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Outline of Lecture 2:
Computing eAt

 What is the need for computing eAt?

 Evaluation of matrix polynomials (Horner’s rule)

 Truncation errors

 Chebyshev approximation 

• Properties

• Clenshaw recursion

• Concepts of shifting, scaling, and doubling

 Pade approximation

 Upper Schur transformation-based approach

 Special case: A is a stochastic matrix (a la Markov chains)

 How not to compute eAt?
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 What is the need for computing eAt?

• eAt is a transcendental function that arises in a variety of applications.  A 

representative set of examples are as follows:

I. .

II. Discrete-time version: u(t) piecewise constant over t ∊ [kδ, (k+1)δ)

III.

w(t) = zero-mean white Gaussian noise with covariance 

E{w(t)wT(σ)} = W δ (t- σ ).

Define X(t) = E{x(t)xT(t)}

IV. There exist many other control situations where eAt and various ∫ arise. See 

the paper by Dorato and Levis, Dec. 1971 IEEE T-AC.

What is the need for Computing eAt ?- 1
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V. Continuous–time Markov  Chains  arise in a wide variety of applications:

- Reliability/availability modeling

- Performability modeling

- Computer performance 

- Manufacturing Systems

- Computer-communication network modeling.

The key equation to be solved is:

• Q=[qij] transition rate matrix, where:

qij = rate at which the chain jumps from state i to state j

• Q is a stochastic matrix ⇒ each row of Q sums to zero.

• If there is a reward rate fi associated with each state i, then the expected 

cumulative reward of the chain over an interval [0, T], termed average 

performability, is
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What is the need for Computing eAt ?- 2
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 Most fundamental question:

• How to compute the functions eAt and various ∫ for a given A and t

 In this lecture, we focus on the problem of computing eAt

 Computing eAt is a subset of a broader problem: Compute f(A)

e.g., sin A, ln A, e A, cos A, etc.

•

 We will later see that this is one of the worst methods for computing 

f(A).
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Eigen Method for Computing eAt
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 We will see in Lecture 10 that condition number of the given Eigen 

value problem ∝ 1/|λi-λj| 
λi ≈ λj ⇒ trouble ⇒ since condition number ≈ 105

 Another way

• Suppose have an approximation to f(a), e.g., a polynomial series

• Then how much error do we make by approximating  f(a) by         ?

 Theorem: Given a scalar function f(a). Let         be an approximation 

to f(a) for –c ≤ a ≤ c (or |a|≤ c). Then        is an approximation of f(A) 

valid for spectral radius ρ(A) ≤ c with truncation error:

where P is the similarity transformation that diagonalizes  A.

1
2.718307 2.75000 2.718309 2.718282

( ) ; actual
0.00000 2.718524 0.00000 2.718255
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Computing eAt and Ill-conditioning
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Proof:

• So, the problem of computing  f(A) is reduced to finding a suitable, simple 

f (a), a is a scalar

• This is a scalar numerical function approximation

• .

• Example: Maclaurin’s series for f(a)

 Key sub-problem: how to evaluate (truncated) polynomials efficiently.

• Evaluation of scalar and matrix polynomials:

consider:
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Note that most  are often polynomials or ratio of polynomials (of some type).f

Error Analysis
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 A method called Horner’s rule or reverse nesting gets around 

round-off error problems

 Horner’s Rule

− Consider

− Initialize p0 = b2I,

− p1=b2A + b1I,  n
2 Multiplications and n additions

− p2=Ap1+b0I, n3 Multiplications and n3+n additions 

− In general

− Algorithm

1 1
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end Do

N N

i i N i

p b A b I

i N

p Ap b I



 

 



 



2

0 1 2

1 2 1 0

 can be computed in ( 1)matrix multiplications via:

( ( ( ( ) ) ) )

N

N

N N N

b I b A b A b A N

A A A A b A b I b I b I b I 

    

   



2

0 1 2 0 2 1[ ]b I b A b A b I A b A b I    

Horner’s Rule



Copyright ©1991-2008 by K. Pattipati 9

 We can do better than (N-1) matrix multiplies
• Suppose have

 In general, if s is any integer satisfying 1≤ s≤ N1/2, then 

 Compute A2, A3, …, As and apply Horner’ Rule to new polynomial.

