

Outline of Lecture 3

- ☐ What is the need for computing $\int e^{As} ds$, etc.?
- How to get integrals from the exponential of a modified matrix?
- Concept of **doubling**
- Error analysis
- Application to system stabilization

References

- C. F. Van Loan., "Computing integrals involving the matrix exponential," <u>IEEE Trans. on AC</u>, Vol. AC-23 No-3, June 1978, pp. 395-404.
- E. S. Armstrong, "Series representations for the weighting matrices in sampled-data optimal linear regulator problem," <u>IEEE Trans. on AC</u>, Vol. AC-23, No-3, June 1978, pp. 478-479.
- 3. K. R. Pattipati and S. A. Shah, "On the computational aspects of the performability models of fault-tolerant computer systems," <u>IEEE Trans.</u> <u>on Computers</u>, Vol. C-39, No. 6, June-1990, pp. 832-836.

• Suppose want to model the continuous stochastic LTI system by its discrete counterpart

 $\underline{x}(k+1) = \Phi \underline{x}(k) + \Gamma \underline{w}(k)$

- Find Φ , Γ and $\operatorname{cov}[\underline{w}(k)] = W_d \ni \underline{X}_d(k\delta) = \underline{X}_c(k\delta)$ at the sampled points, where $X_d(k+1) = \Phi X_d(k) \Phi^T + \Gamma W_d \Gamma^T$
- Two possibilities: (1) $\Phi = e^{A\delta}$, $\Gamma = I$, $W_d = S(\delta)$ (2) $\Phi = e^{A\delta}$, $\Gamma = [S(\delta)]^{1/2}$, $W_d = I$
- We will see in Lecture 5 how to compute *square roots of positive definite matrices*
- 3) Integrals of the form $\int_{0}^{t_{f}} e^{A\sigma} BB^{T} e^{A^{T}\sigma} d\sigma$ are used to test the controllability of LTI systems and to solve the minimum energy control problem: $\min \frac{1}{2} \int_{0}^{t_{f}} \left(\underline{u}^{T} \underline{u}\right) dt$ s.t. $\underline{\dot{x}} = A\underline{x} + B\underline{u}$ and $\underline{x}(t_{f}) = \underline{0}$

Why Compute Integrals of *e^{At}* ? - 3

Hamiltonian:
$$\frac{1}{2}\underline{u}^{T}\underline{u} + \lambda^{T} (A\underline{x} + B\underline{u})$$

 $\partial H / \partial \underline{u} = 0 \implies \underline{u} + B^{T}\underline{\lambda} = 0 \implies \underline{u} = -B^{T}\underline{\lambda}$
 $\partial H / \partial \underline{x} = -\underline{\lambda} = A^{T}\underline{\lambda}; \quad \underline{\lambda}(t_{f}) = \underline{v} \quad (\underline{v} \text{ unknown}) \implies \underline{\lambda}(t) = e^{A^{T}(t_{f}-t)}\underline{v}$
 $\underline{u} = -B^{T}e^{A^{T}(t_{f}-t)}\underline{v} \implies x(t_{f}) = e^{At_{f}}\underline{x}_{0} - \int_{0}^{t_{f}}e^{At}BB^{T}e^{A^{T}t}dt\underline{v}$
 $\implies \underline{v} = \left[\int_{0}^{t_{f}}e^{At}BB^{T}e^{A^{T}t}dt\right]^{-1}e^{At_{f}}\underline{x}_{0}$
 $\underline{u}(t) = -B^{T}e^{-A^{T}t}e^{A^{T}t_{f}}\left[\int_{0}^{t_{f}}e^{At}BB^{T}e^{A^{T}t}dt\right]^{-1}e^{At_{f}}\underline{x}_{0}$

4) Integrals of the form $\int_0^{t_f} e^{A^T \sigma} C^T C e^{A\sigma} d\sigma$ also rise in testing the observability of LTI systems.

