

Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering University of Connecticut

Contact: krishna@engr.uconn.edu (860) 486-2890

ECE 6435 Adv Numerical Methods in Sci Comp

Copyright ©1991-2008 by K. Pattipati

Outline of Lecture 2: Computing *e*^{Att}

- **D** What is the need for computing e^{At} ?
- **Control** Evaluation of matrix polynomials (**Horner's rule**)
- Truncation errors
- Chebyshev approximation
 - Properties
 - Clenshaw recursion
 - Concepts of **shifting**, **scaling**, and **doubling**
- **D** Pade approximation
- Upper Schur transformation-based approach
- Special case: *A* is a stochastic matrix (*a la* Markov chains)
- $\Box \quad \text{How$ **not** $to compute } e^{At}?$

References:

- 1. R.C. Ward, "Numerical computation of matrix exponential with accuracy estimation", <u>SIAM J. on Numerical Analysis</u>, Vol. 14, 600-614, 1977.
- 2. C.B. Moler and C.F. Van Loan., "Nineteen dubious way to compute the exponential of a matrix", <u>SIAM Review</u>, 801-836, Oct. 1978.
- 3. T.H. Kerr, "Use of idempotent matrices to validate linear system software", <u>IEEE</u> <u>Trans. on Aerospace and Electronic Systems</u>, Vol. 26, No. 6, 935-953, Nov. 1990.

What is the need for Computing e^{At} ?-

- What is the need for computing e^{At} ?
 - *e*^{*At*} is a transcendental function that arises in a variety of applications. A representative set of examples are as follows:

I.
$$\underline{\dot{x}}(t) = A\underline{x}(t) + B\underline{u}(t) \Longrightarrow \underline{x}(t) = e^{At}\underline{x}_0 + \int e^{A(t-\sigma)}Bu(\sigma)d\sigma$$

II. Discrete-time version: u(t) piece⁰wise constant over $t \in [k\delta, (k+1)\delta)$

$$\underline{x}_{k+1} = \Phi \underline{x}_k + \Gamma \underline{u}_k, \qquad \Phi = e^{A\delta}, \qquad \Gamma = \int_0^{\delta} e^{A\sigma} B d\sigma$$

III.
$$\underline{\dot{x}} = A \underline{x}(t) + B \underline{u}(t) + E \underline{w}(t); \ \underline{x}(0) = N(\underline{x}_0, X_0)$$

 $\underline{w}(t) = \text{zero-mean white Gaussian noise with covariance}$ $E\{\underline{w}(t)\underline{w}^{T}(\sigma)\} = W \,\delta \,(t - \sigma \,).$ Define $X(t) = E\{\underline{x}(t)\underline{x}^{T}(t)\}$ $\dot{X}(t) = AX \,(t) + X \,(t)A^{T} + EWE^{T}$ $X(t) = \int_{0}^{t} e^{A\sigma} EWE^{T} e^{A^{T}\sigma} d\sigma + e^{At} X_{0} e^{A^{T}t}$

IV. There exist many other control situations where e^{At} and various \int arise. See the paper by Dorato and Levis, Dec. 1971 *IEEE T-AC*.

What is the need for Computing e^{At} ?-

- V. Continuous-time Markov Chains arise in a wide variety of applications:
 - Reliability/availability modeling
 - Performability modeling
 - Computer performance
 - Manufacturing Systems
 - Computer-communication network modeling. The key equation to be solved is:

$$\underline{\dot{p}} = Q^T \underline{p}; \qquad \underline{p}(0) = \underline{p}_0 \Longrightarrow \underline{p}(t) = e^{Q^T t} \underline{p}_0$$

• $Q=[q_{ij}]$ transition rate matrix, where:

 q_{ij} = rate at which the chain jumps from state *i* to state *j*

- Q is a stochastic matrix \Rightarrow each row of Q sums to zero.
- If there is a reward rate f_i associated with each state i, then the *expected cumulative* r*eward* of the chain over an interval [0, T], termed average performability, is

$$\overline{y}_{[0\ T]} = \underline{f}^T \left[\int_0^T e^{Q^T t} dt \right] \underline{p}_0$$

Eigen Method for Computing e^{At}

- Most fundamental question:
- How to compute the functions e^{At} and various \int for a given A and t
- In this lecture, we focus on the problem of computing e^{At}
 - Computing e^{At} is a subset of a broader problem: Compute f(A)e.g., $\sin A$, $\ln A$, e^A , $\cos A$, etc.
 - Since $A = P\Lambda P^{-1}$, $A^k = P\Lambda^k P^{-1}$

$$f(A) = Pf(\Lambda)P^{-1} = PDiag[f(\lambda_i)]P^{-1} = \sum_{i=1}^n f(\lambda_i)\underline{\xi}_i\underline{\eta}_i^T$$
$$P = \left(\underline{\xi}_1 \quad \underline{\xi}_2 \quad \dots \quad \underline{\xi}_n\right) \qquad P^{-1} = \begin{bmatrix}\underline{\eta}_1^T \\ \underline{\eta}_2^T \\ \underline{\eta}_n^T \end{bmatrix}$$

