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Models of Sampled Data Systems   

1. Digital Interfacing 

• Signal Conditioning 

• A/D and D/A converters 

2. Signal Sampling and Data Reconstruction 

• Impulse sampling model; Nyquist theorem; Aliasing and 

interpretation 

• Signal conditioning circuits 

3. Discrete Equivalents: State-Space Approach 
• Discretization algorithm 

 

4. Discrete Equivalents: Transfer Function Approach 
• Relation to original continuous system   

 

5. Model Modifications with Delay in Control 
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• The system outputs, set points, state variables and control signals are typically 

"analog" or continuous variables  

• For digital control, the sensed and conditioned (i.e., amplified, attenuated, 

isolated, multiplexed, filtered, compensated)  system outputs, state variables 

and set points are converted from analog to digital form using A/D (or ADC) 

and the control sequences from the micro-controller (computer) are converted 

from digital to analog form using D/A (or DAC) prior to applying them to the 

actuators of the process or system 

Digital Interfacing 

ALGORITHM D/A PROCESS OR  
SYSTEM 

A/D 

{u(kh)} 
u(t) 

{r(kh)} 

{y(kh)} 

r(t) 
y(t) OR  

x(t)   

MULTI-  

PLEXER 

COMPUTER 

Analog electrical “image” 

of the physical variables 

(position, flow, pressure,...) 

Analog electrical signal for 

control (e.g., armature 

voltage, source frequency,…) 
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Your Signal 

DAQ 

Dev

ice 

Terminal 

Block 

Data Acquisition (DAQ) Hardware 

Mobile 

Devices 

PC 

Micro- 

Controller(s) 

Internet 

Signal 

Terminal 

 Block 

Cable 

50 or 68 pin 

connector 

DAQ Device 

Routes signal to specific 

pins of DAQ device 

• Analog I/O 

• Digital I/O 

• Counters 

• Bus connections (PCI, 

      PXI/CompactPCI, USB,   

      ISA/AT, PCMCIA,  

      1394/Firewire) 

 

50 pin connector 

• DAQ Input Configurations 

− Resolution/Accuracy 

− Range 

− Gain 

− Code Width 

− Mode: typically differential to reject  

      common-mode voltage and common- 

      mode noise.  Two channels used for each 

      signal. 
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Back to Basics: Op-Amps - 1 

0  ResistanceOutput  3.

ResistanceInput  .2
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Recall A is big!  Useful in Temperature Switches. 
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Back to Basics: Op-Amps - 2 

• Dual Input Differential Amplifier 

 

 

 

 

 

 

 

 

• Instrumentation Amplifier (high gain, high CMRR) 
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Why Amplify Sensor Signals Prior to Conversion?  

• Helps with Code Width of DAQ System 

− Smallest change in the signal that the DAQ system can detect 

− Function of gain, G, A/D resolution (number of bits of A/D, b), range of signal to be 

digitized, Vmax - Vmin (e.g., 0-10V, -10 to +10V) 

 

 

− Uncertainty in your measurement after A/D, U = Code width/2 (recall how you  round-

off numbers!) 

• Thermocouple Example 

− J-type thermocouple (measures 0 to 8000 C) has sensitivity of 0.052 mv/deg C for 20-

300 C.    

− Consider a 16-bit A/D with G = 1 and Vmax – Vmin  = 10V. 

− Code width = 10/65535 = 0.153 mv  uncertainty in measurement, U = 0.076mV   

No Good 

−  A gain of 100 will have a code width of 1.53 V/deg C and uncertainty, U of 0.765 

V/deg C 

max min  
. (2 1)b

V V
Code width

G






You will also be filtering signals prior to conversion.  We will see why later. 
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Some Basic Concepts in Signal Conversion  

• Resolution 

− Determines how many different voltage changes can be measured  

− 16 bit-resolution  65,536 levels  4-5 digit accuracy 

 

 

 

 

 

 

• Range 

− DAQ devices have different ranges available (0-10V, -10V to +10V) 

− Smaller range  more precise representation of your signal (It is like selecting a scale 

for your plot!) 

• Gain 

− Gain setting (typically 0.5, 1, 2, 5, 10, 20, 50, or 100) allows for best fit in A/D range 

− For required measurement uncertainty, U,  gain, G  is set via 

 

100 200 150 50 0 
Time (s) 

0 

1.25 

5.00 

2.50 

3.75 

6.25 

7.50 

8.75 

10.00 

Amplitude 

(volts) 

16-Bit Versus 3-Bit Resolution 

(5kHz Sine Wave) 

16-bit resolution 

3-bit resolution 

000 

001 

010 

011 

100 

101 

110 

111 

| | | | | 

max min

2 (2 1)
 

bU
G

V V






9 



Copyright ©1994-2012  by K. Pattipati  

Some D/A Converters 

• Simple minded: Use summing amplifier 

− Wide range of precision resistors 

− 16 bits  215 = 32,768 range 

 

 

 

 

 

 

