T}(t)\right\} \\
& \dot{X}(t)=A X(t)+X(t) A^{T}+E W E^{T} \\
& X(t)=\int_{0}^{t} e^{A \sigma} E W E^{T} e^{A^{T} \sigma} d \sigma+e^{A t} X_{0} e^{A^{T} t}
\end{aligned}
$$

IV. There exist many other control situations where $e^{A t}$ and various \int arise. See the paper by Dorato and Levis, Dec. 1971 IEEE T-AC.

Eigen Method for Computing e ${ }^{4 t}$

- Most fundamental question:
- How to compute the functions $e^{A t}$ and various \int for a given A and t
I. In this lecture, we focus on the problem of computing $e^{A t}$
- Computing $e^{A t}$ is a subset of a broader problem: Compute $f(A)$ e.g., $\sin A, \ln A, e^{A}, \cos A$, etc.
- Since $A=P \Lambda P^{-1}, \quad A^{k}=P \Lambda^{k} P^{-1}$

$$
\begin{aligned}
& f(A)=P f(\Lambda) P^{-1}=\operatorname{PDiag}\left[f\left(\lambda_{i}\right)\right] P^{-1}=\sum_{i=1}^{n} f\left(\lambda_{i}\right) \xi_{i} \eta_{i}^{T} \\
& P=\left(\begin{array}{llll}
\underline{\xi}_{1} & \underline{\xi}_{2} & \cdots & \underline{\xi}_{n}
\end{array}\right) \quad P^{-1}=\left[\begin{array}{l}
\underline{\eta_{1}^{T}} \\
\underline{\eta}_{2}^{T} \\
\underline{\eta}_{n}^{T}
\end{array}\right]
\end{aligned}
$$

We will later see that this is one of the worst methods for computing $f(A)$.

Example: $\quad A=\left[\begin{array}{cc}1+10^{-5} & 1 \\ 0 & 1-10^{-5}\end{array}\right] ; \quad P=\left[\begin{array}{cc}1 & -1 \\ 0 & 2 \times 10^{-5}\end{array}\right]$

Computing $e^{4 t}$ and Ill-conditioning

$$
P f(\Lambda) P^{-1}=\left[\begin{array}{cc}
2.718307 & 2.75000 \\
0.00000 & 2.718524
\end{array}\right] ; \text { actual }=\left[\begin{array}{cc}
2.718309 & 2.718282 \\
0.00000 & 2.718255
\end{array}\right]
$$

- We will see in Lecture 10 that condition number of the given Eigen value problem $\propto 1 /\left|\lambda_{i}-\lambda_{j}\right|$

$$
\lambda_{i} \approx \lambda_{j} \Rightarrow \text { trouble } \Rightarrow \text { since condition number } \approx 10^{5}
$$

\square Another way

- Suppose have an approximation to $f(a)$, e.g., a polynomial series

$$
e^{a} \approx 1+a+\frac{a^{2}}{2!}+\cdots+\frac{a^{N}}{N!}=\sum_{i=0}^{N} \frac{a^{i}}{i!}=\hat{f}(a)
$$

- Then how much error do we make by approximating $f(a)$ by $\hat{f}(a)$?
- Theorem: Given a scalar function $f(a)$. Let $\hat{f}(a)$ be an approximation to $f(a)$ for $-c \leq a \leq c$ (or $|a| \leq c)$. Then $\hat{f}(A)$ is an approximation of $f(A)$ valid for spectral radius $\rho(A) \leq c$ with truncation error:

$$
\|f(A)-\hat{f}(A)\| \leq\|P\|\left\|P^{-1}\right\| \max _{i}\left|\left[f\left(\lambda_{i}\right)-\hat{f}\left(\lambda_{i}\right)\right]\right|
$$

where P is the similarity transformation that diagonalizes A.

Error Analysis

Proof: $\quad f(A)=P \operatorname{Diag}\left[f\left(\lambda_{i}\right)\right] P^{-i}$

$$
\begin{aligned}
& \hat{f}(A)=P \operatorname{Diag}\left[\widehat{f}\left(\lambda_{i}\right)\right] P^{-i} \quad \text { valid as long as }\left|\lambda_{i}\right| \leq c \\
& \Rightarrow f(A)-\widehat{f}(A)=P \operatorname{Diag}\left[f\left(\lambda_{i}\right)-\widehat{f}\left(\lambda_{i}\right)\right] P^{-1} \\
& \|f(A)-\widehat{f}(A)\| \leq\|P\|\left\|P^{-1}\right\| \max _{i}\left[\mid f\left(\lambda_{i}\right)-\widehat{f}\left(\lambda_{i}\right) \|\right]
\end{aligned}
$$

- So, the problem of computing $f(A)$ is reduced to finding a suitable, simple $f(a), a$ is a scalar
- This is a scalar numerical function approximation
- Note that most \widehat{f} are often polynomials or ratio of polynomials (of some type).
- Example: Maclaurin's series for $f(a)_{2}$

$$
f(a)=f(0)+f^{\prime}(0) a+f^{\prime \prime}(0) \frac{a^{2}}{2!}+\cdots=\sum_{k=0}^{\infty} f^{(k)}(0) \frac{a^{k}}{k!}
$$

\square Key sub-problem: how to evaluate (truncated) polynomials efficiently.