5) In sampled data regulator problem, in addition to $\Gamma(\delta)$ and $S(\delta)$, we also get integrals of the form:

$$M(\delta) = \int_0^{\delta} e^{A^T \sigma} Q \Gamma(\sigma) d\sigma \text{ and } N(\delta) = \int_0^{\delta} \Gamma^T(\sigma) Q \Gamma(\sigma) d\sigma$$

6) Performability models of fault-tolerant computer systems

$$\overline{y}_{[0\ T]} = \underline{f}^T \left[\int_0^T e^{\mathcal{Q}^T t} dt \right] \underline{p}_0$$

• So, need:

$$-\Gamma(\delta) = \int_0^{\delta} e^{A\sigma} B d\sigma$$
$$-S(\delta) = \int_0^{\delta} e^{A\sigma} B B^T e^{A^T \sigma} d\sigma \text{ or } \int_0^{\delta} e^{A^T \sigma} C^T C e^{A\sigma} d\sigma$$

Computation of Γ and Φ – 1

Computation of Γ and Φ : Method A

- Here δ is usually small w.r.t 1/||A||, typically 0.1/||A|| or 0.2 /||A||
- $\Psi = \int_0^\delta e^{A\sigma} d\sigma$
- So, Taylor series for $e^{A\sigma}$ is good, since $||A\delta|| << 1$

$$\Psi = \int_0^\delta \left(I + A\sigma + \frac{A^2 \sigma^2}{2!} + \dots \right) d\sigma = \delta I + \frac{A\delta^2}{2} + \frac{A^2 \delta^3}{3!} + \dots + \frac{A^k \delta^{k+1}}{(k+1)!}$$

- Then, $\Gamma = \Psi B$, $\Phi = I + A \Psi$
- Input k to routine, $k \approx 4$, $||A\delta|| = 0.1 \Rightarrow \text{error} \approx 10^{-4} \delta/120 \approx 10^{-6} \delta$
- Function c2d in MATLAB computes Φ and Γ
- Widely used method in digital control

Computation of Γ and Φ – 2

Computation of Γ and Φ : Method B

- $de^{At} / dt = Ae^{At}; e^{At}|_{t=0} = I$ or $d\Phi / dt = A\Phi(t); \Phi(0) = I$ $\hat{C} = \begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix}; \underline{e}^{\hat{C}t} = \begin{bmatrix} \Phi_1 & \Gamma \\ 0 & \Phi_2 \end{bmatrix}; \frac{d}{dt} \begin{bmatrix} e^{Ct} \end{bmatrix} = \begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix} \begin{bmatrix} \Phi_1 & \Gamma \\ 0 & \Phi_2 \end{bmatrix}$ $\dot{\Phi}_1 = A\Phi_1 \implies \Phi_1 = e^{At}; \quad \dot{\Phi}_2 = 0 \implies \Phi_2 = I$ $\dot{\Gamma} = A\Gamma + B\Phi_2 \implies \dot{\Gamma} = A\Gamma + B \implies \Gamma = \begin{bmatrix} \int_0^\delta e^{A\sigma} d\sigma \end{bmatrix} B$
- If we want Γ(δ), all we need to do is to find e^{Ĉδ} and take Γ(δ) as the (1,2) block of e^{Ĉδ}.
- *Note*: δ need not be small with this approach, since we can use **shifting**, **scaling**, and **doubling** techniques to compute $e^{\hat{C}\delta}$.

$$e^{\hat{C}\delta} = \left[\hat{f}_{pade}\left(\frac{\hat{C}\delta}{2^M}\right)\right]^{2^M} \text{ or } \left[\hat{f}_{chebyshev}\left(\frac{\hat{C}\delta}{2^M}\right)\right]^{2^M}; \hat{f}_{pade}\left(x\right) = \frac{\sum_{i=0}^{M} n_i x^i}{\sum_{i=0}^{M} (-1)^i n_i x^i}, \ n_i = \frac{(2m-i)!}{2m!} \binom{m}{i}$$