• R-2R Ladder D/A Converter 

− vi = vi+1/2; i=0,1,2,..,b-1; vb = -vref 

− So,  
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Ladder Comparison A/D Converter 

• Ladder Comparison (Ramp) A/D Converter 

 

 

 

Cheap, but slow 

• Apply analog voltage to +ve terminal of a comparator and the output of D/A converter to –ve 

      terminal 

• Output of comparator triggers a binary counter which drives the D/A converter 

• When the D/A converter voltage exceeds analog voltage, counter stops and outputs the code 

11 
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Successive Approximation A/D Converter 

• Successive Approximation A/D Converter 

 

 

 

 

• Check if voltage corresponding to MSB > Vs.  If it is, set next bits in succession and see if they 

      don’t exceed Vs 

• When the D/A converter voltage exceeds analog voltage, counter stops and outputs the code 

• Works well in practice 

12 
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Flash  A/D Converter 

• Flash A/D Converter 

 

 

 

 

• Basically, a truth table that coverts the ladder of  

      inputs to the binary number output  

• Fastest type of A/D converter available 

• Very expensive 

13 
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Mathematics of Signal Sampling 

  2s h 

We will examine the sampling process from a mathematical viewpoint.  

       h = sampling period or time step  

       fs = sampling frequency = number of samples/sec = 1/h  

h 2h 

f1 

t 
f0 

f2 f(t) 

tk = kh 

fk 

fk = f(kh) = sampled value  of f(t) at t = kh 

0 

The problem here is that sampling a signal loses information, namely the points in between  

(k–1)h and kh.  

So if we sample too slowly - we lose information  

if we sample too fast - we overwork the computer  

Major questions are -   
    (1) how fast to sample so as not to lose information? and  
    (2) how to reconstruct the signal f(t), or an approximation, from {fk}?  

"Impulse" sampling as a mathematical model: 

Area of impulse k is fk. 
Impulse  
Sampler 

f f* 
f(t) 

t 
h 2h 

f0 f1 f2 

0 

A/D quantizes (not  a major issue 

if b = 16, 24, 32) and samples 
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Impulse Sampling 

       *

0 1 2      2f t f t f t h f t h       

periodic train of unit impulses t 

 
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e
H s

s s

e H s
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







 

 



     *    f t f t m t  

 f̂ t  *f t

1 she

s




can be written as  

The signal f*(t) is not "real" but when an impulse sampler is followed by a suitable transfer  

function H0(s), we can model almost any practical sampling situation.  We are really going 

from f(t) to        via         . f(t) f*(t) 
H0(s) 

 f̂ t

Ex.    If impulse response of H0 is  

and we get as output a pulse train. 
0 

1 

h 

2h 

f(t) 

0 h 

2h 

4h 

3h 

height of pulse @ kh = fk 

3h 

 f̂ t

 f̂ t

If    = h the transfer function H0(s) is             . 

h 

3h 

This is a "sample-and-hold"  
and is the most common form  
of sampling process plus  
data reconstruction. 

2h 


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Laplace Transform of a Sampled Signal 

   * * 2

0 1 2
0

          st sh shF s f t e dt f f e f e


      

   *

  
0   

 
sh
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k z e
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F s f z F z





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 

  shz e

           *

22 * *" "     " "   F F
S j Spectrum of f t F j and S j Spectrum of f t F j      

 
1 2

  ,       sjn t

n s

n

x t c e
h h

 






 

Take Laplace transform of f*(t)     F*(s)  

As an aside, since z-1 = e-sh  

where F(z) = z-transform of the sampled sequence {fk}.  Notationally, F*(s) = Z{f(kh)}  

We wish to examine the relationship between F*(s) and F(s) = Laplace  transform of f(t),  

0ω

        The spectrum indicates where   
        a signal has power.  (A sine  
        wave has impulses at        .)  

and between  

   s
h

jn t

n
o

c x t e dt


 

max

 F j

ω
max

To find L[f(t) · m*(t)] first use Fourier series to get a different way to write m*(t).  Recall,  

if a signal x(t) is periodic with period h,                                         

                                                         
    where the Fourier coefficients,                               .  
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Nyquist Theorem 

   * 1
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 max max2  s Nor    max

So, an alternate representation of m*(t) is  

  

and 

Thus, 

   atL x t e X s a    Using the relation                                   , 

Nyquist Result:  If original signal f(t) does not have any frequency components  >        ,  

we can (in theory) reconstruct/recover f(t) from f*(t) using an ideal low-pass filter.   

                              is called the Nyquist frequency. Thus, one must sample f(t) at a rate that is  

at least twice the highest frequency        in the signal,                                       . 