- Evaluation of scalar and matrix polynomials: consider:

$$
\begin{aligned}
& \widehat{f}(a)=p_{N}(a)=b_{0}+b_{1} a+b_{2} a^{2}+\ldots+b_{N} a^{N} \\
& \widehat{f}(A)=p_{N}(A)=b_{0}+b_{1} A+b_{2} A^{2}+\ldots+b_{N} A^{N}
\end{aligned}
$$

Horner's Rule

\square A method called Horner's rule or reverse nesting gets around round-off error problems

- Horner's Rule
- Consider $\quad b_{0} I+b_{1} A+b_{2} A^{2}=b_{0} I+A\left[b_{2} A+b_{1} I\right]$
- Initialize $p_{0}=b_{2} I$,
- $p_{1}=b_{2} A+b_{1} I, n^{2}$ Multiplications and n additions
$-p_{2}=A p_{1}+b_{0} I, \quad n^{3}$ Multiplications and $n^{3}+n$ additions
- In general
$b_{0} I+b_{1} A+b_{2} A^{2}+\ldots+b_{N} A^{N}$ can be computed in ($N-1$)matrix multiplications via:

$$
A\left(A\left(A\left(A\left(b_{N} A+b_{N-1} I\right)+b_{N-2} I\right)+\ldots+b_{1} I\right)+b_{0} I\right)
$$

- Algorithm

\[

\]

Smarter Horner's Rule - 1

\square We can do better than (N-1) matrix multiplies

- Suppose have

$$
\begin{aligned}
& p(A)=A^{3}\left[A^{3}\left\{b_{9} A^{3}+\left(b_{8} A^{2}+b_{7} A+b_{6} I\right)\right\}\right. \\
& \\
& \left.\quad+\left(b_{5} A^{2}+b_{4} A+b_{3} I\right)\right]+b_{2} A^{2}+b_{1} A+b_{0} I \\
& A_{2}=A^{2} ; A_{3}=A A_{2} \\
& S=b_{9} A_{3}+b_{8} A_{2}+b_{7} A+b_{6} I \\
& S=A_{3} S+b_{5} A_{2}+b_{4} A+b_{3} I \\
& S=A_{3} S+b_{2} A_{2}+b_{1} A+b_{0} I \\
& \Rightarrow O\left(4 n^{3}\right) \text { vs } O\left(8 n^{3}\right)
\end{aligned}
$$

\square In general, if s is any integer satisfying $1 \leq s \leq N^{1 / 2}$, then

$$
\begin{aligned}
& p(A)=\sum_{k=0} B_{k}\left(A^{s}\right)^{k} \quad r=\operatorname{floor}(N / s) \\
& \text { where } B_{k}=b_{s k+s-1} A^{s-1}+\ldots+b_{s k+1} A+b_{s k} I ; \quad k=0,1,2, \ldots, r-1 \\
& B_{k}=b_{N} A^{N-s r}+\ldots+b_{s r+1} A+b_{s r} I ; \quad k=r
\end{aligned}
$$

\square Compute $A^{2}, A^{3}, \ldots, A^{s}$ and apply Horner' Rule to new polynomial.
\square Operation count: $\approx(s+r-2) n^{3} \pm n^{3}$ if $s=\operatorname{floor}(\operatorname{sqrt}(N))$
\Rightarrow minimal computation of $N^{1 / 2} n^{3}$.

Smarter Horner's Rule - 2

\square Previous example: $s=3$ and $r=3$
$B_{0}=b_{2} A^{2}+b_{1} A+b_{0} I$
$B_{1}=b_{5} A^{2}+b_{4} A+b_{3} I$
$B_{2}=b_{8} A^{2}+b_{7} A+b_{6} I$
$B_{3}=b_{9} I$
Example 2: $13^{\text {th }}$ order polynomial $s \leq(13)^{1 / 2}$

- Pick $S=3$ and $r=$ floor $(13 / 3)=4$
- $B_{0}=b_{2} A^{2}+b_{1} A+b_{0} I$
- $B_{1}=b_{5} A^{2}+b_{4} A+b_{3} I$
- $B_{2}=b_{8} A^{2}+b_{7} A+b_{6} I$
- $B_{3}=b_{11} A^{2}+b_{10} A+b_{9} I$
- $B_{4}=b_{13} A+b_{12} I$
- Evaluate $A^{3}\left[A^{3}\left\{A^{3}\left(A^{3}\left[b_{13} A+b_{12} I\right]+b_{11} A^{2}+b_{10} A+b_{9} I\right)\right.\right.$

$$
\left.\left.+b_{8} A^{2}+b_{7} A+b_{6} I\right\}+b_{5} A^{2}+b_{4} A+b_{3} I\right]+b_{2} A^{2}+b_{1} A+b_{0} I
$$

\square Q: How do we use these concepts of function approximation and evaluation of polynomials?

Computation of $f(A)$

- Computation of $f(A)$
- If approximate $f(a)$ by $\widehat{f}(a)$, then $\widehat{f}(A)$ approximates $f(A)$
- There are basically three approaches:
- MacLaurin's (Taylor's) series $|a| \leq 1$
- Chebyshev polynomials
- Pade rational approximation
- MacLaurin's (Taylor's) series
- $f(a)=b_{0}+b_{1} a+b_{2} a^{2}+\cdots+b_{N} a^{N}$

$$
=f(0)+f^{\prime}(0) a+f^{\prime \prime}(0) \frac{a^{2}}{2}+\cdots+\frac{f^{N}(0) a^{N}}{N!}
$$

- Note that $b_{k}=\frac{f^{K}(0)}{K!}$

Q Q What is the error involved in approximating $f(A)$ by $\hat{f}(A)$?