 Operation count: ≈ (s + r - 2)n3± n3 if s = floor(sqrt(N))
⇒ minimal computation of N1/2n3.
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Smarter Horner’s Rule - 1
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 Previous example: s = 3 and r = 3

Example 2: 13th order polynomial s ≤ (13)1/2

 Q: How do we use these concepts of function approximation and 

evaluation of polynomials? 
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 Computation of f(A)

• .

• There are basically three approaches:

– MacLaurin’s (Taylor’s) series |a| ≤ 1

– Chebyshev polynomials

– Pade rational approximation

 MacLaurin’s (Taylor’s) series

• .

•

 .
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 Before we present proof, consider zeroth-order approximation to a 

scalar function f(a) at a = x

• Error = b1x+b2x
2+… = f ’(ξ).x (from derivative mean-value theorem)

• For nth order approximation,

• The result can be extended to matrices as well. 

• Proof:
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• Now
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 General series  Chebyshev:

Chebyshev Polynomials

• Let        be a complete set of polynomials on

order polynomial

• Then, if                              , suggest using

• So error in                                                    , an              order polynomial 
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Want zero error at as many points as possible in (-1, 1)=N+1.  Also want uniform error. 

• The Chebyshev polynomials have this property:
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 Chebyshev functions convert periodic functions into ordinary 

polynomials

Chebyshev Polynomials - 2

1,  cos ,  cos2 ,  cos3 ,  etc.  

       0 1 2 3,  ,  ,  T a T a T a T a

2 3,  2 1,  4 3 ,  etc.a a a a 
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Three-term recursion
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Properties of Chebyshev Polynomials

 Nice properties of Chebyshev polynomials

• The leading coefficient  2k-1 for k ≥ 1 and 1 for k = 0.

• Symmetry Tk(-a)=(-1)kTk(a)

even  even;    odd  odd

• Has k zeros in (-1,1) at

• Has (k+1) extrema (maxima and minima) at 
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• Example: for                            maximum at 

minimum at 
 2 cos cos2T    cos . 2 ,  =0,2i i  2 1T a  

 cos . 2 ,  =1i i  2 1T a  

• Chebyshev  polynomials are orthogonal in the interval [-1,1] 
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Properties of Chebyshev Polynomials
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Chebyshev Coefficients

• If we terminate at N (Nth order polynomial)
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Why Chebyshev?

 Why Chebyshev is Good?

• Tk is bounded between -1 and +1     0

0 1
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b
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• decreases rapidly   error is dominated by bN+1TN+1(a), an 

oscillatory term with (N+1) zeros and (N+2) equal extrema distributed 

smoothly over [-1, 1]  error spreads out evenly

s
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Chebyshev and eAt

 Computing considerations:

• Pick 
 

1
  sufficiently low ( 1/10 of round-off error)

2 1 !N
N

N
 



• Note for 2x it is 1/(N+1)!

• ex  N=9  1/(512.3.6.105) = 5 x 10-9

• e2x  N=12 for same accuracy

• Then, evaluate    0
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Taylor coefficients but not exact 

   
   

   0 20 0
1 2

1

ˆ
2 2 2

N

k k

k

c a c ab b
f a b T a ac a c a




     

     1 2 1where 2 ,  1,  2,  ,  0;  0,  k k k k N N Nc a b ac a c a k N N c c b         



Copyright ©1991-2008 by K. Pattipati 21

Clenshaw Recursion

• Proof of Clenshaw recursion:
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Practicalities - 1

 Suppose want f(a) for x1 a x2
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 Computing eAt

• Have                             with error                valid in the region |a|1

• Similarly
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 Three step process for computing eAt

• Make Eigen values cluster around zero A (SHIFTING)

• Make                             through scaling (SCALING)

• Use doubling concept (DOUBLING)
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 SCALING

 Find = 0.2 0.5  [0.2 0.5]
2m

t
A to A       
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Practicalities - 2
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Pade Approximation - 1

 Rational Function Approximation to ea: Pade Approximation

• Pade approximation 

• Idea is to pick (ni, di) such that     agrees with the Taylor series to 

maximum number of terms (2m in general):

• Error would be                                

• Pade is like Taylor series, but generally somewhat better, but not as 

good as Chebyshev (MATLAB uses Pade)
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2

2

1 / 2 1 / 2 /12
e.g., 1 ;  2  

1 / 2 1 / 2 /12

a a a
m m
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th 

5
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Taylor series   i.e., error in a
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• For matrix computation 

• Total computation 2(m-1) multiplications  +1 inverse  (2m-1) same as 

2mth order Taylor.