0 

n= –1 n = 0 n=1 

h=0.05; 

omegas=2*pi/h; 

t=[0:0.001:2]; 

delta=1/h*ones(size(t)); 

for i=1:100 

    delta=delta+2*cos(omegas*t*i)/h; 

    plot(t,delta) 

    pause 

end 
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Recovering f(t) from f*(t) 

f̂

     *

0
ˆ   F s H s F s

max  2s Assume 

                               

•   In ideal case:                                 

f(t) f*(t) 
H0(s) 

 f̂ t

sh1 e
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     

2 2
2 2

0

0 0

- sin 2
  

2

sin 2
    ;        2    / 2 sec.,     2 /   

2

j h j h
j h j h

s

e e h
H j e e h

j h

h
H j h H j h delay of h for h
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 
  
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 


     




    

     
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     

h 

0 

ω

2s

 0H j

2s

If               is as shown then                 and the signal  

is recovered from its samples. However, such an H0(s)  

is unrealizable. 

   f̂ t f t 0H j

  

•   Suppose H0(s) =             , i.e.,    is a sample and hold (zero-order hold)  

This is an approximation to an ideal LPF. 

 f̂ tStill get some high frequency components in       . Other signal reconstructors H0(s) are possible 

(e.g., polynomial interpolators) but usually are not worth the added complexity.   

The zero-order hold is the most common form of H0(s) in digital control. 

s2 s
0 

n = -1 n = 0 n = 2 n = -2 n =1 h 

h  
4.7 

 0H j

2 ss
2s 2s


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Aliasing 

  0 0sin  and we sample at 2 .sf t A t   

max10 30s  
max2s 

 sF j jn   *F
S j

Typically,                         .  An interesting phenomenon happens when                  .  In this case  

the components of                      overlap in              and it becomes impossible to recover f(t). 

In addition, the sampled signal f*(t) has power at frequencies not present in the original signal f(t)!  

  

E x.     

  

0 

n = -2 n = 2 
n  = 1 n  = -1 

s2 s 2 ss
0 0s  

0s 
0

 0s F*(t) has a low frequency component at                   . 

 f̂ t

The original signal is "hidden", sampled signal is an "alias".  The low frequency signal does not  

really exist in f(t), but will exist in        since H0(s) is a LP filter. 

Ex.    Sample a signal f(t) that has frequency components at f1 = 0.1 Hz, f2 = 0.8 Hz and f3 = 1.4  

         Hz using fs = 2 Hz (note Nyquist says fs  > 2.8 Hz). What are the first 5 positive frequency  

         components of sampled signal?                         n = 0                 n = 1                      n = 2  
            f1             0.1              1.9      2.1              3.9      4.1  
            f2             0.8              1.2      2.8              3.2      4.8  
            f3             1.4              0.6      3.4              2.6      5.4   
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Aliasing Illustrated in Time Domain 

Let us take a simple sinusoid of frequency 4 Hz and sample it at 5Hz.  We will show  

that  a signal of 1 Hz is an alias. 

 

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
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t=[0:0.001:2]   

f=sin(2*pi*4*t);  % continuous signal 

t1=[0:0.2:2];      

f1=sin(2*pi*4*t1); % sampled signal at 5Hz 

f2=sin(2*pi*t1);   % Alias signal 1Hz 

plot(t,f,t1,f1,'*',t1,-f2,'o') % note negative sign 

 

*  sampled signal

o  aliased signal
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Interpretation of Aliasing in s-Plane 

2j N

h



h h    

-  Indicates frequency of original signal  
  
-  Indicates alias frequencies  

All points            apart, give same zi.  

 2sj h j 

j

2   sj h j 

 0 PRIMARY  
STRIP 

2π/h 

2  j h

j h

After sample and hold (or other type of reconstructor), we pick out  
predominantly those signals in the primary strip,                         .  
  
Since the aliased frequencies are not "real", i.e., not in original signal,  
any controller aimed at reducing the "observed" oscillations will fail. 

•   Aliasing effects will be observed in  

        - frequency folding in s-plane  
        - time response  
        - Fourier spectrum 

Nyquist Frequency 
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How to Avoid Aliasing? 

   Prefilter the signal  before sampling (anti-aliasing).f t

  N h 

m

2 2f N h   

 

 

2

2 2
  

  2   

2
    

2

f

f

f f

Typical G s
s s

Butterworth Filter



 




 



sω

•   There is no way to fix f*(t) after you have sampled.  So, you must assure that the signal to  

     be sampled has no frequencies higher than                   .  

But, real signals have power in [–∞, ∞] (with caveat).  

 f̂ t
f1(t) f1

*(t) 
H0(s) Gf(s) f(t) 

Low-Pass Filter Data Reconstructor 

Usually pick                               to be safe, but beware of using a Gf(s) in a feedback loop due to  

added negative phase shift that reduces    .  Some authors suggest  N/1.28   0.8 N  = 0.4 s  
 Ex:           f(t) = 1.1 sin0.4t + 1.2 sin3.45t    signal + high frequency noise. Sample period  

                 h = 2.0 sec =>      = 3.14 and aliasing will occur. 
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-3 
-2 

-1 
0 
1 
2 

3 
f(k) 

f
Prefilter f(t) using a 2nd-order Butterworth filter  

with     = 0.785 and then sample the output, f1(t). 

f1(k) 

no  

prefiltering 
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How to Avoid Aliasing? 

