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Mechatronic Systems Introduction & Overview  

1. Feedback Control Structures for Continuous-time Systems 
• Output feedback (series compensation, Proportional-Integral-Derivative 

(PID), Feed forward-feedback, Internal Model Control…) 

• State variable feedback     

 

2. Classification of Control Design Techniques 

 

3. Digital Control Loop Structure 

• Relationships among time signals 

• Typical algorithm implementation considerations 

 

4. Discrete-time System Stability 

 

5. Continuous-time-vs.-Discrete-time Relationships 
• s  z plane mapping 
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Basic Feedback Control Loop – SISO System-1 

The feedback control problem is to design the controller to have y(t)   r(t) = reference 

setpoint, even in the face of external disturbances, imprecise models of dynamics, etc.  

Error, e(t)   r(t) – y(t).  

•   We define u(t) = control signal produced by the controller.  This is the input signal to the   

     subsystem (e.g., valve opening, fuel flow, etc.)  

     If only measurements of the system output are available: 

  



•  Consider a particular subsystem under local computer control. 

 y(t) = Output of subsystem CONTROLLER 

SENSOR 

SUBSYSTEM  
DYNAMICS 

u 

x 

r(t) 

d(t) 

 v(t) = measurement noise 





( )my t

             ( ) : , ; ( ) : , ,m munknown d t u t H r y measured d t u t H r d y       

 Output Feedback 
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•   Often we have measurements of the system state x available for feedback, in which case:  

     ,u t H r x     State Variable Feedback 

•   When r(t) = 0, we desire y   0.  This is a regulator problem, where we wish to bring the  

    system to the rest state (e.g., reduce the spin of a satellite, Linearized non-linear system  

    around an equilibrium point, maintain speed (slip) variations near zero in an induction motor). 





• When r(t)   0, we have an output command (servo) problem, where we wish to reduce 

e(t)     0.  Typically, r(t) is a step or ramp command.  

t 

r 
At 

t 

r A 

Basic Feedback Control Loop – SISO System-2 
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(Key Relation in Output Feedback: T(s) + S(s) = 1)-1 

•  Single degree of freedom controller       , mu t H r t y t   

d

 H(s) G(s) 


Gd (s) 
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u y

v
my

(unknown) 
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(Key Relation in Output Feedback: T(s) + S(s) = 1)-2 
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Illustration of T(s) + S(s) = 1 

r + 

- 

e u y 

10 1/s 
10

Closed-loop Transfer Function ( )
10

Sensitivity Function ( )
10

T s LPF
s

s
S s HPF

s

 


 


Note: in linear scale 

•  at  = 0.1 rad/sec. 

   T(0.1j) = 0.9999-0.01j 

   S(0.1j) = 0.0001+0.01j 

• at  = 10 rad/sec. 

   T(10j) = 0.5-0.5j 

   S(10j) = 0.5+ 0.5j 

• at  = 20 rad/sec. 

   T(20j) = 0.2-0.4j 

   S(10j) = 0.8+ 0.4j 
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•  Signals y(s), u(s) and e(s) = r(s)-y(s)  
d


H(s) G(s) 



Gd(s) 






r
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my
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 ately, both command and disturbance signals are negligible.

Also, need to make sure that the control signal does not saturate! 

Fundamental Tradeoffs in SISO Control Design 
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Output Feedback-1 
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• Design objective is to determine the transfer function H(s) so that y(t)  r(t) "nicely" 

and the  closed-loop has desirable stability/transient response.  Usually, H(s) has a simple 

form, e.g., 

 

 

 

1

1

2

2

1 2
0

2

1  
                 1

1  

1  
                 1

1  

  1

s
H s K

s

s
H s K

s

K K s
H s K

s s














 




 



  


LAG COMPENSATOR 

LEAD COMPENSATOR 

PID COMPENSATOR   (   LAG-LEAD) 

LAG - LEAD  



Copyright ©1994-2012  by K. Pattipati  

α 1ω•   Selection of design parameters (K,   ,    , ... ) via either root locus or Bode plot methods  

     => "classical design",  using properties of loop gain, GH. 
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A good design will have:  

Output Feedback-2 
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Output Feedback : Example 
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[Bode Plots of Loop Gain, T(s) and S(s)]-1 
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[Bode Plots of Loop Gain, T(s) and S(s)]-2 
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Feedforward Schemes-1 

•  Feedback and Feedforward scheme (d is measured) 

d

 H(s) G(s) 


Gd (s) 
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u y

v
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(measured) Kd (s) Kr(s) 
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( ) ( ) ( ) ( ) ( ) ( )[ ( ) ( ) ( )] ( ) ( )
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•  Feedforward control helps at frequencies where |S(j)|>1 

1
 For command tracking, make ( )[1 ( ) ( )] small ( )

( )

( )
 For disturbance rejection, make ( )[ ( ) ( ) (s)] small ( )

( )

1
Problems :  1) What if ( ) is not stable?, 2) What if 

( )

r r

d
d d d

S s G s K s K s
G s

G s
S s G s G s K K s

G s

G s
G s

   

   

  is non-causal? 