We will later see that this is one of the *worst* methods for computing f(A). E

Example:
$$A = \begin{bmatrix} 1+10^{-5} & 1\\ 0 & 1-10^{-5} \end{bmatrix}; \quad P = \begin{bmatrix} 1 & -1\\ 0 & 2x10^{-5} \end{bmatrix}$$

Copyright ©1991-2008 by K. Pattipati

Error Analysis

Proof: $f(A) = PDiag[f(\lambda_i)]P^{-i}$ $\hat{f}(A) = PDiag[\hat{f}(\lambda_i)]P^{-i}$ valid as long as $|\lambda_i| \le c$ $\Rightarrow f(A) - \hat{f}(A) = PDiag[f(\lambda_i) - \hat{f}(\lambda_i)]P^{-1}$ $\|f(A) - \hat{f}(A)\| \le \|P\| \|P^{-1}\| \max_i [|f(\lambda_i) - \hat{f}(\lambda_i)|]$

- So, the problem of computing *f*(*A*) is reduced to finding a suitable, simple *f*(*a*), *a* is a scalar
- This is a scalar numerical function approximation
- Note that most \hat{f} are often polynomials or ratio of polynomials (of some type).
- Example: Maclaurin's series for f(a) $f(a) = f(0) + f'(0)a + f''(0)\frac{a^2}{2!} + \dots = \sum_{k=0}^{\infty} f^{(k)}(0)\frac{a^k}{k!}$

Key sub-problem: how to evaluate (truncated) polynomials efficiently.

• Evaluation of scalar and matrix polynomials:

consider:

$$\hat{f}(a) = p_N(a) = b_0 + b_1 a + b_2 a^2 + \dots + b_N a^N$$
$$\hat{f}(A) = p_N(A) = b_0 + b_1 A + b_2 A^2 + \dots + b_N A^N$$

7

A method called Horner's rule or *reverse nesting* gets around round-off error problems

Horner's Rule

- Consider $b_0 I + b_1 A + b_2 A^2 = b_0 I + A[b_2 A + b_1 I]$
- Initialize $p_0 = b_2 I$,
- $p_1 = b_2 A + b_1 I$, n^2 Multiplications and n additions
- $p_2 = Ap_1 + b_0 I$, n^3 Multiplications and $n^3 + n$ additions
- In general

 $b_0I + b_1A + b_2A^2 + \dots + b_NA^N$ can be computed in (N-1) matrix multiplications via: $A(A(A(A(b_NA + b_{N-1}I) + b_{N-2}I) + \dots + b_1I) + b_0I)$

– Algorithm

initialize: $p_1 = b_N A + b_{N-1} I$ recursion: For i = 2, ..., N $p_i = A p_{i-1} + b_{N-i} I$ end Do

8

Smarter Horner's Rule - 1

Smarter Horner's Rule - 2

Previous example: s = 3 and r = 3 $B_0 = b_2 A^2 + b_1 A + b_0 I$ $B_1 = b_5 A^2 + b_4 A + b_3 I$ $B_2 = b_8 A^2 + b_7 A + b_6 I$ $B_3 = b_9 I$

Example 2: 13th order polynomial $s \le (13)^{1/2}$

- Pick
$$S = 3$$
 and $r = floor(13/3) = 4$
- $B_0 = b_2 A^2 + b_1 A + b_0 I$
- $B_1 = b_5 A^2 + b_4 A + b_3 I$
- $B_2 = b_8 A^2 + b_7 A + b_6 I$
- $B_3 = b_{11} A^2 + b_{10} A + b_9 I$
- $B_4 = b_{13} A + b_{12} I$
- Evaluate $A^3 [A^3 \{A^3 (A^3 [b_{13} A + b_{12} I] + b_{11} A^2 + b_{10} A + b_9 I) + b_8 A^2 + b_7 A + b_6 I\} + b_5 A^2 + b_4 A + b_3 I] + b_2 A^2 + b_1 A + b_0 I$

Q: How do we use these concepts of function approximation and evaluation of polynomials?