Doubling Equations for Γ and Φ

• Approach

- Find
$$M \ni \|\hat{C}\delta/2^M\| \le 1/2$$

- Let $\Delta = \delta/2^M$

- Find $\Phi_1(\Delta)$ and $\Gamma(\Delta)$ by PADE or Chebyshev $e^{A\Delta}$, $\left[\int_0^{\Delta} e^{A\sigma} d\sigma\right] B$ - Then use the fact that: $e^{\hat{C}2t} = e^{\hat{C}t}e^{\hat{C}t}$
- *Note*: don't need to carry all the elements

$$\Rightarrow \begin{bmatrix} \Phi_1(2t) & \Gamma(2t) \\ 0 & I \end{bmatrix} = \begin{bmatrix} \Phi_1(t) & \Gamma(t) \\ 0 & I \end{bmatrix} \begin{bmatrix} \Phi_1(t) & \Gamma(t) \\ 0 & I \end{bmatrix}$$
$$= \begin{bmatrix} \Phi_1^2(t) & \Gamma(t) + \Phi_1(t)\Gamma(t) \\ 0 & I \end{bmatrix}$$

In place computation:

$$\Gamma(2t) = \Gamma(t) + \Phi_1(t)\Gamma(t) = [I + \Phi_1(t)]\Gamma(t)$$

$$\Phi_1(2t) = \Phi_1^2(t)$$

Practicalities

• Don't actually need to evaluate \hat{C}^k as an (n+m) by (n+m) matrix in using Pade approximation. Some simplifications are possible!!

$$\hat{C} = \begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix}; \quad \hat{C}^2 = \begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix} \begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} A^2 & AB \\ 0 & 0 \end{bmatrix}$$
$$\hat{C}^k = \begin{bmatrix} X_k & Y_k \\ 0 & 0 \end{bmatrix} \implies \begin{array}{l} X_k = AX_{k-1}, X_0 = I \\ Y_k = AY_{k-1}, Y_0 = B \end{array}$$

 \Rightarrow need one *n* x *n* and one *n* x *m* matrix

PADE
$$e^{\hat{C}\Delta} = \left[\sum_{k=0}^{m} n_k \hat{C}^k \left(-\Delta\right)^k\right]^{-1} \left[\sum_{k=0}^{m} n_k \hat{C}^k \Delta^k\right]$$

• Use Horner's rule $\Rightarrow 3m$ matrix multiples

$$\hat{D} = \begin{bmatrix} D_{11} & D_{12} \\ 0 & I \end{bmatrix}; \quad \hat{N} = \begin{bmatrix} N_{11} & N_{12} \\ 0 & I \end{bmatrix}; \quad \begin{bmatrix} D_{11} & D_{12} \\ 0 & I \end{bmatrix} \begin{bmatrix} \Phi_1(\Delta) & \Gamma(\Delta) \\ 0 & I \end{bmatrix} = \begin{bmatrix} N_{11} & N_{12} \\ 0 & I \end{bmatrix}$$

$$\Rightarrow \text{ solve } \quad D_{11}\Phi_1(\Delta) = N_{11} \Rightarrow D_{11}(\Phi_1\dots\Phi_n)_1 = (\underline{n}_1\dots\underline{n}_n)_{11}$$

$$D_{11}\Gamma(\Delta) + D_{12} = N_{12} \Rightarrow D_{11}(\Gamma_1\dots\Gamma_m) = (\underline{n}_1 - \underline{d}_1\dots\underline{n}_m - \underline{d}_m)$$

Error Analysis - 1

• <u>Same</u> D_{11} matrix.. Can exploit this observation using the *LU* decomposition techniques of Lecture 4 for solving $A\underline{x}=\underline{b}$. What is the error made? (see Golub and Van Loan)