$$
\left\|f(A)-\sum_{k=0}^{N} b_{k} A^{k}\right\|_{2} \leq \frac{n}{(N+1)!} \max _{0 \leq x \leq 1}\left\|f^{N+1}(A x)\right\|_{2}
$$

Approximation Error - 1

\square Before we present proof, consider zero ${ }^{\text {th }}$-order approximation to a scalar function $f(a)$ at $a=x$

- Error $=b_{1} x+b_{2} x^{2}+\ldots=f^{\prime}(\xi) \cdot x$ (from derivative mean-value theorem)
- For $n^{\text {th }}$ order approximation,

$$
\text { error }=\frac{f^{N+1}(\xi)}{(N+1)!} \cdot x^{N+1}
$$

- The result can be extended to matrices as well.
- Proof:

$$
\begin{aligned}
& \text { Let } f(A x)=\sum_{k=0}^{N} b_{k}(A x)^{k}+E(x) ; \quad 0 \leq x \leq 1 \\
& \text { then } \quad f_{i j}(x)=\sum_{k=0}^{N} \frac{f_{i j}^{k}(0)}{k!} x^{k}+\frac{f_{i j}^{N+1}\left(\xi_{i j}\right)}{(N+1)!} x^{N+1} \quad \text { for some } \xi_{i j} \in[0, x]
\end{aligned}
$$

Approximation Error - 2

$$
\Rightarrow e_{i j}(x)=\frac{f_{i j}^{N+1}\left(\xi_{i j}\right)}{N+1!} x^{N+1}
$$

- Now $f_{i j}^{N+1}$ is the $(i, j)^{t h}$ entry of $f^{N+1}(A x)$ and therefore

$$
\begin{gathered}
e_{i j}(x) \leq \max _{0 \leq x \leq 1} \frac{f_{i j}^{N+1}}{(N+1)!} \\
\leq \max _{0 \leq x \leq 1} \frac{\left\|A^{N+1} f^{N+1}(A x)\right\|_{2}}{(N+1)!} \\
\text { since }\|E(x)\|_{2} \leq n \max _{i, j} e_{i j}(x) \text { we have } \\
\left\|f(A)-\sum_{k=0}^{N} b_{k} A^{k}\right\| \leq \frac{n}{(N+1)!} \max _{0 \leq x \leq 1}\left\|A^{N+1} f^{N+1}(A x)\right\|_{2}
\end{gathered}
$$

Chebyshev Polynomials

General series \rightarrow Chebyshev:

- Let $\left\{\Phi_{k}\right\}$ be a complete set of polynomials on $|a| \leq 1$ $\Phi_{k} \sim k^{\text {th }}$ order polynomial
- Then, if $f(a)=\sum_{k=0}^{\infty} b_{k} \Phi_{k}(a)$, suggest using $\hat{f}(a)=\sum_{k=0}^{N} b_{k} \Phi_{k}(a)$
- So error in $\hat{f}(a) \sim b_{N+1} \Phi_{N+1}(a) \approx|f(a)-\hat{f}(a)|$, an $(N+1)^{t h}$ order polynomial

Want zero error at as many points as possible in $(-1,1)=N+1$. Also want uniform error.

- The Chebyshev polynomials have this property:

$$
\begin{aligned}
& T_{k}(a) \leftrightarrow \Phi_{k}(a), T_{k}(a)=\cos \left(k \cos ^{-1} a\right) ;|a| \leq 1 \\
& \text { or if } \theta=\cos ^{-1} a \text { or } \cos \theta=a \rightarrow T_{k}(\cos \theta)=\cos (k \theta)
\end{aligned}
$$

- Essentially we have made a change of variable $a=\cos \theta$

Chebyshev Polynomials - 2

Chebyshev functions convert periodic functions into ordinary polynomials

$$
\begin{aligned}
& 1, \cos \theta, \cos 2 \theta, \cos 3 \theta, \text { etc. } \\
& \left.\downarrow \begin{array}{l}
\downarrow \\
\downarrow, 2 a^{2}-1,4 a^{3} \downarrow \\
\downarrow \\
\downarrow
\end{array}\right), \text { etc. } \\
& T_{0}(a), T_{1}(a), T_{2}(a), T_{3}(a)
\end{aligned}
$$

a

uniform $a \rightarrow \theta$ denser near the middle
Three-term recursion

$$
\cos (k+1) \theta=\cos k \theta \cos \theta-\sin k \theta \sin \theta
$$

$$
\cos (k-1) \theta=\cos k \theta \cos \theta+\sin k \theta \sin \theta \quad \Rightarrow \quad T_{k+1}(a)=2 a T_{k}(a)-T_{k-1}(a)
$$

$$
\cos (k+1) \theta=2 \cos \theta \cos k \theta-\cos (k-1) \theta
$$

$$
\cos 2 \theta=2 \cos ^{2} \theta-1 \quad \Rightarrow \quad T_{2}(a)=2 a^{2}-1
$$

$$
\cos 3 \theta=4 \cos ^{3} \theta-3 \cos \theta \quad \Rightarrow \quad T_{3}(a)=4 a^{3}-3 a
$$

$$
\cos 4 \theta=2 \cos 3 \theta \cos \theta-2 \cos \theta
$$

$$
=8 \cos ^{4} \theta-8 \cos ^{2} \theta+1
$$

$$
\Rightarrow \quad T_{4}(a)=8 a^{4}-8 a^{2}+1
$$

Properties of Chebyshev Polynomials

- Nice properties of Chebyshev polynomials
- The leading coefficient 2^{k-1} for $k \geq 1$ and 1 for $k=0$.
- Symmetry $T_{k}(-a)=(-1)^{k} T_{k}(a)$