• Of course, can use modified Horner’s rule to reduce computations
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 We can exploit the similarity of numerator and denominator

• Compute 
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Pade Approximation - 2
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 Algorithm:

 1. Compute tr /  ;   

2. Find / 2  such that 0.5( 0.2)

3. Compute  via PADE

4. Use Doubling

     Do 1,

           Y Y Y

     End Do

5. 

M

A

At t

A n A A I

t A

Y e

i M

e e Y





 

 

  

  





 

 







 Use 4th order PADE for error 10-9

 

 

23 22 !
Relative error =  where 

2 ! 2 1 !

A m
A

A

e Y m
A e

m me






 
 





 Research Problem: Combine PADE and CHEBYSHEV

       

1

0 0

ˆ   expect 1

m m
i

i i i i i i

i i

f A n T A d T A d n



 

   
     

      
 

Pade Approximation - 3



Copyright ©1991-2008 by K. Pattipati 27

 Transform A Matrix into Upper Schur Form (Lectures 10, 13 and 14)

11 12 1

22 2

 

. . .

. . .

; Orthogonal  ;

 Block upper triangular matrix = 

where is 2x2 or 1 x 1

T T At Rt T T Rt

p

p

pp

ii

R R R

R R

R

R Q AQ Q A QRQ e Qe Q QGQ G e

R

R

 
 
 
 
  

       



1

1

; 1,2,..,

1,2,.., 1

1,2,..., 0

1
[ ( ) ( )]

( )

iir t
ii

j

ij ij ii jj ip pj ip pj
ii jj p i

g e i n

For k n Do

For i n k D

Set j i k

g r g g g r r g
r r

End

End



 

 

 

 

 

   




Upper Schur Matrix Approach

 is easy to computeRtG e

 G is relatively easy to compute

Problem when

Eigen values are 

Close to each other
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eAt for Stochastic Matrices

 Special case: A=Q a stochastic matrix

• Q=[qij] is a transition rate matrix (infinitesimal generator matrix) of the 

continuous-time Markov chain (CTMC)

Important property of Q: 
1

   each row of  sums to zero.

N

ii ij

j
j i

q q Q




  

• Moreover, we are primarily interested in solving:

   0 0;   0    
TT Q tp Q p p p p t e p   

• One popular method is called “Uniformization.”

 What is Uniformization?

• Let q ≥ max|-qii|

• Then, can construct an equivalent process for which the transition rate 

from each state i is q and a fraction (1+qii/q) of these transitions return 

immediately to state i.
• Basically,  this amounts to constructing a discrete-time Markov chain 

(DTMC) by scaling Q by (1/q) and shifting the diagonals of the scaled 

matrix by 1, i.e., define  /     Q Q q I Q q Q I     
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Uniformization

 Other methods for solving Markov chain models: ODE solvers.

• The process of obtaining a DTMC from a CTMC as above is called 

uniformization (= special scaling & shifting)

• Clearly, 

This can be evaluated with matrix-vector operations only.

• For a specified accuracy , the number of terms N to be retained is 

computed from:

• Although, this is basically Taylor series, it works for this case because 

of the special structure of Q.