Ex:           f(t) = 1.1 sin0.4t + 1.2 sin3.45t    signal + high frequency noise. Sample period  

                 h = 2.0 sec =>      = 3.14 and aliasing will occur. 

% nearly-continuous signal 

delt=0.1; 

t=[0:delt:70]'; 

n=length(t); 

ft=1.1*sin(0.4*t)+1.2*sin(3.45*t); 

plot(t,ft) 

pause 

% sampled signal 

kt=[0:2:70]'; 

nk=length(kt); 

fk=1.1*sin(0.4*kt)+1.2*sin(3.45*kt); 

plot(kt,fk,'o') 

pause 

numgf=[0.785^2]; 

dengf=[1 2*0.707*0.785 0.785^2]; 

gfs=tf(numgf,dengf) 

[y,t]=lsim(gfs,ft,t); 

plot(t,y) 

pause 

% sampled signal 

h=2.; 

kt=t([1:h/delt:n]) 

f1=y([1:h/delt:n]) 

plot(kt,f1,'O') 

s
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Antialiasing/Aliasing Examples 

•  Example 1:   Consider N = 1024 data points  from a signal sampled at 1ms interval (h = 0.001 sec).   

• Sampling frequency , fs = 1000 Hz = 1kHz  s = 6280 rad/sec 

• Nyquist frequency, fN = 500 Hz   N = 3140 rad/sec 

• Antialiasing filter frequency, ff = 250-400 Hz   N =  1570 -2512 rad/sec 

• If you did discrete Fourier transform, you will get 1024 points representing frequencies  

      (k /N)* fs ; k =0,1,2,..N-1.  These are also called spectral lines.   

• Spectral line separation = fs /N  = 0.9766 Hz. 

• For an ideal  filter with cut-off frequency of 250-400 Hz, keep the first 244-391frequency 

     components (i.e., set the rest to zero) as the useful spectrum and then do an IDFT to  

     recover the noise filtered signal.   

•  Example 2:   Suppose you have a sinusoidal signal of frequency 10 Hz and you sample it at 50Hz. 

              Another sinusoidal signal of the same amplitude, but higher frequency, f  was found to  

               yield the same data when sampled at 50Hz.  What is the likely frequency, f ? 

 

• Sampling frequency , fs = 50 Hz  

• Aliasing frequencies = n fs    10 Hz.  

• So, f = 40Hz, 60 Hz, 90Hz, 110Hz,…. 

24 
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 
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In general, Butterworth  

low pass filters have flat  

frequency response . For  

order p 
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
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Sampling for Accuracy 

 02s 

0sinA t

0 02   .sh N and N    

0sinA t

 
 

sin 2
max relative error = sin 2

A N
N

A




max 0sine A h

•   For a single sine wave,             , Nyquist criterion says use more than two (2) samples/period 

                     ,but reconstruction error using a zero-order hold is terrible ==> we really need to  

    sample at a higher rate. 

 If we use a sample and hold with N  ≥ 4 samples/period, then  

Case 2: 

-h/2 

Case 1: 

h 
 0sin 2A h

h/2 

 
 

max relative error with / 2 shift 

2 sin
    = 2sin

h

A N
N

A




  max10 30s  Usually we try for  

when using a signal  reconstruction criteria 

N 

rel error Case 1 
rel error Case 2 
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Sampling Period h for Control 

•   State space representation:  If λ1, λ2, …, λn are the eigenvalues of A, then to avoid aliasing  

     we must have λi within primary strip in the s-plane, i.e., | Im (λi) | < π/h.   

 

π/h  

- π/h 

s-plane 

σ 

jω 

Primary Strip 

More manageably,  | λi | <  π/h        i = 1, 2, ... , n  
largest eigenvalue of A 

 (spectral radius) 

  h   c/ |λmax(A) | with c = 0.2 to 0.5 (1/6 → 1/15 of Nyquist sampling interval  

An approximation:   | λmax(A) | ~ || A || because | λmax(A) | ||A|| for any norm  

i.e., poles within circle of radius π/h.  hmax = π/ | λmax(A) |  

  This is too high a limit from a control viewpoint, instead we seek 

•   Relation to Closed-loop bandwidth: BW in rad/sec  f BW = BW /2 in Hz 

1 1 1 2

30 15 5 5BW BW BW BW

h h
f f  

    

•   Relation to Rise time, Tr: about 10% of the rise time  h  0.1 Tr 

•   Gain cross over frequency, c  

0.15 0.5

 is an approx. measure of closed-loop bandwidth  12 to 40 times / 2

c

c c c

h

f



  

 

 

1
A rule of thumb: 

2
r

BW

T
f



Need to experiment with  

different values of h 

during design 
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Example of Aliasing in a Control Setting 

pω 2π 2.11 2.98 rad/min 
sω 2π 2 3.14 rad / min 

s pω ω 0.16 rad/min  T = 38min  

•   Feedwater heating in a ship propulsion plant (Astrom & Wittenmark) 

Valve 

Feedwater 

Pump 
steam 

to  
condenser 

to boiler 
P T 

Problem: Backlash in the valve positioner  
    ===>  oscillations in pressure (P) and temperature (T) 

2.11 min 

Continuous recording of P t t 

38 min 

Sampled recording of T 

2 min 

 Pressure and temperature are coupled, and should oscillate at the  
 same frequency!  What happened?  