- Has k zeros in $(-1,1)$ at $a_{i}=\cos \left(\frac{2 i-1}{2 k} \cdot \pi\right)=\cos \left[\left(i-\frac{1}{2}\right) \frac{\pi}{k}\right], \quad i=1,2, \cdots, k$
- Has ($k+1$) extrema (maxima and minima) at

$$
\begin{aligned}
& a_{i}=\cos \left(\frac{i}{k} \cdot \pi\right), \quad i=0,1, \cdots, k \\
& T_{k}\left(\cos \frac{\pi i}{k}\right)=\cos \pi i=\left\{\begin{array}{cc}
1 & i \text { even } \\
-1 & i \text { odd }
\end{array}\right.
\end{aligned}
$$

Properties of Chebyshev Polynomials

- Example: for $T_{2}(\cos \theta)=\cos 2 \theta$ maximum at $\cos (i . \pi / 2), i=0,2 \Rightarrow T_{2}(a)=+1$ minimum at $\quad \cos (i . \pi / 2), i=1 \quad \Rightarrow T_{2}(a)=-1$
- Chebyshev polynomials are orthogonal in the interval [-1,1] over a weight $1 / \sqrt{1-a^{2}}$

$$
\begin{aligned}
\frac{2}{\pi} \int_{-1}^{1} \frac{T_{k}(a) T_{l}(a)}{\sqrt{1-a^{2}}} d a & =-\frac{2}{\pi} \int_{\pi}^{0} \cos k \theta \cos l \theta d \theta=\frac{2}{\pi} \int_{0}^{\pi} \cos k \theta \cos l \theta d \theta \\
& =\frac{1}{\pi} \int_{0}^{\pi}[\cos \{(k+l) \theta\}+\cos \{(k-l) \theta\}] d \theta= \begin{cases}0 & k \neq l \\
1 & k=l, \\
2 & k=l=0\end{cases}
\end{aligned}
$$

\Rightarrow so, to find b_{k}, multiply $f(a)$ by $\frac{2}{\pi} \frac{T_{k}(a)}{\sqrt{1-a^{2}}}$ and integrate over $a \in(-1,1)$

- Best to write $f(a)=\frac{b_{0}}{2}+\sum_{k=1}^{N} b_{k} T_{k}(a)=\sum_{k=0}^{N} b_{k} T_{k}(a)-\frac{b_{0}}{2}$
$\Rightarrow b_{k}=\frac{2}{\pi} \int_{-1}^{1} \frac{f(a) T_{k}(a)}{\sqrt{1-a^{2}}} d a=\frac{2}{\pi} \int_{0}^{\pi} f(\cos \theta) \cos k \theta d \theta$ for $k=0,1,2, \ldots$
$\Rightarrow b_{k}$ can be obtained from the cosine transformtion of the function $k=0,1$,

Chebyshev Coefficients

- If we terminate at $N\left(N^{\text {th }}\right.$ order polynomial $)$

$$
e_{N}(a) \sim c_{N+1} T_{N+1}(a) \leq \frac{1}{2^{N}} \cdot \frac{\max _{0 \leq \xi \leq a}\left|f^{N+1}(\xi)\right|}{(N+1)!}
$$

or $\frac{1}{2^{N}}$ improvement over max. Taylor series error over interval $[-1.1]$ or same accuracy for lot less N.

- A practical method of computing b_{k} is to use discrete approximation at the zeros of $T_{N+1}(a)$,

$$
\text { i.e., at } a_{i}=\cos \frac{\pi(i-1 / 2)}{N+1}, i=1,2, \ldots,(N+1)
$$

- So, $b_{k}=\frac{2}{N+1} \sum_{k=1}^{N} f\left(\cos \frac{\pi(i-1 / 2)}{N+1}\right) \cos \left[\frac{\pi(i-1 / 2) \cdot k}{N+1}\right]$
\Rightarrow function approximation is exact at all $(N+1)$ zeros of $T_{N+1}(x)$

Why Chebyshev?

Why Chebyshev is Good?

- T_{k} is bounded between -1 and $+1 \Rightarrow\left|f(a)-\sum_{k=0}^{N} b_{k} T_{k}(a)+\frac{b_{0}}{2}\right| \leq \sum_{k=N+1}^{\infty}\left|b_{k}\right|$
- b_{k}^{s} decreases rapidly \Rightarrow error is dominated by $b_{N+1} T_{N+1}(a)$, an oscillatory term with $(N+1)$ zeros and $(N+2)$ equal extrema distributed smoothly over $[-1,1] \Rightarrow$ error spreads out evenly
- Indeed Chebyshev is a close approximation to a minimax polynomial (of a specified degree) that optimizes $\min _{\hat{f}} \max _{\mid a \leq 1}|f(a)-\hat{f}(a)|$
- Application to $e^{\alpha a}=f(a)|a| \leq 1$: an alternate method to obtain b_{k}

$$
\begin{aligned}
& b_{k}=\frac{2}{\pi} \int_{0}^{\pi} e^{\alpha \cos \theta} \cos k \theta d \theta=2 I_{k}(\alpha)=\text { modified Bessel function of the first kind } \\
& I_{k}(\alpha)=\sum_{r=0}^{\infty}\left(\frac{\alpha}{2}\right)^{k+2 r} \frac{1}{r!k+r!} \quad \text { can be precomputed or use tables or recursions, etc. } \\
& \text { for } e^{a}, \alpha=1 \Rightarrow e^{a}=I_{0}(1)+\sum_{k=1}^{\infty} 2 I_{k}(1) T_{k}(a) \\
& \qquad \alpha=2 \Rightarrow e^{2 a}=I_{0}(2)+\sum_{k=1}^{\infty} 2 I_{k}(2) T_{k}(a), \quad I_{k}(2)=\sum_{r=0}^{\infty} \frac{1}{r!k+r!}
\end{aligned}
$$