 $\left\| \Phi_1 - e^{A\delta} \right\| \le \varepsilon \delta \theta(\delta) e^{\varepsilon \delta}$ $\left\|\Gamma - \int_{0}^{\delta} e^{A\sigma} B d\sigma\right\| \leq \varepsilon \delta \theta(\delta) e^{\varepsilon \delta} \left[1 + \alpha \delta / 2\right]$ where $\varepsilon = \frac{\left(2^{3-2m}\right) \|C\|(m!)^2}{2m!(2m+1)!}, \ \varepsilon \ge \|E_A\|, \ E_A = \text{error in } A$ $\theta(\delta) = \max_{\alpha \in \mathcal{S}} \|e^{As}\|; \ \alpha = \|B\|$ \Rightarrow can control the accuracy of the algorithm via *m*. e.g., choose *m* to satisfy $\frac{\left\|\Phi_{1}-e^{A\delta}\right\|}{\left\|e^{A\delta}\right\|} \leq \varepsilon \delta e^{\varepsilon\delta} \leq \text{TOL and} \quad \frac{\left\|\Gamma-\int_{0}^{0}e^{A\sigma}Bd\sigma\right\|}{\left\|e^{A\delta}\right\|} \leq \varepsilon \delta e^{\varepsilon\delta}\left[1+\alpha\delta/2\right] \leq \text{TOL}$

13

Error Analysis - 2

$$\underline{\operatorname{Proof}}: \left\| \Phi_{1} - e^{A\delta} \right\| = \left\| e^{\left(A + E_{A}\right)\delta} - e^{A\delta} \right\| \leq \left\| e^{A\delta} \right\| \left\| e^{E_{A}\delta} - I \right\| \leq \theta(\delta) \varepsilon \delta e^{\varepsilon \delta}$$

see Moler and Van loan for a proof that A and E_A commute

$$\begin{split} \Gamma - \int_{0}^{\delta} e^{A\sigma} B d\sigma &= \left[\int_{0}^{\delta} e^{(A+E_{A})\sigma} \left(B+E_{B} \right) d\sigma - \int_{0}^{\delta} e^{A\sigma} B d\sigma \right] \\ &= \int_{0}^{\delta} e^{(A+E_{A})\sigma} B d\sigma - \int_{0}^{\delta} e^{A\sigma} B d\sigma + \int_{0}^{\delta} e^{(A+E_{A})\sigma} E_{B} d\sigma \\ &= \int_{0}^{\delta} \left[e^{(A+E_{A})\sigma} - e^{A\sigma} \right] B d\sigma + \int_{0}^{\delta} e^{(A+E_{A})\sigma} E_{B} d\sigma \\ &\leq \int_{0}^{\delta} \left\| e^{A\sigma} \right\| \varepsilon \sigma e^{\varepsilon\sigma} \|B\| d\sigma + \int_{0}^{\delta} \left\| e^{A\sigma} \right\| \varepsilon e^{\varepsilon\delta} d\sigma \\ &\leq \int_{0}^{\delta} \theta(\delta) \varepsilon e^{\varepsilon\delta} \alpha \sigma d\sigma + \theta(\delta) \varepsilon e^{\varepsilon\delta} \delta \\ &= \varepsilon \delta \theta(\delta) e^{\varepsilon\delta} \left[1 + \frac{\alpha\delta}{2} \right] \end{split}$$

Grammian Type Integrals - 1

- Closed form solution for idempotent matrices:
- *A* is idempotent $\Rightarrow \Psi = \delta(I A) + A(e^{\delta} 1); \quad \Phi = I + A(e^{\delta} 1)$
- Use as test cases.

 $\Box \quad \text{Computation of } S = \int_0^\delta e^{A\sigma} Q e^{A^T \sigma} d\sigma, \ Q = Q^T \text{ PSD} \Rightarrow \lambda_i(Q) \ge 0, \text{ or } \underline{x}^T Q \underline{x} \ge 0 \ \forall \ \underline{x}$

• All schemes use doubling concept, i.e., first find $\int_0^{\Delta} e^{A\sigma} Q e^{A^T \sigma} d\sigma$

where $||A\Delta||$ is small ($\leq 1/2$) and then get $\int_{0}^{\delta} e^{A\sigma} Q e^{A^{T}\sigma} d\sigma$ by doubling

