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Outline of Lecture 3

 What is the need for computing eAsds, etc.?

 How to get integrals from the exponential of a modified matrix?

 Concept of doubling

 Error analysis

 Application to system stabilization



Copyright ©2008 by K. Pattipati 
3

References

1. C. F. Van Loan., “Computing integrals involving the matrix 

exponential,” IEEE Trans. on AC, Vol. AC-23 No-3, June 1978, pp. 

395-404.

2. E. S. Armstrong, “Series representations for the weighting matrices in 

sampled-data optimal linear regulator problem,” IEEE Trans. on AC, 

Vol. AC-23, No-3, June 1978, pp. 478-479.

3. K. R. Pattipati and S. A. Shah, “On the computational aspects of the 

performability models of fault-tolerant computer systems,” IEEE Trans. 

on Computers, Vol. C-39, No. 6, June-1990, pp. 832-836.



Copyright ©2008 by K. Pattipati 
4

 What is the need for computing eAsds, etc.? :

1)  if u(t) is piece-wise –constant over [k, (k+1) ) k

x(k) = x(k ), u(k) = value of u(t) in the interval [k, (k+1)). 

Arises when we discretize a continuous LTI system
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2)  Covariance analysis of stochastic LTI systems
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Why Compute Integrals of eAt ? - 1 
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• Suppose want to model the continuous stochastic LTI system by its 

discrete counterpart
     1x k x k w k    

• Find ,  and cov[w(k)]=Wd  Xd(k) = Xc(k) at the sampled points, 

where 
   1 T T

d d dX k X k W      

• Two possibilities:

(1) 

(2)

• We will see in Lecture 5 how to compute square roots of positive 

definite matrices

 ,   ,   A
de I W S     

 
1/2

,   ,   A
de S W I       

3)  Integrals of the form                             are used to test the controllability 

of LTI systems and to solve the minimum energy control problem:
0

Tft
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Why Compute Integrals of eAt ? - 2 
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4)  Integrals of the form                             also rise in testing the 

observability of LTI systems.
0

Tft
A T Ae C Ce d  

Why Compute Integrals of eAt ? - 3 
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5)  In sampled data regulator problem, in addition to () and S(), we 

also get integrals of the form:

         
0 0

  and  
TA TM e Q d N Q d

 
           

6) Performability models of fault-tolerant computer systems

• So, need:
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Why Compute Integrals of eAt ? - 4 
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 Computation of   and : Method A

• Here  is usually small w.r.t 1/||A||, typically 0.1/||A|| or 0.2 /||A||

•
0

Ae d


   

 

2 2 2 2 3 1

0 2! 2 3! 1 !

k kA A A A
I A d I

k

    
  

 
             

  

• So, Taylor series for eA is good, since ||A||<<1

• Then,  = B,  = I+A

• Input k to routine, k  4, ||A|| = 0.1  error  10-4/120  10-6

• Function c2d in MATLAB computes  and 

• Widely used method in digital control 

Computation of  and   1
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 Computation of   and : Method B

•    0

ˆ 1 1

2 2

1 1 1 2 2

2
0

/ ;   |      or   / ;   0

ˆ ;     ;    
0 00 0 0 0

  ;      0  
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de dt Ae e I d dt A t I
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C e e

dt

A e I

A B A B e d B


 

      

         
                 

          

 
              

 

 

 

• If we want (), all we need to do is to find        and take () as the 

(1,2) block of      . 

Ĉe 

Ĉe 

• Note:  need not be small with this approach, since we can use  

shifting, scaling, and doubling techniques to compute       .Ĉe 
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Computation of  and   2
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• Approach

 Find ˆ / 2 1/ 2MM C 

 Let

 Find

/ 2M 

   1
0

 and  by PADE or Chebyshev   ,   A Ae e d B 


  
     

 
 Then use the fact that:

ˆ ˆ ˆ2C t Ct Cte e e

• Note: don’t need to carry all the elements
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Doubling Equations for  and  
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 Algorithm for summing via Doubling

  11,   ,   Am e       

 1

1 1 1.
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Flow Chart for  and  
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• Don’t actually need to evaluate       as an (n+m) by (n+m) matrix in 

using Pade approximation. Some simplifications are possible!!

ˆ kC

2
2

1 0

1 0

ˆ ˆ;   
0 0 0 0 0 0 0 0
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 need one n x n and one n x m matrix
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• Use Horner’s rule   3m matrix multiples

   11 12 11 12 11 12 11 121ˆ ˆ;   ;   
0 0 0 00

D D N N D D N N
D N

I I I II

           
          

        

 solve      
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Practicalities
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Error Analysis - 1

• Same D11 matrix.. Can exploit this observation using the LU

decomposition techniques of Lecture 4 for solving  Ax=b.