Sampling frequency,  

Pressure oscillation frequency,  

 Lowest aliasing frequency,  

  
 Conclusion:  The sampler did not take this course! 
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Analysis of the Basic Digital Control Loop 

 .G z

 G z

ALGORITHM D/A PROCESS OR  
SYSTEM 

A/D 

{u(kh)} 
u(t) {r(kh)} 

{y(kh)} 

r(t) y(t) OR  
x(t)   

MULTI-  
PLEXER 

COMPUTER 

•   The computer algorithm generates a sequence of values u(kh) from the discrete samples  

     y(kh) and r(kh), or from e(kh) = r(kh) - y(kh), e.g., u(z) = H(z) e(z).  



•   Process Model - continuous inputs and outputs  
        transfer function        or           State-Space Model  
                 G(s)                              x = Ax + Bu,  y = Cx + Du  

•   Computer outputs values u(kh) and at some time later sees the response y(mh).  The computer 

    "puts out" samples and "sees" samples, i.e., it sees a discrete system from u(kh) to y(kh) 

•   Redraw loop from computer's view [eg., u(z) = H(z) e(z)]. 

ALGORITHM  
H(z) 

D/A SYSTEM/  
PROCESS 

A/D 

u(kh) y(t) e(kh) r(kh) y(kh) 

DIGITAL  
ADDITION 

COMPUTER 

A/D 
+ 

- 

r(t) 

 G z

        1.  to enable analysis as a discrete FB loop  
        2.  to enable design of a discrete H(z) vis-a-vis discrete 
        3.  We are "controlling"          not G(s).  

WHY?  => 
 G z
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Discrete System Time Signals 



τ



Typically there will be delays in the loop  

                - computational delays                    lump as some  
                - measurement delays                     equivalent  
                - process delays                              delay 

Assume:  D/A is a zero-order hold ;     All A/Ds are synchronized  

Consider signals around the loop 

(k-1)h kh (k+1)h 

u(kh) from computer 

algorithms 

u(t)output of D/A (zero-order  

hold) = input to system 

via D-A 

(k-1)h kh (k+1)h 

via process  

dynamics 

(k-1)h kh (k+1)h 

Output of system, y(t)  

 = sampled values output of A/D  
       input to algorithm 



Definitions  
    y(k) = y(kh) = sampled values of y(t) at time t = kh  
    u(k) = u(kh) = values of u( ) computed by algorithm using the samples   
                            y(kh) and r(kh); output from computer at time kh+,  
                            if there is no computational delay  

         ==>  u(kh) = values of system input over [kh+, (k+1)h] 


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Model for Equivalent Discrete System,  



 G z

         
2

2 1 2

1

tA t t A t ξ

2 1
t

x t  = e x t  + e Bu ξ dξ
 



τ 0

1.  System defined by state equations, no delay  
  2.  System defined by transfer function, no delay  

3.  Modifications to 1 and 2 when 
State-Space Approach  

x(t) = A x(t) + B u(t)  
y(t) = C x(t) + D u(t)  

Compute x [(k+1)h]    x(k+1) = value of  x(t) at t = (k+1)h from knowledge of x(kh) = value of  

x(t) at t = kh and u(kh) = system input over (kh, (k+1)h].  

=>  G(s) = C(sI – A)-1 B + D 

Use state transition equation,  

       
 

k+1 h A k+1 h ξAh

kh
x k+1 h  = e x kh  + e Bdξ u kh


   

   
h

Ah Aσ

0
where e ;   h e dσ;  = h B     

       x k+1  = Φx k  + Γu k     
h

Ah A

0
x k+1 h  = e x kh  + e dσBu kh   

     

     

Output    y kh Cx kh u k 1 h

               y k  = Cx k  + Du k 1

D    



     1 2 1, 2t  = kh, t = k+1 h   and   u ξ  = u kh  over (t  t ]

 let k+1 h ξ  

value of system input right  
at time t = kh (subtle point) 

   
1 1Transfer funtion Matrix (TFM):   G z C zI Φ zD
   

0.2

|| ||
h

A

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Computing Φ and Γ (or Ψ) 

 
h h

Aσ 2 2

0 0
Ψ h  = e dσ = 1 + Aσ +A σ 2!+ dσ   

 
1Ah 1

t = h

e sI AL
   

 

   2 2 M MΨ h h I + Ah 2! + A h 3! +  +A h M+1 !  

•   Note that Φ and Γ are independent of k.  Compute once for a given time step h.  

Analytic: 

exact value obtained, but very time-consuming and not practical for n  > 3.  Then, need  

to obtain Ψ by integrating eAσ over [0,   h].  