• Consider $\hat{C} = \begin{bmatrix} -A & Q \\ 0 & A^T \end{bmatrix}; e^{\hat{C}t} = \begin{bmatrix} \Phi_1 & G \\ 0 & \Phi_2 \end{bmatrix}$

$$\dot{\Phi}_1 = -A\Phi_1 \implies \Phi_1 = e^{-At};$$

$$\dot{G} = -AG + Q\Phi_2; \quad G(0) = 0$$

$$\dot{\Phi}_2 = A^T \Phi_2 \Longrightarrow \Phi_2(t) = e^{A^T t} = \left[\Phi_1^{-1}(t) \right]^T$$

$$\Rightarrow G(t) = \int_0^t e^{-A(t-\sigma)} Q e^{A^T \sigma} d\sigma = e^{-At} \int_0^t e^{A\sigma} Q e^{A^T \sigma} d\sigma$$

Error Analysis

 $S(\Delta) = \Phi_2^T(\Delta)G(\Delta)$ | MUST MAKE THIS SYMMETRIC

$$S(\Delta) = \frac{1}{2} \left[\Phi_2^T(\Delta) G(\Delta) + G^T(\Delta) \Phi_2(\Delta) \right]$$

- \Rightarrow Compute $\Phi_1(\Delta)$ and $S(\Delta)$ from $\exp\{\hat{C}\Delta\}$
- \Rightarrow PADE or Chebyshev approximation
- □ What is the error made?

$$\begin{split} \left\| \Phi(\Delta) - e^{A\delta} \right\| &\leq \varepsilon \Delta \theta(\Delta) e^{\varepsilon \delta} \text{ same as earlier} \\ \left\| S(\Delta) - \int_{0}^{\Delta} e^{A\sigma} Q e^{A^{T}\sigma} d\sigma \right\| &\leq \varepsilon \Delta \theta^{2} (\Delta) e^{2\varepsilon \Delta} (1 + \alpha_{q} \Delta), \quad \alpha_{q} = \|Q\| \\ \underline{Proof:} S(\Delta) - \int_{0}^{\Delta} e^{A\sigma} Q e^{A^{T}\sigma} d\sigma = \int_{0}^{\Delta} e^{(A + E_{A})\sigma} (Q + E_{Q}) e^{(A + E_{A})^{T}\sigma} d\sigma - \int_{0}^{\Delta} e^{A\sigma} Q e^{A^{T}\sigma} d\sigma \\ &= \int_{0}^{\Delta} \left[e^{(A + E_{A})\sigma} - e^{A\sigma} \right] Q \left[e^{(A + E_{A})^{T}\sigma} - e^{A^{T}\sigma} \right] d\sigma \\ &+ \int_{0}^{\Delta} e^{A\sigma} Q \left[e^{(A + E_{A})^{T}\sigma} - e^{A^{T}\sigma} \right] d\sigma + \int_{0}^{\Delta} e^{(A + E_{A})\sigma} E_{Q} e^{(A + E_{A})^{T}\sigma} d\sigma \end{split}$$

Practicalities - 1 Take norms $\leq \int_{0}^{\Delta} \varepsilon \sigma e^{2\varepsilon \Delta} \alpha_{q} \theta^{2}(\Delta) d\sigma + \int_{0}^{\Delta} \varepsilon \sigma \theta^{2}(\Delta) e^{\varepsilon \Delta} d\sigma + \int_{0}^{\Delta} \theta^{2}(\Delta) \varepsilon e^{2\varepsilon \Delta} d\sigma$ $=\theta^{2}(\Delta)\varepsilon e^{2\varepsilon\Delta}\left|\Delta+\frac{\alpha_{q}\Delta^{2}}{2}+e^{-\varepsilon\Delta}\frac{\alpha_{q}\Delta^{2}}{2}\right|$ $\leq \theta^2(\Delta) \varepsilon e^{2\varepsilon\Delta} \left| \Delta + \alpha_q \Delta^2 \right|$ Computation of $e^{\hat{C}\Delta}$ can be simplified $\hat{C}^{k} = \begin{vmatrix} \left(-1\right)^{k} X_{k} & R_{k} \\ 0 & X_{k}^{T} \end{vmatrix} \implies \begin{aligned} X_{k} = A X_{k-1} \\ R_{k} = -A R_{k-1} + Q X_{k-1}^{T} \end{aligned}$ • Need 2 *n* x *n* matrices X and R • Compute $\hat{N} = \sum_{i=1}^{m} n_i \hat{C}^i \Delta^i; \quad \hat{D} = \sum_{i=1}^{m} n_i (-1)^i \hat{C}^i \Delta^i$ • Now, have $\begin{bmatrix} \overline{D_{11}} & D_{12} \\ 0 & D_{22} \end{bmatrix} \begin{bmatrix} \Phi_1(\Delta) & G(\Delta) \\ 0 & \Phi_1(\Delta) \end{bmatrix} = \begin{bmatrix} N_{11} & N_{12} \\ 0 & N_{22} \end{bmatrix}$