                     3) G(s) is not known perfectly,4) Disturbances are never known exactly

Feedforward Schemes-2 
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Internal Model Control (IMC)-1 

•   Widely used in Process Control (unknown disturbances, inaccurate models, constraints) 

•   A convenient theoretical framework for PID tuning rules, Smith predictor, non-minimum  

    phase behavior,… 

 
d
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Internal Model Control (IMC)-2 
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State Variable Feedback 



       

      
c rx t A BK x t BK r t

y t Cx t Du t

  

 

     ;     gain matrixr c cu t K r t K x t K m n   

 
1

 

Loop gain =                        c
s j

K sI A B








•   Design objective is to have y(t)     r(t), especially when r(t) = step input, and to have desirable  

    closed-loop stability/transient response. CL system dynamics are: 

•   Selection of feedback gains Kc so that eigenvalues of A – BKc are in suitable locations in the  

     left hand s-plane and satisfy/optimize certain criteria  

       pole placement (eigen structure assignment), LQR, LQG, H2, H , -synthesis, l1,… 

•   Crossover frequency and phase margin are evaluated by examining the Bode plot of 

  
Continuous controllers require continuous (i.e., analog) feedback of y(t) and/or x(t) and  

implementation using analog components (e.g., circuits, op-amps, analog chips). 

If all states are not measured, need to 

estimate them and use the estimates for 

feedback. This can result in poor stability 

margins.  In order to recover robustness, 

loop transfer recovery (LTR) procedures 

are used.   

     
1
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 x = A x+ Bu C 
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State Variable Feedback: SISO Example 
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Classification of Controller Design Techniques 

•   Linear Time-invariant Systems  

1. Loop gain shaping 

• Classical designs (lead, lag, lead-lag, PID, feedforward-feedback, ) 

• Loop-shaping to minimize sensitivity 

2. Closed-loop transfer function shaping (T(s), S(s), H(s)S(s))  

• Internal Model Control (IMC) 

• Minimize Mixed Weighted Sensitivity (H  optimal control) 

3. State variable feedback controllers 

• Pole placement, LQR, LQG, H2, H, -synthesis, l1- robust control,.. 

4. Numerical optimization-based design  

• Linear Matrix Inequalities (LMI), Model Predictive Control (MPC) 

 

• Non-linear Systems 

• Gain scheduling, MPC, Sliding mode control, Fuzzy control, Neural control 
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SISO Digital Control Basic Structure-1 

r(t) 
G(s) 

COMPUTER  

ALGORITHM 

CLOCK 

r(tk) 

y(tk),   x(tk) 

u(tk) 

D-A A-D 

SENSOR 

PROCESS 

u(t) 
y(t) or   x(t)    

We are now dealing not with continuous signals in the controller, but with samples of 

these signals. Usually tk = kh where h is the sample time interval.  The (real-time) clock 

maintains synchronism. 
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SISO Digital Control Basic Structure-2 

ε

•   Primary steps in computing u(t): 

1.  Wait for interrupt at time tk.  

  

(A-D)    2.  Sample r(t) and y(t) to obtain  

y(k)    value of y(t) at time t = tk  

r(k)    value of r(t) at time t = tk.  

  

3.  Compute u(k),  

u(k) = H [y(k), y(k-1), ... , r(k), ... , u(k-1), u(k-2), ... ]    This takes    seconds.  

  

(D-A)    4.  Output u(k) through the D-to-A converter to give u(t).    

If the D-A is a hold circuit then u(k) = value of the control over the time interval  

[tk +    , tk + h+    ] where    is the computational delay at step 3.  

5.  Precompute any variables needed for the next cycle.  

6.  Return to step 1 with k = k + 1. 

 

All operations in steps 2-5 must be done in  <  h sec! 
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Relationship of Time Signals and Samples 

m ! εseε

  

There is often a computational delay at step 3, depending on the complexity of the  

computations performed. 

  

     h 

h 
t 

y(t) 

tk-1 tk+1 tk 

y(tk-1) 

y(tk) y(tk+1) 
CONTINUOUS  

PROCESS  

SIGNAL 

t 

u(t) u(tk-1) 

u(tk) OUTPUT OF D -A  

CONVERTER 

"WAIT" TIME:  time to do rest of   computations at step 5 COMPUTATIONAL  DELAY  
(step 3) 

=  NUMBERS IN THE  

   COMPUTER MEMORY 
h 

u(tk+1) 

  

The delay   is like a delay in y(t) or in the process, i.e., G(s)    G(s)     .  Delays reduce 

It is important to minimize the delay at step 3 by arranging things so as to do the least amount  

of computations at step 3, while shifting the rest to step 5. 
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(A Typical Algorithm For SISO H)-1 

     

 
-1 -

0 1

-1 -
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1     

q

q

q

q

u z H z e z

z z
H z

z z

  

 



  


  

     

             1 2 0 1

error at time                                                                         

-1 - 2 - -1 -      

    

 

k

m m

e k r k y k t

u k u k u k u k q e k e k e k q     

  

        

This is a difference equation, i.e., a relationship between a sequence of values.  An 

alternate way of writing the algorithm is via a discrete transfer function.  Notationally, 

u(k)    u(z),  u(k-i)     z-iu(z).  Where z-1 is the unit shift, or unit delay, operator.  