Computation of f(A)

- Computation of *f*(*A*)
 - If approximate f(a) by $\hat{f}(a)$, then $\hat{f}(A)$ approximates f(A)
 - There are basically three approaches:
 - MacLaurin's (Taylor's) series $|a| \le 1$
 - Chebyshev polynomials
 - Pade rational approximation
- □ MacLaurin's (Taylor's) series

•
$$f(a) = b_0 + b_1 a + b_2 a^2 + \dots + b_N a^N$$

$$= f(0) + f'(0)a + f''(0)\frac{a^2}{2} + \dots + \frac{f^N(0)a^N}{N!}$$

• Note that
$$b_k = \frac{f^k}{K!}$$

Q: What is the error involved in approximating f(A) by $\hat{f}(A)$?

$$\left\| f(A) - \sum_{k=0}^{N} b_k A^k \right\|_2 \le \frac{n}{(N+1)!} \max_{0 \le x \le 1} \left\| f^{N+1}(Ax) \right\|_2$$

Approximation Error - 1

Before we present proof, consider zeroth-order approximation to a scalar function f(a) at a = x

- Error = $b_1 x + b_2 x^2 + ... = f'(\xi) \cdot x$ (from derivative mean-value theorem)
- For *n*th order approximation,

$$\operatorname{error} = \frac{f^{N+1}(\xi)}{(N+1)!} \cdot x^{N+1}$$

• The result can be extended to matrices as well.

• Proof:
Let
$$f(Ax) = \sum_{k=0}^{N} b_k (Ax)^k + E(x);$$
 $0 \le x \le 1$
then $f_{ij}(x) = \sum_{k=0}^{N} \frac{f_{ij}^k(0)}{k!} x^k + \frac{f_{ij}^{N+1}(\xi_{ij})}{(N+1)!} x^{N+1}$ for some $\xi_{ij} \in [0, x]$

Approximation Error - 2

$$\Rightarrow e_{ij}(x) = \frac{f_{ij}^{N+1}(\xi_{ij})}{N+1!} x^{N+1}$$

• Now f_{ij}^{N+1} is the $(i, j)^{th}$ entry of $f^{N+1}(Ax)$ and therefore

$$e_{ij}(x) \leq \max_{0 \leq x \leq 1} \frac{f_{ij}^{N+1}}{(N+1)!}$$

$$\leq \max_{0 \leq x \leq 1} \frac{\left\| A^{N+1} f^{N+1} (Ax) \right\|_{2}}{(N+1)!}$$

since $\left\| E(x) \right\|_{2} \leq n \max_{i,j} e_{ij}(x)$ we have
 $\left\| f(A) - \sum_{k=0}^{N} b_{k} A^{k} \right\| \leq \frac{n}{(N+1)!} \max_{0 \leq x \leq 1} \left\| A^{N+1} f^{N+1} (Ax) \right\|_{2}$

Chebyshev Polynomials

- General series \rightarrow Chebyshev:
 - Let $\{\Phi_k\}$ be a complete set of polynomials on $|a| \le 1$ $\Phi_k \sim k^{th}$ order polynomial
 - Then, if $f(a) = \sum_{k=0}^{\infty} b_k \Phi_k(a)$, suggest using $\hat{f}(a) = \sum_{k=0}^{N} b_k \Phi_k(a)$
 - So error in $\hat{f}(a) \sim b_{N+1} \Phi_{N+1}(a) \approx \left| f(a) \hat{f}(a) \right|$, an $(N+1)^{th}$ order polynomial

Want zero error at as many points as possible in (-1, 1)=N+1. Also want uniform error.

• The Chebyshev polynomials have this property:

$$T_k(a) \leftrightarrow \Phi_k(a), \ T_k(a) = \cos(k\cos^{-1}a); \ |a| \le 1$$

or if $\theta = \cos^{-1}a$ or $\cos \theta = a \rightarrow T_k(\cos \theta) = \cos(k\theta)$

• Essentially we have made a change of variable $a = \cos \theta$

Properties of Chebyshev Polynomials

- Example: for $T_2(\cos\theta) = \cos 2\theta$ maximum at $\cos(i.\pi/2), i=0,2 \Rightarrow T_2(a) = +1$ minimum at $\cos(i.\pi/2), i=1 \Rightarrow T_2(a) = -1$
- Chebyshev polynomials are orthogonal in the interval [-1,1] over a weight $1/\sqrt{1-a^2}$

$$\frac{2}{\pi} \int_{-1}^{1} \frac{T_k(a) T_l(a)}{\sqrt{1-a^2}} da = -\frac{2}{\pi} \int_{\pi}^{0} \cos k\theta \cos l\theta d\theta = \frac{2}{\pi} \int_{0}^{\pi} \cos k\theta \cos l\theta d\theta$$
$$= \frac{1}{\pi} \int_{0}^{\pi} [\cos\{(k+l)\theta\} + \cos\{(k-l)\theta\}] d\theta = \begin{cases} 0 & k \neq l \\ 1 & k = l, \ k \geq l \\ 2 & k = l = 0 \end{cases}$$