Practicalities - 2

• Note
$$D_{11} = N_{22}^T$$
; $N_{11} = D_{22}^T$
 $D_{11}\Phi_1 = N_{11} \implies N_{22}^T\Phi_1 = N_{11} \implies \text{Don't need } \Phi_1$
 $D_{11}G + D_{12}\Phi_2 = N_{12} \implies N_{22}^TG + D_{12}\Phi_2 = N_{12}$
 $D_{22}\Phi_2 = N_{22} \implies N_{11}^T\Phi_2 = N_{22}$
• So,

- Solve:
$$N_{11}^T \Phi_2 = N_{22}$$

 $N_{22}^T G = N_{12} - D_{12} \Phi_2$ $A\underline{x} = \underline{b}$

Form
$$\Phi \leftarrow \Phi_2^T(\Delta)$$

 $S \leftarrow \frac{1}{2} \Big[\Phi_2^T(\Delta) G(\Delta) + G^T(\Delta) \Phi_2(\Delta) \Big] = \frac{1}{2} \Big[(\Phi G) + (\Phi G)^T \Big]$

Doubling Algorithm

Doubling Algorithm:

 $\begin{bmatrix} \Phi_1(2\Delta) & G(2\Delta) \\ 0 & \Phi_2(2\Delta) \end{bmatrix} = \begin{bmatrix} \Phi_1(\Delta) & G(\Delta) \\ 0 & \Phi_2(\Delta) \end{bmatrix} \begin{bmatrix} \Phi_1(\Delta) & G(\Delta) \\ 0 & \Phi_2(\Delta) \end{bmatrix}$

 $G(2\Delta) = \Phi_1(\Delta)G(\Delta) + G(\Delta)\Phi_2(\Delta) \Rightarrow S(2\Delta) = \Phi_2^T(2\Delta)\Phi_1(\Delta)G(\Delta) + \Phi_2^T(2\Delta)G(\Delta)\Phi_2(\Delta)$ $\Phi_2^T(2\Delta) = \Phi_2^T(\Delta)\Phi_2^T(\Delta) \Rightarrow S(2\Delta) = \Phi_2^T(\Delta)G(\Delta) + \Phi_2^T(\Delta)S(\Delta)\Phi_2(\Delta) = S(\Delta) + \Phi(\Delta)S(\Delta)\Phi^T(\Delta)$ $\Phi(2\Delta) \leftarrow \Phi(\Delta)\Phi(\Delta)$

Series Method - 1

• Make use of symmetry $\Rightarrow 3M/2$ matrix multiplies to obtain *S* and Φ .

SERIES METHOD

- Substitute Taylor series for $e^{A\sigma}$, $e^{A^T\sigma}$
- Multiply out, group terms involving σ^k and integrate:

$$S = \int_{0}^{\Delta} \left(I + A\sigma + \frac{A^{2}\sigma^{2}}{2!} + \dots \right) Q \left(I + A^{T}\sigma + \frac{A^{T^{2}}\sigma^{2}}{2!} + \dots \right) d\sigma$$

=
$$\int_{0}^{\Delta} \left(Q + \left(AQ + QA^{T} \right) \sigma + \left(A^{2}Q + 2AQA^{T} + QA^{T^{2}} \right) \frac{\sigma^{2}}{2} + \dots \right) d\sigma$$