Chebyshev and eat

Computing considerations:

- Pick $N \ni \frac{1}{2^{N}(N+1)!}$ sufficiently low ($\approx 1 / 10$ of round-off error)
- Note for $2 x$ it is $1 /(N+1)$!
- $e^{x} \rightarrow N=9 \Rightarrow 1 /\left(512.3 \cdot 6 \cdot 10^{5}\right)=5 \times 10^{-9}$
- $e^{2 x} \rightarrow N=12$ for same accuracy
- Then, evaluate $\hat{f}(a)=\frac{b_{0}}{2}+\sum_{k=1}^{N} b_{k} T_{k}(a)$
- Evaluation of the function in one of two ways:
- Write out $T_{k}(a)$ as a $k^{\text {th }}$ order polynomial in a and evaluate

$$
\begin{aligned}
& \hat{f}(a)=\sum d_{k} a^{k}, \quad d_{k} \cong \text { Taylor coefficients but not exact } \\
& \Rightarrow \text { bad way: since Chebyshev exibits cancellation of terms!! }
\end{aligned}
$$

- Better way: CLENSHAW RECURSION

$$
\begin{aligned}
& \hat{f}(a)=\frac{b_{0}}{2}+\sum_{k=1}^{N} b_{k} T_{k}(a)=\frac{c_{0}(a)-c_{2}(a)}{2}=\frac{b_{0}}{2}+a c_{1}(a)-c_{2}(a) \\
& \text { where } c_{k}(a)=b_{k}+2 a c_{k+1}(a)-c_{k+2}(a), k=N-1, N-2, \ldots, 0 ; c_{N+1}=0, c_{N}=b_{N}
\end{aligned}
$$

Clenshaw Recursion

- Proof of Clenshaw recursion:

$$
\hat{f}(a)=\frac{b_{0}}{2}+\sum_{k=1}^{N} b_{k} T_{k}(a) ; \text { s.t. } T_{k}(a)=2 a T_{k-1}(a)-T_{k-2}(a)
$$

Append with Lagrange multipliers c_{k}

$$
\begin{aligned}
\Rightarrow \hat{f}(a)= & \frac{b_{0}}{2}+\sum_{k=1}^{N} b_{k} T_{k}(a)-\sum_{k=0}^{N} c_{k}\left[T_{k}(a)-2 a T_{k-1}(a)+T_{k-2}(a)\right] \\
= & -\frac{b_{0}}{2}+\sum_{k=0}^{N}\left(b_{k}-c_{k}\right) T_{k}(a)+\sum_{l=-1}^{N-1} 2 a c_{l+1} T_{l}(a)-\sum_{l=-2}^{N-2} c_{l+2} T_{l}(a) \begin{array}{l}
k=1: T_{1}(a)=2 a T_{0}(a)-T_{-1}(a) \\
\Rightarrow a=2 a-T_{-1}(a) \Rightarrow T_{-1}(a)=a \\
k=0: T_{0}(a)=2 a T_{-1}(a)-T_{-2}(a) \\
\Rightarrow T_{-2}(a)=2 a^{2}-1
\end{array} \\
= & -\frac{b_{0}}{2}+\left(b_{N}-c_{N}\right) T_{N}(a)+\left(b_{N-1}-c_{N-1}+2 a c_{N}\right) T_{N-1}(a) \quad \begin{array}{l}
\text { a }
\end{array} \\
& +\sum_{k=0}^{N-2}\left(b_{k}-c_{k}+2 a c_{k+1}-c_{k+2}\right) T_{k}(a)+2 a^{2} c_{0}-c_{0}\left(2 a^{2}-1\right)-c_{1} a
\end{aligned}
$$

Note: use Chebyshev recursion to get $T_{-1}(a)$ and $T_{-2}(a)$. Selecting the multiplier sequence as: $c_{k}=b_{k}+2 a c_{k+1}-c_{k+2} ; \quad c_{N+1}=0, c_{N}=b_{N}$ we obtain $\hat{f}(a)=-\frac{b_{0}}{2}+c_{0}-c_{1} a=\frac{c_{0}-c_{2}}{2}$
since we are computing terms backwards, recursion is stable

Practicalities - 1

- Suppose want $f(a)$ for $x_{1} \leq a \leq x_{2}$
\Rightarrow define $y=\frac{a-\left(x_{1}+x_{2}\right) / 2}{\left(x_{2}-x_{1}\right)} \Rightarrow|y| \leq 0.5 \Rightarrow e^{a}=e^{y\left(x_{2}-x_{1}\right)} e^{\left(x_{1}+x_{2}\right) / 2}$
- Computing $e^{A t}$
- Have $e^{a}=\sum_{k=0}^{N} b_{k} T_{k}(a)-\frac{b_{0}}{2}$ with error $\frac{1}{2^{N}(N+1)!}$ valid in the region $|a| \leq 1$
- Similarly $e^{A t}=\sum_{k=0}^{N} b_{k} T_{k}(A t)-\frac{b_{0}}{2}$. need $\left|\lambda_{i}(A t)\right| \leq 1 \forall i$ or $\rho(A t) \leq 1$ spectral radius
\square Three step process for computing $e^{A t}$
- Make Eigen values cluster around zero $A \rightarrow \tilde{A}$ (SHIFTING)
- Make $\rho(\tilde{A} t) \leq 1(0.2-0.5)$ through scaling (SCALING)
- Use doubling concept (DOUBLING)
- SHIFTING