 

 
 

0

1 0 0

0

    
!

then,    where  with 
!

n
n

Qt qt

n

nN
T

qt
n n n

n

qt
e e Q

n

qt
p t e Q p

n
   


 



 




 
 

   
 





   

1 0

1
! !

n nN
qt qt

n N n

qt qt
e e

n n
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Dubious Methods - 1

 Bad (Dubious) Methods:

• Do not use exact formulae or Eigen value-based methods (unless by 

hand). May be OK if A=AT

• Caley-Hamilton Theorem

 

1
1

2 1

0

1 1 1

0 0 0 0 0 0

0    

! ! !

n
n n k i

n ik

i

n n nk k k k
At i i i

ik ik i

k k i i k i

A A A I A A

t A t t
e A A t A

k k k

   

  






     

     

       

 
     

 
 



     



• Lagrange interpolation (SYLVESTER’s THEOREM)

 

 
1 1

1

Alternate: 

i

i

n
ktAt

i ki k
k i

n
tAt T

i i

i

A I
e e

e e
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• Inverse Laplace Transform: Leverrier and Faddeva or Sourian and 

Frame Algorithm

 
 

 

 

 

1
1

1

1
2 1

1 1 1

2 1 1

0

                                                 tr /1

                                tr / 2

          

n k

k

k

n n
n

n n n

n n n n n

n n n

s
sI A B

d s

d s sI A s s s

B I AB

B AB I AB

B AB I

  



 










  

  

 

       

   

    

  





 

 

   
 

2 2

1 2 2 1 1

1 1
1 11

1 1 1
1 1

                tr / 3

                                   tr /

Check: 0;    ;   det 1 ;   { }

n n

n k
n At

k

k

AB

B AB I AB n

B s
AB I A A e L B

d s



 

 


 

 
 



 

    

       

 Slick Test cases for eAt subroutines

Suppose A is an idempotent matrix, A2=A

 
1 1

1
! !

k k k
At t

k k

A t At
e I I A e

k k

 

 

      Then,

Dubious Methods - 2
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How to Test eAt Software?

 How to construct idempotent matrices

• Consider any m x n matrix C and its pseudo inverse C. 

Then (In- CC) and (Im-C C) are idempotent.

 Tests on the accuracy of computed eAt

 1
tr1 1

    Known  as in idempotent case

    .  or 

   | | | || || |

1)

2)

3)

n

i

i

At

At At At At
n n

t
AtAt t t

e

e e I e e I

e Pe P P e P e e




 

   

  

   


 Test Examples:

1) Idempotent matrices (e.g., Kerr, 1990)

2) Bad problem for Taylor series  (Moler and Van Loan, SIAM Review, 

1978) (assume t=1)
49 24

64 31
A
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3) Other test cases from Moler and Van Loan

4) Some other test cases

5) Terrestrial Navigation example

5 6 7

0 6 0 0

0 0 6 0 1 1
;     ,     10 ,  10 ,  10

0 0 0 6 0 1

0 0 0 0

A A   

 
 

           
 
 

4 2 0
0 1

;     1 4 1 ;
0.5 1

1 1 4

thA A A nby ncontrollability matrix with zero n row

 
   

          

• Consider the local-level terrestrial navigator (Britting, K.S., 1971, 

“Inertial Navigation Systems Analysis,” New York, John Wiley) which 

has no vertical accelerometer.

• This type of system consists of a three-axis inertial platform and two 

accelerometers mounted orthogonally in the east and north directions

Test Examples
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• The error equations for this class of system can be written as follows:

x Ax bu 

where ,  ,  ,  ,  ,  ,  
T

N E Dx dL dl dL dl     


2 2

0 sin 0 sin 0 0 cos

sin 0 sin 0 0 1 0

0 cos 0 cos 0 0 sin

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0

sec 0 0 0 0 0 0

ie ie

ie ie

ie ie

s s

s

W L W L L

W L W L

W L W L L

A

W W

W L

  
 
  

 
   
 

  
 
 
 
 
 

15
 rad/h,    45 ,   20.1 rad/h

180
ie sW L W


  



 1 2 3 4/ 5/and    ,  ,  ,  0,  0,  ,  cos
T

r rbu q q q q q L

• The transition matrix for the above system must be evaluated for the 

following parameters.

Test Examples
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Summary

 What is the need for computing eAt?

 Evaluation of matrix polynomials (Horner’s rule)

 Truncation errors

 Chebyshev approximation 

• Properties

• Clenshaw recursion

• Concepts of shifting, scaling, and doubling

 Pade approximation

 Upper Schur transformation-based approach

 Special case: A is a stochastic matrix (a la Markov 

chains)

 How not to compute eAt?