=
$$Q\Delta \left(\left(AQ + QA^{T} \right) \frac{\Delta^{2}}{2} + \left(A^{2}Q + 2AQA^{T} + QA^{T^{2}} \right) \frac{\Delta^{3}}{3!} + \dots \right) d\sigma$$

=
$$Q\Delta \left(\left(AQ + QA^{T} \right) \frac{\Delta^{2}}{2} + \left(A^{2}Q + 2AQA^{T} + QA^{T^{2}} \right) \frac{\Delta^{3}}{3!} + \dots \right) d\sigma$$

Series Method - 2

- <u>Note</u>: $T_k = [AT_{k-1} + T_{k-1}A^T] \Delta / k$ with $T_1 = Q\Delta \implies$ terms are easy to generate.
- But, can't sum forward since adding small terms to large ones
 ⇒ round-off problems.
- Would like to sum in a reversed nested manner.
- *N* terms, *N* to be determined.
- Can we do this? Yes!!
- Suppose have a partial sum:

• Multiply by A $S \leftarrow AS + (AS)^T + C_{N-3}Q$ $= C_{N-3}Q + C_{N-2}(AQ + QA)^T + C_{N-1}(A^2Q + AQA^T + (A^2Q)^T) + C_N(...)$

Series Method - 3

- This pushes the series by one more term.
- So, to compute *S*:

$$S = C_N Q$$

For $i = N-1, N-2, ..., 1$
$$S = AS + (AS)^T + C_i Q$$

End

- $C_i = \Delta^i / i!$.
- Precompute C_i from $C_{i+1} = C_i \Delta / (i+1)$; i = 1, 2, ..., N-1; $C_1 = \Delta$
- Total # of matrix multiplications: *N*-1
- $\Box \quad \text{How to pick } N \text{ and } \Delta?$
 - Consider truncation error ~ $\|$ norm of 1st neglected term $\|$
 - $||E|| = ||T_{N+1}|| \le \frac{2||A||\Delta}{(N+1)} ||T_N|| \quad \text{or} \quad ||T_{N+1}|| \le \frac{2^N ||A||^N}{(N+1)!} \Delta^N \approx \varepsilon_m \quad \text{machine accuracy}$
 - So, if pick $k \ni ||A\Delta|| \le 1/2$ need $1/(N+1)! < 10^{-6} \Rightarrow N=9$ (gives 0.27 x 10⁻⁶)
 - If pick $\Delta \ni ||A\Delta|| \le 1$ need $2^{N/(N+1)!} < 10^{-6} \Rightarrow N=12$ (gives 0.6 x 10⁻⁶)
 - Also, need to compute $e^{A\Delta}$. Use PADE or Chebyshev.

System Stabilization - 1

- Special Case: Idempotent matrices:
 - A is Idempotent $\Rightarrow A^2 = A$
 - $S(\Delta) = Q\Delta + (AQ + QA^T)(e^{\Delta} 1 \Delta) + \frac{AQA^T}{2}(e^{2\Delta} 1 + 2\Delta 4(e^{\Delta} 1))$

□ Application to system stabilization

• Theorem: if $\underline{\dot{x}} = A\underline{x} + B\underline{u}$ is completely controllable, then $\underline{u} = -L\underline{x}(t)$ is a stabilizing control law (i.e., $\lambda_i(A-BL) \in LHP$) with $L = B^T W^{-1}(t_f)$;

$$W(t_f) = \int_0^{t_f} e^{-A\sigma} BB^T e^{-A^T\sigma} d\sigma; \ t_f \sim \text{arbitrary}\left(\text{e.g., } 2/|\lambda_{\min}|\right)$$