Let $\beta=\frac{1}{n} \operatorname{tr}(A)$ and $\tilde{A}=A-\beta I ; \quad|\gamma I-\tilde{A}|=|(\gamma+\beta) I-A|=|\lambda I-A|=0$
$\Rightarrow \begin{array}{r}n \\ \gamma_{i}=\lambda_{i}-\beta \Rightarrow \sum_{i=1}^{n} \gamma_{i}=\sum_{i=1}^{n} \lambda_{i}-n \beta=0 \Rightarrow \text { Eigen values clustered around zero. }\end{array}$
Note: $\quad e^{A t}=e^{\tilde{A} t} \cdot e^{\beta t}$, where $e^{\beta t}$ is a scalar

Practicalities - 2

- SCALING

Find $\delta=\frac{t}{2^{m}} \ni\|\tilde{A} \delta\| \leq 0.2$ to $0.5 \Rightarrow \rho(\tilde{A} \delta) \in\left[\begin{array}{ll}0.2 & 0.5\end{array}\right]$
$\Rightarrow \frac{\|\tilde{A} t\|}{2^{m}} \leq c \Rightarrow m \geq\left[\log _{2} \frac{\|\tilde{A} t\|}{c}\right]$
Compute $e^{\tilde{A} \delta}$ via Chebyshev $\Rightarrow e^{\tilde{A} \delta}=\frac{C_{0}(\tilde{A} \delta)-C_{2}(\tilde{A} \delta)}{2}$
where $C_{k}(\tilde{A} \delta)=b_{k} I+2 \tilde{A} \delta C_{k+1}(\tilde{A} \delta)-C_{k+2}(\tilde{A} \delta), C_{N}=b_{N} I, C_{N+1}=0$

- DOUBLING

$$
\begin{aligned}
& Y=e^{\tilde{A} \delta} \\
& \text { Do } i=1, m \\
& \quad Y=Y * Y
\end{aligned}
$$

$$
e^{\tilde{A} \delta} \rightarrow e^{2 \tilde{A} \delta} \rightarrow e^{4 \tilde{A} \delta} \rightarrow \ldots \rightarrow e^{2^{m} \tilde{A} \delta}=e^{\tilde{A} t}
$$

End Do

- PUT THE SHIFT BACK

Finally, $e^{A t}=e^{\tilde{A} t} \cdot e^{\beta t}$

Pade Approximation - 1

\square Rational Function Approximation to e^{a} : Pade Approximation

- Pade approximation $\hat{f}(a)=\frac{n_{0}+n_{1} a+n_{2} a^{2}+\ldots+n_{m} a^{m}}{1+d_{1} a+d_{2} a^{2}+\ldots+d_{n} a^{n}}=R(m, n)$
- Idea is to pick $\left(n_{i}, d_{i}\right)$ such that \hat{f} agrees with the Taylor series to maximum number of terms ($2 m$ in general): $b_{0}+b_{1} a+b_{2} a^{2}+\ldots+b_{2 m} a^{2 m}$
- Error would be $\frac{a^{2 m+1}}{(2 m+1)!} f^{(2 m+1)}(\tau)$ where $0 \leq \tau \leq a$
- Pade is like Taylor series, but generally somewhat better, but not as good as Chebyshev (MATLAB uses Pade)

$$
\text { Application to } e^{x}=\left\{\begin{array}{l}
n_{0}=1 \\
n_{i}=\frac{m!(2 m-i)!}{i!(m-i)!2 m!}=\binom{m}{i} \frac{(2 m-i)!}{2 m!} \\
d_{i}=(-1)^{i} n_{i}
\end{array}\right.
$$

Pade Approximation - 2

e.g., $m=1 \Rightarrow \frac{1+a / 2}{1-a / 2} ; m=2 \Rightarrow \frac{1+a / 2+a^{2} / 12}{1-a / 2+a^{2} / 12}$
as good as or better than $4^{\text {th }}$ order $\left(1+\frac{a}{2}\right)\left(1+\frac{a}{2}+\frac{a^{2}}{4}+\frac{a^{3}}{8}+\ldots\right)=1+a+\frac{a^{2}}{2}+\frac{a^{3}}{4}$ need $\frac{a^{3}}{6} \Rightarrow$ error $\frac{a^{3}}{12}$

- For matrix computation $\left(I+n_{1} A+n_{2} A^{2}+\ldots\right)\left(I+d_{1} A+d_{2} A^{2}+\ldots+\ldots\right)^{-1}=N_{m}(A)\left[D_{m}(A)\right]^{-1}$
- Total computation $2(m-1)$ multiplications +1 inverse $\Rightarrow(2 m-1)$ same as $2 m^{\text {th }}$ order Taylor.
- Of course, can use modified Horner's rule to reduce computations
\square We can exploit the similarity of numerator and denominator
- Compute $C=I+n_{2} A^{2}+n_{4} A^{4}+\ldots=\sum$ even powers

$$
\begin{array}{ll}
D=A\left[n_{1} I+n_{3} A^{2}+\ldots\right. & =\sum \text { odd powers } \\
N_{m}(A)=C+D, & D_{m}(A)=C-D
\end{array}
$$