Numerical:  If h is small ==> Taylor series approximations are good  

                             eAh = I + Ah + A2h2/2! + …              

To compute Ψ(h) substitute approximation  eAσ ~  I + Aσ + A2σ2/2! +…  

where the number of terms M must be chosen large enough so that the Taylor approximations  

are valid; i.e., we want,  

(Ah)M/(M+1)! <<  I  ==>  || A ||MhM/(M+1)! < 10-6  .  Then  Φ = eAh = I + AΨ(h) 

Algorithm to find M = # terms in series, given h  
                   C1 =  || A || h/2  
                   Do for M = 2, 20  
                            C1 =  C1 * || A || h/(M+1)  
                            if C1 < 10-6   stop  return M, if M <  4 set M = 4  
                   End do  
(Note:  || A || 19/20!  ~  10-9  if || Ah || = π ) 
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Algorithm for Obtaining Ψ(h) and Φ, Γ 

 
Ah Ah Ah Ah

h h I+ I I I                                   
M 2 M 1 M M 1

 
    

        
      

     
1 1G z  = C zI Φ Γ + Dz
 

Once M is determined, compute Ψ(h) via series.  Since the magnitude of the higher- 

order terms in series decreases as M grows, sum the series using reverse nesting. - 

Select M ≥ 4  
s.t. ||Ah ||M /(M+1)! <  10-6     

Input n, A, B, h 

Initialize N = M+1, Φ = A 

Do for j = 1, M  
  Ψ= I + Φ * (h/N)  
  N = N–1  
  Φ = A·Ψ  
End do 

Return Φ,Ψ,Γ 
Ψ  ← hΨ  

Φ← I + hΦ 
Γ = ΨB 

At this point we have:  
Ψ = I + Ah/2! + ... + (Ah)M/(M+1)!  
Φ= A + A2h/2! + ... + (A)M+1 hM/(M+1)! 

This assures that very small numbers are never added to much bigger numbers.  

Flow diagram of a Subroutine "Dscrt" (your own c2d function) for general use: 

Then: Use SSTFM code to obtain coefficients.  

Discuss how to use MATLAB for this 
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Modifications to SS  TFM 

•  Use modified SSTFM code to obtain coefficients.  
  

 

 1 1

 

 

1 2

Let be the column of  and be the row of 

| |
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
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 
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1

1

., be the eigen values of ( - ) and , ,..., be the eigen values of . Then, 
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                      ( )
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T

kn nj

n n
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i i
kj n

i

i

n

c

z z d z z

g z

z z

z z b z

    

 



 



 

   








 



1 2 1 2

2 1 2

1 2

1 2

1 1 2

0 1 2
1 1 01 2

1 2

... ] ( )[ ... ]

( ... )

( ... )
                               = ; , 0,1,2,.., ;

...

n n n n n

n kj n

n n n

n

n n n

n
i i kj i in n n

n

b z b d z z a z a z a

z z a z a z a

z b z b z b z b
b b d a a i n a

z a z a z a

   

 

  

  

        

   

   
   

   
1 11, 0n nb a   

b(n+2,j,k)=0; a(n+2)=0; 

for i =1:n+1 

            b(i,j,k)=b(i+1,j,k)+D(k,j)*a(i)-a(i+1); 

end 

Mods to SS  TFM code 

34 
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Example: First Order System 

 
    ah 1 ah

ah 1 ah

b 1 e a z 1 e b a
G z

z e 1 z e

  

  

 
 

 

   

     

           

h
h

ah aσ aσ ah ah

0
0

ah ah

x = ax + bu,  y = x;  G s  = b s+a

1
e ,  e dσ e 1 e a;    b 1 e b a

a

          x k+1 e x k 1 e a bu k ;     y k x k

    

 



            

    
 



  •   Example 1:  
Equivalent discrete model for scalar system  

    Note omnipresent one unit (h) delay in G (z) (b0 = 0).  

( )G z
z





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Example: Second Order System 

   

 

ah
1 1 ah

h
Aσ

ah0 1 ah

1 1
h h e 1 a h + a e 1a a

e dσ ;     B                       
1 e a e 1

0
a

 


  

  

  
       

           
    
  

 



 
   ah

1Ah 1 1 -ah

t = h ah

t = h

1 1
1

1 1 es s + a
e sI A   Eigenvalues 1, e    a

1 0 e0
s + a

s
L L


 



 
            

    
  

 

1

2

λ 0

λ a



 

 

  

ah ah
ah

ah

2 ah

1 e ahe
ah + e 1 z + 

ah + e 1
                                                         

a z 1 z e

 






  
  

 
 

 

 

 

 
 

       

1 1

2 2

1

x t x t0 1 0
u t

x t x t0 1

y t 1 0 x k  = x k

a

      
       

      



•   Example 2: 

This is typical of a model for a motor. 