• Proof:

$$\frac{d}{d\sigma} \left(e^{-A\sigma} BB^T e^{-A^T \sigma} \right) = -A \left(e^{-A\sigma} BB^T e^{-A^T \sigma} \right) - \left(e^{-A\sigma} BB^T e^{-A^T \sigma} \right) A^T$$
$$AW + WA^T = -\int_0^{t_f} \frac{d}{d\sigma} \left(e^{-A\sigma} BB^T e^{-A^T \sigma} \right) d\sigma$$
$$\Rightarrow \int_a^b \frac{df}{dx} dx = f(b) - f(a) = -e^{-At_f} BB^T e^{-A^T t_f} + BB^T$$

System Stabilization - 2 W is PD by complete controllability, so that $-2BB^{T} = -WW^{-1}BB^{T} - BB^{T}W^{-1}W$ $\Rightarrow \left(A - BB^T W^{-1}\right)W + W\left(A - BB^T W^{-1}\right)^T = -e^{-At_f} BB^T e^{-A^T t_f} - BB^T = -Q$ $\overline{A}W + W\overline{A}^T = -Q$ since W > 0 and $Q \ge 0$, by Lyapunov stability theory $v(\underline{x}) = \underline{x}^T W^{-1} \underline{x}$ is a Lyapunov function and $\lambda_i(A) \in \text{LHP}$ if $e^{-\overline{A}t}Qe^{-\overline{A}^Tt} \neq 0$ for all *t*. $AW + WA^T = -Q$ $\Rightarrow W^{-1}A + A^T W^{-1} = -W^{-1}QW^{-1}$ thus, it is sufficient to show that $e^{-At}B \neq 0$ if $e^{-\overline{A}t}B = 0 \implies \left\lceil B\overline{A}B...\overline{A}^{n-1}B \right\rceil = 0$ which contradicts the complete controllability assumption. $dv(x)/dt = -x^T W^{-1} Q W^{-1} \underline{x} \le 0$ proving that $v(\underline{x})$ is a Lyapunov function.

Alternate Forms

Alternate form for $W(t_f)$

$$W(t_f) = e^{-At_f} \left[\int_0^{t_f} e^{A\sigma} BB^T e^{A^T \sigma} d\sigma \right] e^{-A^T t_f}$$
$$\Rightarrow W^{-1}(t_f) = e^{A^T t_f} \left[\int_0^{t_f} e^{A\sigma} BB^T e^{A^T \sigma} d\sigma \right]^{-1} e^{At_f}$$

Corollary: if system is not c.c, then $\underline{u} = -L\underline{x}(t)$ will stabilize only the controllable modes, with $L = B^T W^{\dagger}(t_f)$ where W^{\dagger} is the pseudo inverse of W with the property: $W^{\dagger}WW^{\dagger} = W^{\dagger}; \quad WW^{\dagger}W = W$ $(W^{\dagger}W)^T = (W^{\dagger}W); \quad (WW^{\dagger})^T = (WW^{\dagger})$

We will discuss the computation of pseudo inverse in Lecture 7.

Bass' Method

1ω

 $|-\beta|$

σ

- <u>Def</u>: A system is stabilizable, if there exist no uncontrollable modes.
- Corollary: if a system is c.c, use of

$$W(t_f,\beta) = \int_0^{t_f} e^{-(A+\beta I)\sigma} BB^T e^{-(A+\beta I)^T \sigma} d\sigma$$

will result in closed loop poles to the left of $-\beta$

1) Choose
$$\beta > \frac{1}{2} \sqrt{\sum_{i} \sum_{j} (a_{ij} + a_{ji})^2}$$
, Gershgorin and Bendixon

theorem then $-(A + \beta I)$ is stable.

2) $\beta > ||A||$ then $-(A + \beta I)$ is stable.

if (A_s, B) is controllable, then $A_sW + WA_s^T = -2BB^T$ has a PD solution $L = B^T W^{-1}$

$$-\left(A - BB^T W^{-1}\right)W - W\left(A - BB^T W^{-1}\right)^T - 2\beta W = 0$$

 $(A - BB^T W^{-1})$ will always be stable from the 2nd method of Lyapunov.

Summary of Lecture 3

- □ Need for computing $\int e^{As} ds$, etc.?
- How to get integrals from the exponential of a modified matrix?
- Concept of **doubling**
- Error analysis
- Application to system stabilization