⇒ so, to find
$$b_k$$
, multiply $f(a)$ by $\frac{2}{\pi} \frac{T_k(a)}{\sqrt{1-a^2}}$ and integrate over $a \in (-1, 1)$

Best to write
$$f(a) = \frac{b_0}{2} + \sum_{k=1}^N b_k T_k(a) = \sum_{k=0}^N b_k T_k(a) - \frac{b_0}{2}$$

 $\Rightarrow b_k = \frac{2}{\pi} \int_{-1}^1 \frac{f(a) T_k(a)}{\sqrt{1 - a^2}} da = \frac{2}{\pi} \int_0^{\pi} f(\cos \theta) \cos k\theta d\theta \text{ for } k = 0, 1, 2, ...$

 \Rightarrow b_k can be obtained from the cosine transformation of the function k = 0, 1,

Chebyshev Coefficients

• If we terminate at N (N^{th} order polynomial) $e_N(a) \sim c_{N+1}T_{N+1}(a) \leq \frac{1}{2^N} \cdot \frac{\max_{0 \leq \xi \leq a} \left| f^{N+1}(\xi) \right|}{(N+1)!}$

or $\frac{1}{2^N}$ improvement over max. Taylor series error over interval [-1.1] or same accuracy for lot less *N*.

• A practical method of computing b_k is to use discrete approximation at the zeros of $T_{N+1}(a)$, $\pi(i-1/2)$

i.e., at
$$a_i = \cos \frac{\pi (i-1/2)}{N+1}$$
, $i = 1, 2, ..., (N+1)$

• So,
$$b_k = \frac{2}{N+1} \sum_{k=1}^{N} f\left(\cos\frac{\pi(i-1/2)}{N+1}\right) \cos\left[\frac{\pi(i-1/2) \cdot k}{N+1}\right]$$

 \Rightarrow function approximation is exact at all (N+1) zeros of $T_{N+1}(x)$

Why Chebyshev?

- Why Chebyshev is Good?
 - T_k is bounded between -1 and +1 $\Rightarrow \left| f(a) \sum_{k=0}^{N} b_k T_k(a) + \frac{b_0}{2} \right| \le \sum_{k=N+1}^{\infty} |b_k|$
- b_k^s decreases rapidly \Rightarrow error is dominated by $b_{N+1}T_{N+1}(a)$, an oscillatory term with (N+1) zeros and (N+2) equal extrema distributed smoothly over $[-1, 1] \Rightarrow$ error spreads out evenly
- Indeed Chebyshev is a <u>close</u> approximation to a minimax polynomial (of a specified degree) that optimizes $\min_{\hat{f}} \max_{|a| \le 1} |f(a) \hat{f}(a)|$
- Application to $e^{\alpha a} = f(a) |a| \le 1$: an alternate method to obtain b_k
 - $b_k = \frac{2}{\pi} \int_0^{\pi} e^{\alpha \cos \theta} \cos k\theta d\theta = 2I_k(\alpha) = \text{modified Bessel function of the first kind}$

$$I_k(\alpha) = \sum_{r=0}^{\infty} \left(\frac{\alpha}{2}\right)^{k+2r} \frac{1}{r!k+r!} \quad \text{can be precomputed or use tables or recursions, etc.}$$

for e^a , $\alpha = 1 \implies e^a = I_0(1) + \sum_{l=1}^{\infty} 2I_k(1)T_k(a)$

 $\alpha = 2 \implies e^{2a} = I_0(2) + \sum_{k=1}^{\infty} 2I_k(2)T_k(a), \quad I_k(2) = \sum_{k=0}^{\infty} \frac{1}{r!k+r!}$

Chebyshev and eAt

Computing considerations:

- Pick $N \ni \frac{1}{2^N (N+1)!}$ sufficiently low ($\approx 1/10$ of round-off error)
- Note for 2x it is 1/(N+1)!
- $e^x \to N=9 \implies 1/(512.3.6.10^5) = 5 \times 10^{-9}$
- $e^{2x} \rightarrow N=12$ for same accuracy
- Then, evaluate $\hat{f}(a) = \frac{b_0}{2} + \sum_{k=1}^{N} b_k T_k(a)$
- Evaluation of the function in one of two ways:
 - Write out $T_k(a)$ as a k^{th} order polynomial in a and evaluate $\hat{f}(a) = \sum d_k a^k, \ d_k \cong$ Taylor coefficients but <u>not exact</u>
 - \Rightarrow bad way: since Chebyshev exibits cancellation of terms!!
 - Better way: <u>CLENSHAW RECURSION</u>

$$\hat{f}(a) = \frac{b_0}{2} + \sum_{k=1}^{N} b_k T_k(a) = \frac{c_0(a) - c_2(a)}{2} = \frac{b_0}{2} + ac_1(a) - c_2(a)$$

where $c_k(a) = b_k + 2ac_{k+1}(a) - c_{k+2}(a)$, k = N - 1, N - 2, ..., 0; $c_{N+1} = 0, c_N = b_N$