1  
s + a 

1  
s 

y(t) u(t) 
x2 x1 

Armature  

Dynamics 

x2 = shaft RPM (rad/sec)  

x1 = shaft rotation    (rad) 

Analytic approach for arbitrary a: 

           
G(z) = transfer function of equivalent discrete system, C(zI – Φ)-1Γ (tedious via hand calculation!)  
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Example 2a: Double Integrator System 

   
 

 
   

2
2

2 2 2

2 2

1 h
h

z 1 z 1
G z 1 0 2

1 h0
z 1

h 2 h h z + 1
G z  = 

z 1 2z 1 z 1

 
      
  
   

  

 
  

     
21 h h 2

x k+1 x k u k
0 1 h

  
    
   

2 2
h

Aσ

0

h h 2 h 2
e dσ ;     B

0 h h

   
         

   


 
2

1Ah 1 1

t = h

t = h

1 1

1 hs s
e sI A

1 0 1
0

s

L L
 

 
   

          
  

  

Special case of Example 2 when a = 0  =>  G(s) = 1/s2  

We can consider lim as a  0 using L'Hospital's rule (messy), or redo problem for 

                        0  
0 

1  
0 

0  
1 

A =             ; B =        ; C = [ 1   0 ] 
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Example 3: F-8 Aircraft Model - 1 

) mod

0 0 1 0 0 0 0 0

1.5 1.5 0 0.0057 1.5 0.16 0.80 0
1 0

;12 12 0.6 0.0344 12 19 3 0
0 1

0.852 0.290 0 0.014 0.29 0.015 0.0087 0

0 0 0 0 0.730 0 0 1.1459

a continuous system el

x x u d y

     
     


     
             
     
         
          

2 2

3 2 3 2

4 3 2

2

3 2

0 0 0

0 0 0

19 26.85 0.3425 3 5.058 0.06823

0.16 0.09817 26.58 0.2847 0.8 0.4912 5.107 0.06238
( ) ;

2.114 12.93 0.1503 0.009442

13.75 0.1811

1.719 1.053 0.013
( )d

x

s s s s

s s s s s s
G s

s s s s

s s

s s
G s

 
 
 

      
 

      
   

 

 


5 4 3 2

2

3 0.01082

2.844 14.47 9.588 0.1192 0.006892

0.2
) : 0.0095 0.01sec

|| ||

s

s s s s s

b select h h h
A

 
 

 

    

   

4 3 6

5 5

4

3 3 5

) mod

0.9994 5.958.10 9.968.10 -1.705.10 -0.0005943

0.01488 0.9851 7.447.10 5.656.10 0.01483

( 1) -0.1187 0.1187 0.9934 3.3395.10 -0.1183

8.496.10 2.876.10 -4.244.10 0.9999 2.866.10

c Discrete system el

x k

  

 



  

  

 

4 4 6

3 3 5

4

3 4 5 5

9.477.10 0 1.481.10 -2.276.10

1.583.10 7.94.10 8.53.10

( ) ( ) (0.1893 0.02943 6.81.10

1.10.10 -7.503.10 -1.649.10

0 0 0 0 0.9927 0 0 0.01142

x k u k d

  

  



   

      
     
     
        
     

     
     
     

)k
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Example 3: F-8 Aircraft Model - 2 

3 2 3 2

4 3 2 4 3 2

)

-0.0009477 z  + 0.0009366 z  + 0.0009433 z - 0.0009322 -0.0001481 z  + 0.0001525 z  + 0.0001443 z - 0.0001487

z  - 3.978 z  + 5.935 z  - 3.936 z + 0.9791 z  - 3.978 z  + 5.935 z  - 3.9
( )

d Discrete TFM

G z 
3 2 3 2

4 3 2 4 3 2

36 z + 0.9791

 0.001583 z  - 0.004767 z  + 0.004757 z - 0.001574 0.00794 z  - 0.02377 z  + 0.02372 z - 0.007891

z  - 3.978 z  + 5.935 z  - 3.936 z + 0.9791 z  - 3.978 z  + 5.935 z  - 3.936 z + 0.9791








4 3 2

5 4 3 2

4 3 2

-2.276e-006 z  - 4.487e-006 z  + 1.355e-005 z  - 4.549e-006 z   - 2.243e-006

z  - 4.971 z  + 9.884 z  - 9.827 z  + 4.886 z - 0.972
( )

8.53e-005 z  - 0.0001707 z  + 1.371e-006 z  + 0.0001682 z
dG z






 




5 4 3 2

  - 8.415e-005

z  - 4.971 z  + 9.884 z  - 9.827 z  + 4.886 z - 0.972

 
 
 
 
 
 

•  MATLAB functions: 

• sysc=ss(A,B,C,D) 

• gs=tf(sysc) 

• sysd=c2d(sysc,h) 

• gz=tf(sysd) 

• gz=c2d(gs,h) 

 



Copyright ©1994-2012  by K. Pattipati  40 

Discrete System Equivalents  

– Xfer Function Approach 

H(z) D/A PROCESS  
G(s) 

u(t) y(t) 
e(k) 

y(k) 

A/D r(k) + 

- 

G(z) 

u(k) 

A B 

If the process to be controlled is described by a transfer function G(s), can we find G(z) directly? 