- Requires m multipliers and solution of $A \underline{x}_{i}=\underline{b}_{i}$ (n of them)

$$
\text { then } \begin{aligned}
&(C-D) \hat{f}(A)=(C+D) \\
&(C-D)\left(\hat{f}_{1} \underline{f}_{2} \ldots \hat{f}_{n}\right)=\left(\begin{array}{llll}
\underline{c}_{1}+\underline{d}_{1} & \underline{c}_{2}+\underline{d}_{2} & \ldots & \underline{c}_{n}+\underline{d}_{n}
\end{array}\right)
\end{aligned}
$$

Pade Approximation - 3

\square Algorithm:

1. Compute $\beta=\operatorname{tr}(A) / n ; \tilde{A}=A-\beta I$
2. Find $\delta=t / 2^{M}$ such that $\|\tilde{A}\| \delta \leq 0.5(\approx 0.2)$
3. Compute $Y=e^{\tilde{A} \delta}$ via PADE
4. Use Doubling

$$
\begin{aligned}
& \text { Do } i=1, M \\
& \quad \mathrm{Y} \leftarrow \mathrm{Y} * \mathrm{Y}
\end{aligned}
$$

End Do
5. $e^{A t}=e^{\beta t} \cdot Y$

- Use $4^{\text {th }}$ order PADE for error $\approx 10^{-9}$

$$
\text { Relative error }=\frac{\left\|e^{A}-Y\right\|_{\infty}}{\left\|e^{A}\right\|_{\infty}} \leq\|\tilde{A}\| e^{\in\|\tilde{A}\|} \text { where } \in=\frac{2^{3-2 m} \cdot(m!)^{2}}{2 m!(2 m+1)!}
$$

- Research Problem: Combine PADE and CHEBYSHEV

$$
\hat{f}(A)=\left[\sum_{i=0}^{m} n_{i} T_{i}(A)\right]\left[\sum_{i=0}^{m} d_{i} T_{i}(A)\right]^{-1} \operatorname{expect} d_{i}=(-1)^{i} n_{i}
$$

Upper Schur Matrix Approach

- Transform A Matrix into Upper Schur Form (Lectures 10, 13 and 14)

$$
\begin{aligned}
& R=Q^{T} A Q ; Q=\text { Orthogonal } \Rightarrow A=Q R Q^{T} \Rightarrow e^{A t}=Q e^{R t} Q^{T}=Q G Q^{T} ; G=e^{R t} \\
& R=\text { Block upper triangular matrix }=\left[\begin{array}{llll}
R_{11} & R_{12} & \cdots & R_{1 p} \\
& R_{22} & \cdots & R_{2 p} \\
& & & R_{p p}
\end{array}\right] \quad G=e^{R t} \text { is easy to compute }
\end{aligned}
$$

where $R_{i i}$ is 2×2 or 1×1

- G is relatively easy to compute
$g_{i i}=e^{r_{i i} t} ; i=1,2, . ., n$
For $k=1,2, . ., n-1$ Do
For $i=1,2, \ldots, n-k D 0$

$$
\begin{aligned}
& \text { Set } j=i+k \\
& g_{i j}=\frac{1}{\left(r_{i i}-r_{j j}\right)}\left[r_{i j}\left(g_{i i}-g_{j j}\right)+\sum_{p=i+1}^{j-1}\left(g_{i p} r_{p j}-r_{i p} g_{p j}\right)\right]
\end{aligned}
$$

Problem when Eigen values are Close to each other

End
End

Uniformization

- The process of obtaining a DTMC from a CTMC as above is called uniformization (= special scaling \& shifting)
- Clearly,

$$
\begin{aligned}
& e^{Q t}=\sum_{n=0}^{\infty} e^{-q t} \frac{(q t)^{n}}{n!}\left[Q^{*}\right]^{n} \\
& \text { then, } \underline{p}(t)=\sum_{n=0}^{N} e^{-q t} \frac{(q t)^{n}}{n!} \underline{\pi}_{n} \text { where } \underline{\pi}_{n}=\left[Q^{*}\right]^{T} \underline{\pi}_{n-1} \text { with } \underline{\pi}_{0}=\underline{p}_{0}
\end{aligned}
$$

This can be evaluated with matrix-vector operations only.

- For a specified accuracy ε, the number of terms N to be retained is computed from:

$$
\varepsilon=\sum_{n=N+1}^{\infty} e^{-q t} \frac{(q t)^{n}}{n!}=1-\sum_{n=0}^{N} e^{-q t} \frac{(q t)^{n}}{n!}
$$

- Although, this is basically Taylor series, it works for this case because of the special structure of Q.
\square Other methods for solving Markov chain models: ODE solvers.

Dubious Methods - 1

- Bad (Dubious) Methods:
- Do not use exact formulae or Eigen value-based methods (unless by hand). May be OK if $A=A^{T}$
- Caley-Hamilton Theorem

$$
\begin{aligned}
& A^{n}+\alpha_{n} A^{n-1}+\ldots+\alpha_{2} A+\alpha_{1} I=0 \Rightarrow A^{k}=-\sum_{i=0}^{n-1} \beta_{i k} A^{i} \\
& e^{A t}=\sum_{k=0}^{\infty} \frac{t^{k} \cdot A^{k}}{k!}=\sum_{k=0}^{\infty} \frac{t^{k}}{k!} \sum_{i=0}^{n-1} \beta_{i k} A^{i}=\sum_{i=0}^{n-1}\left(\sum_{k=0}^{\infty} \beta_{i k} \frac{t^{k}}{k!}\right) A^{i}=\sum_{i=0}^{n-1} \gamma_{i}(t) \cdot A^{i}
\end{aligned}
$$