 What is the error made?  (see Golub and Van Loan)
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Proof:    1
A A

A E EA A Ae e e e e I e
      


      

see Moler and Van loan for a proof that A and EA commute
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Error Analysis - 2
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Grammian Type Integrals - 1

 Closed form solution for idempotent matrices:

• A is idempotent 

• Use as test cases.
     1 ;   1I A A e I A e         

 Computation of  
0

,   PSD 0,  or 0  
TA A T T

iS e Qe d Q Q Q x Qx x


        
• All schemes use doubling concept, i.e., first find

where ||A∆|| is small (1/2) and then get                     by doubling

0
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• Consider
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     2
TS G     MUST MAKE THIS SYMMETRIC
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ˆ  Compute  and  from exp

  PADE or Chebyshev approximation
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 What is the error made?
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Error Analysis
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 Computation of         can be simplifiedĈe 
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• Need 2 n x n matrices X and R

• Compute  
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• Now, have    
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Practicalities - 1
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• Note
11 22 11 22

11 1 11 22 1 11 1

11 12 2 12 22 12 2 12

22 2 22 11 2 22

;    

        Don't need 
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Practicalities - 2
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Doubling Algorithm

 Doubling Algorithm:
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• Make use of symmetry  3M/2 matrix multiplies to obtain S and . 

 SERIES METHOD

• Substitute Taylor series for ,  
TA Ae e 

• Multiply out, group terms involving  k and integrate:
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Series Method - 1
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• Note: Tk=[ATk-1+Tk-1A
T]∆/k with T1=Q∆  terms are easy to generate.

• But, can’t sum forward since adding small terms to large ones

 round-off problems.

• Would like to sum in a reversed nested manner.

• N terms, N to be determined.

• Can we do this? Yes!!

• Suppose have a partial sum:
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• Multiply by A
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Series Method - 2
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• This pushes the series by one more term.

• So, to compute S:

S = CNQ

For i = N-1, N-2, …, 1 

S = AS + (AS)T + Ci Q

End

• Ci = ∆i/i!.

• Precompute Ci from Ci+1 = Ci∆ /(i+1);  i = 1, 2, …, N-1;  C1 = ∆

• Total # of matrix multiplications: N-1 

 How to pick N and ∆?   

• Consider truncation error ~ ||norm of 1st neglected term||

   
1 1

2 2
  or    machine accuracy

1 1 !

NN
N

N N N m

A A
E T T T

N N
 


    

 

• So, if pick k  ||A∆||  1/2 need 1/(N+1)!<10-6  N=9 (gives 0.27 x 10-6)

• If pick   ||A∆||  1 need 2N/(N+1)!<10-6  N=12 (gives 0.6 x 10-6)

• Also, need to compute eA∆. Use PADE or Chebyshev.

Series Method - 3
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System Stabilization - 1

 Special Case: Idempotent matrices:   

• A is Idempotent  A2=A

•        21 1 2 4 1
2

T
T AQA

S Q AQ QA e e e               

 Application to system stabilization   

• Theorem: if                        is completely controllable, then                  is 

a stabilizing control law (i.e., i(A-BL)      LHP) with L = BTW-1(tf);

x Ax Bu   u Lx t 



   min
0

;   ~ arbitrary e.g., 2/
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A T A
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• Proof: 
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W is PD by complete controllability, so that

   

1 1

1 1
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since W > 0 and Q  0, by Lyapunov stability theory

 

 

1   is a Lyapunov function 

and LHP if 0 for all .
T

T

At A t
i
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thus, it is sufficient to show that 0Ate B 

if                                                         which contradicts the complete 

controllability assumption.    

10    0At ne B B AB A B    
 



   1 1/ 0 proving that  is a Lyapunov function.Td x dt x W QW x x    

System Stabilization - 2

1 1 1 1
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Alternate Forms

 Alternate form for W(tf)
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 Corollary: if system is not c.c, then                     will stabilize only the 

controllable modes, with 

 u Lx t 

 †T
fL B W t

       
†

†

† † † †

† † †

where  is the pseudo inverse of  with the property:

;    

;    

We will discuss the computation of pseudo inverse in Lecture 7.

T T

W W

W WW W WW W W

W W W W WW WW

 

 



Copyright ©2008 by K. Pattipati 
26

Bass’ Method

• Def: A system is stabilizable, if there exist no uncontrollable modes. 

• Corollary: if a system is c.c, use of  

     

0
,

Tft
A I A IT

fW t e BB e d
   

 
   

 
will result in closed loop poles to the left of - -
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     Choose ,   Gershgorin and Bendixon 

2

        theorem then  is stable.

      then  is stable.

        if ,  is controllable, then 2  has a PD solution
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Summary of Lecture 3

 Need for computing eAsds, etc.?

 How to get integrals from the exponential of a modified matrix?

 Concept of doubling

 Error analysis

 Application to system stabilization