Referred to as an “qth order compensator”.  
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(A Typical Algorithm For SISO H)-2 

   

   

0

1 1

       3

     
q q

i i

i i

u k WI e k at step

where WI u k i e k i



 
 

 

     

Implementation of Eq. (1.15):  

1.   Directly as shown at step 3.  This would involve    (2q +1) MADDS.  

or  

2.   Compute  

  

       

        

was computed at step 5 during the previous time step.  

Requires only 1 MADD!    

ε=>    Clever organization of the algorithm can reduce   .   
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Diffs. in Digital vs. Analog Control Methods 

•   Control design based on samples of y(t), r(t), x(t)  

•   Control input to system is piecewise constant over intervals of length h 

 (assuming D -A is a hold circuit)  

•   Computational delays  

•   Controlling a continuous system, G(s), using a discrete algorithm, H(z)  

=>  a mix of continuous and discrete    elements constitutes the FB loop  

•   Most analysis will need to be performed using z-transforms and  working in the z-plane  

•   Computer-aided design software becomes much more necessary    

for analysis, design, evaluation  

•   Effects of round-off error in computations due to finite word length 

• Quantization error in A-D conversion (not a major issue with 16 and 24-bit A-D 

conversion)  
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Stability of the Time Response 

      

-1

1

1 2

     

;       

n n

n

n i

z a z a

z z z roots of p z   

   

    

 iλ 1

j



iλ



     p(z) = denominator of transfer function  =  characteristic polynomial  

If input u(k)         , then y(k)        if roots     of the characteristic polynomial have           . 

Re (z) 
1 -1 

z-plane 

Im(z) 

     are called the poles of the system.  We say a system is stable  

if and  only if    lie within the unit circle.  

Usually the difference equation (1.19) is a discrete model of an underlying continuous process  

or continuous signal.  We often have a good mental picture of the impulse response g(t) given  

the poles si of the continuous transfer function G(s). 

i

i

How do we develop the same insight in the z-plane? 

t 

g(t) g(t) 

t 

j

 

  Bounded Input and Bounded Output (BIBO) Stability 
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Continuous vs. Discrete Relationships 

1s h
e
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    z = esh gives relationship between the Laplace (s) and z domains  

Ex.    If f(t) has a Laplace transform with poles @ s1, s2, ... then the sampled f(kh) has a   

         z-xform with poles at  z1 =      , z2 =      , ...  2s h
e

s-plane z-plane 

zi = z1 

s1 

Note:  If Re(si) < 0, |zi | < 1 

j



is h
e

•    Non-uniqueness property:      

s-plane 

z-plane 

2π

h

2π

h

not a 1-1 mapping -- have 1 primary point and aliases 

Primary strip -- these  

points will fill the unit  

circle. Points outside  

of this strip will be  

duplicates. 

Re(z) 

Im(z) 

1 

z-plane / 2sj h j 

-1 

s-plane 

jω



/ 2sj h j   
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s – to – z Plane Mapping 

s - plane z - plane 


  s j h 
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Useful for mapping regions of s-plane into regions of z-plane 
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Loci of Constant Damping Ratio (  ) and  

Natural Frequency (   ) in s-Plane to z-Plane Mapping 
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Ex. 

Note:  The semi-circle of radius        fills the entire unit circle minus the small "airfoil"  

           area on z-axis. 

h

0.5 

1 

–1 

-j 

j z-plane s-plane 

j

j h

j h

2 2 2 2 2

2 2

2 2

ln

ln &

Re ( )

(ln )

ln

(ln )

dj hj sh h

d

d

n d

n

n

z re e e e

h j h r j

h r h

call h h

h r

h r

h r

 

  

  

  

 




 

  

    

   

 

  


  



Z-grid 

•  For a given , spirals are 

   symmetric around real axis 

•  For a given  

 

 

•  For a given ,  
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Summary 

1. Feedback Control Structures for Continuous-time Systems 
• Output feedback (series compensation, Proportional-Integral-Derivative 

(PID), Feed forward-feedback, Internal Model Control…) 

• State variable feedback     

2. Classification of Control Design Techniques 

3. Digital Control Loop Structure 
• Relationships among time signals 

• Typical algorithm implementation considerations 

4. Discrete-time System Stability 

5. Continuous-time-vs.-Discrete-time Relationships 
• s  z plane mapping 

 

 

 