• Proof of Clenshaw recursion:

$$\hat{f}(a) = \frac{b_0}{2} + \sum_{k=1}^{N} b_k T_k(a); \text{ s.t. } T_k(a) = 2aT_{k-1}(a) - T_{k-2}(a)$$

Append with Lagrange multipliers c_k

$$\Rightarrow \hat{f}(a) = \frac{b_0}{2} + \sum_{k=1}^{N} b_k T_k(a) - \sum_{k=0}^{N} c_k \left[T_k(a) - 2a T_{k-1}(a) + T_{k-2}(a) \right]$$

$$= -\frac{b_0}{2} + \sum_{k=0}^{N} (b_k - c_k) T_k(a) + \sum_{l=-1}^{N-1} 2a c_{l+1} T_l(a) - \sum_{l=-2}^{N-2} c_{l+2} T_l(a)$$

$$= -\frac{b_0}{2} + (b_N - c_N) T_N(a) + (b_{N-1} - c_{N-1} + 2a c_N) T_{N-1}(a)$$

$$\Rightarrow a = 2a - T_{-1}(a) \Rightarrow T_{-1}(a) = a$$

$$k = 0: T_0(a) = 2a T_{-1}(a) - T_{-2}(a)$$

$$\Rightarrow T_{-2}(a) = 2a^2 - 1$$

$$+ \sum_{k=0}^{N-2} (b_k - c_k + 2a c_{k+1} - c_{k+2}) T_k(a) + 2a^2 c_0 - c_0 \left(2a^2 - 1\right) - c_1 a$$

Note: use Chebyshev recursion to get $T_{-1}(a)$ and $T_{-2}(a)$. Selecting the multiplier sequence as: $c_k = b_k + 2ac_{k+1} - c_{k+2}$; $c_{N+1} = 0$, $c_N = b_N$; we obtain $\hat{f}(a) = -\frac{b_0}{2} + c_0 - c_1 a = \frac{c_0 - c_2}{2}$

since we are computing terms backwards, recursion is stable

Practicalities - 1

Suppose want f(a) for $x_1 \le a \le x_2$

$$\Rightarrow \text{ define } y = \frac{a - (x_1 + x_2)/2}{(x_2 - x_1)} \Rightarrow |y| \le 0.5 \Rightarrow e^a = e^{y(x_2 - x_1)} e^{(x_1 + x_2)/2}$$

Computing e_{N}^{At}

- Have $e^a = \sum_{k=0}^{N} b_k T_k(a) \frac{b_0}{2}$ with error $\frac{1}{2^N (N+1)!}$ valid in the region $|a| \le 1$
- Similarly $e^{At} = \sum_{k=0}^{N} b_k T_k(At) \frac{b_0}{2}$. need $|\lambda_i(At)| \le 1 \quad \forall i \text{ or } \rho(At) \le 1$ spectral radius
- **Three step process for computing** e^{At}
 - Make Eigen values cluster around zero $A \rightarrow \tilde{A}$ (SHIFTING)
 - Make $\rho(\tilde{A}t) \le 1(0.2 0.5)$ through scaling (SCALING)
 - Use doubling concept (DOUBLING)

□ SHIFTING

Let
$$\beta = \frac{1}{n} \operatorname{tr}(A)$$
 and $\tilde{A} = A - \beta I$; $|\gamma I - \tilde{A}| = |(\gamma + \beta)I - A| = |\lambda I - A| = 0$
 $\Rightarrow \gamma_i = \lambda_i - \beta \Rightarrow \sum_{i=1}^n \gamma_i = \sum_{i=1}^n \lambda_i - n\beta = 0 \Rightarrow$ Eigen values clustered around zero.
Note: $e^{At} = e^{\tilde{A}t} \cdot e^{\beta t}$, where $e^{\beta t}$ is a scalar

Practicalities - 2

SCALING Find $\delta = \frac{t}{2^m} \Im \|\tilde{A}\delta\| \le 0.2 to 0.5 \implies \rho(\tilde{A}\delta) \in [0.2 \ 0.5]$ $\Rightarrow \frac{\|\tilde{A}t\|}{2^m} \le c \Rightarrow m \ge \left|\log_2 \frac{\|\tilde{A}t\|}{c}\right|$