- Lagrange interpolation (SYLVESTER's THEOREM)

$$
\begin{aligned}
& e^{A t}=\sum_{i=1}^{n} e^{\lambda_{i} t} \prod_{\substack{k=1 \\
k \neq i}} \frac{\left(A-\lambda_{k} I\right)}{\left(\lambda_{i}-\lambda_{k}\right)} \\
& \text { Alternate: } e^{A t}=\sum_{i=1}^{n} e^{\lambda_{i} t} \underline{\xi}_{i} \underline{\eta}_{i}^{T}
\end{aligned}
$$

Dubious Methods－ 2

－Inverse Laplace Transform：Leverrier and Faddeva or Sourian and Frame Algorithm
$(s I-A)^{-1}=\sum_{k=1}^{n} \frac{s^{k-1}}{d(s)} B_{k}$
$d(s)=|s I-A|=s^{n}+\alpha_{n} s^{n-1}+\ldots+\alpha_{2} s+\alpha_{1}=0$
$B_{n}=I \quad \rightarrow \quad \alpha_{n}=-\operatorname{tr}\left(A B_{n}\right) / 1$
$B_{n-1}=A B_{n}+\alpha_{n} I \quad \rightarrow \quad \alpha_{n-1}=-\operatorname{tr}\left(A B_{n-1}\right) / 2$
$B_{n-2}=A B_{n-1}+\alpha_{n-1} I \quad \rightarrow \quad \alpha_{n-2}=-\operatorname{tr}\left(A B_{n-2}\right) / 3$
$B_{1}=A B_{2}+\alpha_{2} I \quad \rightarrow \quad \alpha_{1}=-\operatorname{tr}\left(A B_{1}\right) / n$
Check：$A B_{1}+\alpha_{1} I=0 ; \quad A^{-1}=-\frac{B_{1}}{\alpha_{1}} ; \quad \operatorname{det}(A)=(-1)^{n} \alpha_{1} ; \quad e^{A t}=L^{-1}\left\{\sum_{k=1}^{n-1} \frac{s^{k-1}}{d(s)} B_{k}\right\}$
－Slick Test cases for $e^{A t}$ subroutines
Suppose A is an idempotent matrix，$A^{2}=A$
Then，$\quad e^{A t}=\sum_{k=1}^{\infty} \frac{A^{k} t^{k}}{k!}=I+\sum_{k=1}^{\infty} \frac{A t^{k}}{k!}=I+A\left(e^{t}-1\right)$

Test Examples

3）Other test cases from Moler and Van Loan

$$
A=\left[\begin{array}{cccc}
0 & 6 & 0 & 0 \\
0 & 0 & 6 & 0 \\
0 & 0 & 0 & 6 \\
0 & 0 & 0 & 0
\end{array}\right] ; \quad A=\left[\begin{array}{cc}
1-\epsilon & 1 \\
0 & 1+\epsilon
\end{array}\right], \quad \in=10^{-5}, 10^{-6}, 10^{-7}
$$

4）Some other test cases

$$
A=\left[\begin{array}{cc}
0 & 1 \\
-0.5 & -1
\end{array}\right] ; \quad A=\left[\begin{array}{ccc}
4 & 2 & 0 \\
1 & 4 & 1 \\
1 & 1 & 4
\end{array}\right] ; A=\text { nby n controllability matrix with zero } n^{\text {th }} \text { row }
$$

5）Terrestrial Navigation example
－Consider the local－level terrestrial navigator（Britting，K．S．，1971， ＂Inertial Navigation Systems Analysis，＂New York，John Wiley）which has no vertical accelerometer．
－This type of system consists of a three－axis inertial platform and two accelerometers mounted orthogonally in the east and north directions

Test Examples

- The error equations for this class of system can be written as follows:

$$
\underline{\dot{x}}=A \underline{x}+\underline{b} u
$$

where $\underline{x}^{T}=\left[\epsilon_{N}, \epsilon_{E}, \epsilon_{D}, d L, d l, d \dot{L}, d i\right]$

$$
\begin{aligned}
& A=\left[\begin{array}{ccccccc}
0 & -W_{i e} \sin L & 0 & -W_{i e} \sin L & 0 & 0 & \cos L \\
-W_{i e} \sin L & 0 & -W_{i e} \sin L & 0 & 0 & -1 & 0 \\
0 & -W_{i e} \cos L & 0 & -W_{i e} \cos L & 0 & 0 & -\sin L \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & W_{s}^{2} & W_{s}^{2} & 0 & 0 & 0 & 0 \\
-W_{s} \sec L & 0 & 0 & 0 & 0 & 0 & 0
\end{array}\right] \\
& \text { and } \underline{b} u=\left[q_{1}, q_{2}, q_{3}, 0,0, q_{4 / r}, q_{5 / r} \cos L\right]^{T}
\end{aligned}
$$

- The transition matrix for the above system must be evaluated for the following parameters.

$$
W_{i e}=\frac{15 \pi}{180^{\circ}} \mathrm{rad} / \mathrm{h}, \quad L=45^{\circ}, W_{s}=\sqrt{20.1} \mathrm{rad} / \mathrm{h}
$$

Summary

\square What is the need for computing $e^{A t}$?
\square Evaluation of matrix polynomials (Horner's rule)
] Truncation errors

- Chebyshev approximation
- Properties
- Clenshaw recursion
- Concepts of shifting, scaling, and doubling
\square Pade approximation
\square Upper Schur transformation-based approach
\square Special case: A is a stochastic matrix (a la Markov chains)
\square How not to compute $e^{A t}$?