Compute $e^{\tilde{A}\delta}$ via Chebyshev $\Rightarrow e^{\tilde{A}\delta} = \frac{C_0(\tilde{A}\delta) - C_2(\tilde{A}\delta)}{2}$ where $C_k(\tilde{A}\delta) = b_k I + 2\tilde{A}\delta C_{k+1}(\tilde{A}\delta) - C_{k+2}(\tilde{A}\delta), \ C_N = b_N I, \ C_{N+1} = 0$

DOUBLING

PUT THE SHIFT BACK

Finally,
$$e^{At} = e^{\tilde{A}t} \cdot e^{\beta t}$$

Pade Approximation - 1

- Rational Function Approximation to *e^a*: Pade Approximation
 - Pade approximation $\hat{f}(a) = \frac{n_0 + n_1 a + n_2 a^2 + \ldots + n_m a^m}{1 + d_1 a + d_2 a^2 + \ldots + d_n a^n} = R(m, n)$
 - Idea is to pick (n_i, d_i) such that \hat{f} agrees with the Taylor series to maximum number of terms (2*m* in general): $b_0 + b_1 a + b_2 a^2 + \ldots + b_{2m} a^{2m}$
 - Error would be $\frac{a^{2m+1}}{(2m+1)!}f^{(2m+1)}(\tau)$ where $0 \le \tau \le a$
 - Pade is like Taylor series, but generally somewhat better, but not as good as Chebyshev (MATLAB uses Pade)

Application to
$$e^{x} = \begin{cases} n_{0} = 1 \\ n_{i} = \frac{m!(2m-i)!}{i!(m-i)!2m!} = \binom{m}{i} \frac{(2m-i)!}{2m!} \\ d_{i} = (-1)^{i} n_{i} \end{cases}$$

Pade Approximation - 2

e.g., $m = 1 \Rightarrow \frac{1 + a/2}{1 - a/2}$; $m = 2 \Rightarrow \frac{1 + a/2 + a^2/12}{1 - a/2 + a^2/12}$ as good as or better than 4 th order Taylor series i.e., error in a^5

$$\left(1+\frac{a}{2}\right)\left(1+\frac{a}{2}+\frac{a^2}{4}+\frac{a^3}{8}+...\right)=1+a+\frac{a^2}{2}+\frac{a^3}{4}$$
 need $\frac{a^3}{6} \Rightarrow$ error $\frac{a^3}{12}$

- For matrix computation $(I + n_1A + n_2A^2 + ...)(I + d_1A + d_2A^2 + ... + ...)^{-1} = N_m(A)[D_m(A)]^{-1}$
- Total computation 2(m-1) multiplications +1 inverse $\Rightarrow (2m-1)$ same as $2m^{\text{th}}$ order Taylor.
- Of course, can use modified Horner's rule to reduce computations

We can exploit the similarity of numerator and denominator

• Compute
$$C = I + n_2 A^2 + n_4 A^4 + ... = \sum$$
 even powers
 $D = A[n_1 I + n_3 A^2 + ... = \sum$ odd powers
 $N_m(A) = C + D, \qquad D_m(A) = C - D$
• Requires *m* multipliers and solution of $Ax_i = b_i$

• Requires *m* multipliers and solution of $A\underline{x}_i = \underline{b}_i$ (*n* of them) then $(C-D)\hat{f}(A) = (C+D)$ $(C-D)(\hat{f}_1 \hat{f}_2 \dots \hat{f}_n) = (\underline{c}_1 + \underline{d}_1 \quad \underline{c}_2 + \underline{d}_2 \quad \dots \quad \underline{c}_n + \underline{d}_n)$

Upper Schur Matrix Approach

Transform A Matrix into Upper Schur Form (Lectures 10, 13 and 14)

$$R = Q^{T} A Q; Q = \text{Orthogonal} \Rightarrow A = Q R Q^{T} \Rightarrow e^{At} = Q e^{Rt} Q^{T} = Q G Q^{T}; G = e^{Rt}$$
$$R = \text{Block upper triangular matrix} = \begin{bmatrix} R_{11} & R_{12} & \dots & R_{1p} \\ R_{22} & \dots & R_{2p} \\ & & & & & R_{pp} \end{bmatrix} \qquad G = e^{Rt} \text{ is easy to compute}$$

where R_{ii} is 2x2 or 1 x 1

\Box G is relatively easy to compute

$$g_{ii} = e^{r_{ii}t}; i = 1, 2, ..., n$$

For $k = 1, 2, ..., n - 1$ Do
For $i = 1, 2, ..., n - k$ D0
Set $j = i + k$

$$g_{ij} = \frac{1}{(r_{ii} - r_{jj})} [r_{ij}(g_{ii} - g_{jj}) + \sum_{p=i+1}^{j-1} (g_{ip}r_{pj} - r_{ip}g_{pj})]$$

Problem when Eigen values are Close to each other

End

End

e^{At} for Stochastic Matrices

- Special case: A=Q a stochastic matrix
 - $Q=[q_{ij}]$ is a transition rate matrix (infinitesimal generator matrix) of the continuous-time Markov chain (CTMC)

Important property of *Q*: $q_{ii} = -\sum_{j=1}^{N} q_{ij} \implies$ each row of *Q* sums to zero.

• Moreover, we are primarily interested in solving:

$$\underline{\dot{p}} = Q^T \underline{p}; \ \underline{p}(0) = \underline{p}_0 \implies p(t) = e^{Q^T t} \underline{p}_0$$

- One popular method is called "Uniformization."
- □ What is Uniformization?
 - Let $q \ge \max|-q_{ii}|$
 - Then, can construct an equivalent process for which the transition rate from each state *i* is *q* and a fraction $(1+q_{ii}/q)$ of these transitions return immediately to state *i*.
 - Basically, this amounts to constructing a discrete-time Markov chain (DTMC) by scaling Q by (1/q) and shifting the diagonals of the scaled matrix by 1, i.e., define $Q^* = Q/q + I \implies Q = q(Q^* I)$

Uniformization

- The process of obtaining a DTMC from a CTMC as above is called *uniformization* (= special scaling & shifting)
- Clearly, $e^{Qt} = \sum_{n=0}^{\infty} e^{-qt} \frac{(qt)^n}{n!} [Q^*]^n$ then, $\underline{p}(t) = \sum_{n=0}^{N} e^{-qt} \frac{(qt)^n}{n!} \underline{\pi}_n$ where $\underline{\pi}_n = [Q^*]^T \underline{\pi}_{n-1}$ with $\underline{\pi}_0 = \underline{p}_0$

This can be evaluated with matrix-vector operations only.

• For a specified accuracy ε , the number of terms *N* to be retained is computed from:

$$\varepsilon = \sum_{n=N+1}^{\infty} e^{-qt} \frac{(qt)^n}{n!} = 1 - \sum_{n=0}^{N} e^{-qt} \frac{(qt)^n}{n!}$$

- Although, this is basically Taylor series, it works for this case because of the special structure of *Q*.
- Other methods for solving Markov chain models: ODE solvers.

Dubious Methods - 1

- Bad (Dubious) Methods:
 - Do not use exact formulae or Eigen value-based methods (unless by hand). May be OK if $A=A^T$
 - Caley-Hamilton Theorem

$$A^{n} + \alpha_{n}A^{n-1} + \dots + \alpha_{2}A + \alpha_{1}I = 0 \implies A^{k} = -\sum_{i=0}^{n-1}\beta_{ik}A^{i}$$
$$e^{At} = \sum_{k=0}^{\infty} \frac{t^{k} \cdot A^{k}}{k!} = \sum_{k=0}^{\infty} \frac{t^{k}}{k!} \sum_{i=0}^{n-1}\beta_{ik}A^{i} = \sum_{i=0}^{n-1} \left(\sum_{k=0}^{\infty}\beta_{ik}\frac{t^{k}}{k!}\right)A^{i} = \sum_{i=0}^{n-1}\gamma_{i}(t) \cdot A^{i}$$

• Lagrange interpolation (SYLVESTER's THEOREM)

$$e^{At} = \sum_{i=1}^{n} e^{\lambda_i t} \prod_{\substack{k=1\\k\neq i}} \frac{\left(A - \lambda_k I\right)}{\left(\lambda_i - \lambda_k\right)}$$

Alternate:
$$e^{At} = \sum_{i=1}^{n} e^{\lambda_i t} \underline{\xi}_i \underline{\eta}_i^T$$

Dubious Methods - 2

• Inverse Laplace Transform: *Leverrier and Faddeva* or *Sourian and Frame* Algorithm

$$(sI - A)^{-1} = \sum_{k=1}^{n} \frac{s^{k-1}}{d(s)} B_k$$

$$d(s) = |sI - A| = s^n + \alpha_n s^{n-1} + \dots + \alpha_2 s + \alpha_1 = 0$$

$$B_n = I \longrightarrow \alpha_n = -\operatorname{tr}(AB_n)/1$$

$$B_{n-1} = AB_n + \alpha_n I \longrightarrow \alpha_{n-1} = -\operatorname{tr}(AB_{n-1})/2$$

$$B_{n-2} = AB_{n-1} + \alpha_{n-1}I \longrightarrow \alpha_{n-2} = -\operatorname{tr}(AB_{n-2})/3$$

$$B_1 = AB_2 + \alpha_2 I \longrightarrow \alpha_1 = -\operatorname{tr}(AB_1)/n$$

Check: $AB_1 + \alpha_1 I = 0$; $A^{-1} = -\frac{B_1}{\alpha_1}$; $\det(A) = (-1)^n \alpha_1$; $e^{At} = L^{-1} \{\sum_{k=1}^{n-1} \frac{s^{k-1}}{d(s)} B_k\}$
Slick Test cases for e^{At} subroutines
Suppose A is an idempotent matrix, $A^2 = A$
Then, $e^{At} = \sum_{k=1}^{\infty} \frac{A^k t^k}{k!} = I + \sum_{k=1}^{\infty} \frac{At^k}{k!} = I + A(e^t - 1)$

- How to construct idempotent matrices
- Consider any $m \ge n$ matrix C and its pseudo inverse C^+ . Then $(I_n - C^+ C)$ and $(I_m - C C^+)$ are idempotent.
- **T**ests on the accuracy of computed e^{At}
 - 1) Known e^{At} as in idempotent case

2)
$$e^{At} \cdot e^{-At} = I_n \text{ or } \left\| e^{At} \cdot e^{-At} - I_n \right\|$$

3) $\left| e^{At} \right| = \left| P e^{\Lambda t} P^{-1} \right| = \left| P \right| \left| e^{\Lambda t} \right| \left| P^{-1} \right| = e^{\sum_{i=1}^{n} \lambda_i t} = e^{\operatorname{tr}(At)}$

Test Examples:

- 1) Idempotent matrices (e.g., Kerr, 1990)
- 2) Bad problem for Taylor series (Moler and Van Loan, SIAM Review, 1978) (assume t=1) $\begin{bmatrix} -49 & 24 \end{bmatrix}$

$$A = \begin{bmatrix} -49 & 24 \\ -64 & 31 \end{bmatrix}$$

Test Examples

3) Other test cases from Moler and Van Loan

$$A = \begin{bmatrix} 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 6 \\ 0 & 0 & 0 & 0 \end{bmatrix}; \quad A = \begin{bmatrix} 1 - \epsilon & 1 \\ 0 & 1 + \epsilon \end{bmatrix}, \quad \epsilon = 10^{-5}, \ 10^{-6}, \ 10^{-7}$$

4) Some other test cases

$$A = \begin{bmatrix} 0 & 1 \\ -0.5 & -1 \end{bmatrix}; \quad A = \begin{bmatrix} 4 & 2 & 0 \\ 1 & 4 & 1 \\ 1 & 1 & 4 \end{bmatrix}; A = n by n controllability matrix with zero nth row$$

- 5) Terrestrial Navigation example
 - Consider the local-level terrestrial navigator (Britting, K.S., 1971, "Inertial Navigation Systems Analysis," New York, John Wiley) which has no vertical accelerometer.
 - This type of system consists of a three-axis inertial platform and two accelerometers mounted orthogonally in the east and north directions

Test Examples

• The error equations for this class of system can be written as follows:

 $\dot{x} = Ax + bu$

where $\underline{x}^T = \begin{bmatrix} \epsilon_N, \epsilon_E, \epsilon_D, dL, dl, d\dot{L}, d\dot{l} \end{bmatrix}$ $\begin{bmatrix} 0 & -W_{ie} \sin L & 0 & -W_{ie} \sin L & 0 & \cos L \end{bmatrix}$ $-W_{ie}\sin L$ 0 $-W_{ie}\sin L$ 0 0 -1 0 $0 \qquad -W_{ie}\cos L \qquad 0 \qquad -W_{ie}\cos L \quad 0 \quad 0 \quad -\sin L$ A =0000100000001 $\begin{bmatrix} 0 & W_s^2 & W_s^2 & 0 & 0 & 0 \\ -W_s \sec L & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$ and $\underline{b}u = [q_1, q_2, q_3, 0, 0, q_{4/r}, q_{5/r} \cos L]^T$

• The transition matrix for the above system must be evaluated for the following parameters.

$$W_{ie} = \frac{15\pi}{180^{\circ}}$$
 rad/h, $L = 45^{\circ}$, $W_s = \sqrt{20.1}$ rad/h

Summary

- \Box What is the need for computing e^{At} ?
- □ Evaluation of matrix polynomials (**Horner's rule**)
- Truncation errors
- Chebyshev approximation
 - Properties
 - Clenshaw recursion
 - Concepts of shifting, scaling, and doubling
- Pade approximation
- ☐ Upper Schur transformation-based approach
- □ Special case: *A* is a stochastic matrix (*a la* Markov chains)
- \square How **not** to compute e^{At} ?