  

Indirect approach -          (1)  Write a state-space model for the process e.g., SCF or SOF or Balanced  
        (2)  Find Φ, Γ using state variable approach  
        (3)  Compute G(z) = C(zI –Φ )-1 Γ  

 G z•   Direct approach - Find Z-transform of unit pulse response            ,    between points A and B.  

First obtain the step response.  

(1)  Let u(k) be a unit step input  

u(z) = 1/(1–z-1).  

(2)  If the D/A Converter is a zero-order hold, then u(t) will be a pure step,  

u(t) = 1 for t > 0 ==> u(s) = 1/s.  

(3)  Since the process is continuous, y(s) = G(s)/s and y(t) = L-1 [G(s)/s].  

(4)  Sampling y(t) and taking the z-transform yields y(z)  

y(z) = Z{L-1 [G(s)/s] } = z-transform of step response      usual notation:  Z{L-1 [F(s)] }   Z{F(s)}.  

(5)  If u(k) = 1, the response is (1–z-1) y(z) = (z-1) y(z)/z  

0 h 2h 3h 

u(k) 
1.0 

·  ·  

· 

G(z) = (1–z-1) Z{L-1(G(s)/s)} 
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Discrete System Equivalents (Cont’d) 

 
   

       
 

1 at ahk

1 ah1
1

1 ah 1 ah 1 ah 1

G s
1 e y t ;  sampled  y kh 1 e

s

z 1 e1 1 1 z
y kh     1 z y kh 1

1 z 1 e z 1 e z 1 e z

L

Z Z

  

 


      

 
     

 


      

   

    jωhs = jω z = e
Of concern is the comparison of G s  vs. G z .

 
 

 

G sa a 1 1
G s     

s + a s s s + a s s + a

 
     

 

The resulting G(z) must be the same as that obtained via state-space.  

 Example:                                

The direct approach gets quite messy for n  > 2.  Preferred method is via state-space Φ, Γ then G(z). 

Remember!    (1)  The computer is "controlling" a discrete process with  
                       transfer function G(z) not a continuous process G(s).  

                  (2)  Zero-order D/A holds have been assumed (it is possible  
                       to re-do state-space approach with first order holds).  

   
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Relationship Between G(s) and G(z) 

   
 

   
 

sh

1 sh

z = e

G s G s
G z 1 z      G z 1 e                        

s s
 Z



 
   

       
   

   
   sh

sh

z = e

G s G s1 1 e
 and G z G s                 

s h s sh
      


     

     
    

shz e

   sh jωh 2

s = jω

sin ωh 2
G e e G jω                                           

ωh 2
       

  
 

       s s

s s

G s G s G s jω G s + jω1
   + 

s h s s jω s + jω



   
   

   

           sh

*

sz = e
n

1
Recall F s F z ,  and relationship between F s  and F s ,  F s F s jnω

h


 



 
  

 




How close is G(z)           to original G(s) when s = jω?  

Can expect differences in both magnitude and phase 

If ω << ωs /2 = π/h, and | G(jω ± jωs) | << 1 then to a first approximation; 

Sample & Hold ÷ h 

h/2 sec Delay Magnitude Distortion 

  To a crude first approximation, equivalent discrete transfer function is  ~ original continuous  

      one with some magnitude distortion and an h/2 sec delay, in the region ω << π/h.  

"Exact" comparison requires Bode plot of G(jω) vs. G(ejωh) – c2d, bode  
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Comparison of Continuous and  

Discrete Equivalent Bode Plots 

G(s) = 1/(s  + 1); h = 0.2 ==> G(z) = 0.1813/(z  –  0.8187) 

5 15.71 / secrad
h


 

-40

-30

-20

-10

0

M
a
g
n
itu

d
e
 (

d
B

)

10
-2

10
-1

10
0

10
1
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2

-180

-135

-90

-45

0

P
h
a
s
e
 (

d
e
g
)

Bode Diagram

Frequency  (rad/sec)

Code: 

gs = tf([1],[1 1]) 

h=0.2 

gz=c2d(gs,h) 

bode(gs),grid 

hold 

bode(gz) 

( )G s

( )G z
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Effects of Time Step h on G(z) 

  max2

max

10 π π
G s  = ;   h 1.0

s +s+10 λ 10
 

-100

-80

-60

-40

-20

0

20

M
a
g
n
itu

d
e
 (

d
B

)

10
-2

10
-1

10
0

10
1

10
2

-270

-180

-90

0

P
h
a
s
e
 (

d
e
g
)

Bode Diagram

Frequency  (rad/sec)

( )G s

1h 

0.5h 
0.2h 

0.05h 

Suggested h = 0.05 
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Anatomy of a Discrete Transfer Function 



   *π π 2π
Over 2k ,  2 k+1 ,  k=1, 2, , G jω  is the same as that over 0, 

h h h

   
   
   

   

   

*

*

G jω G 2π/h jω

G jω G 2π/h jω





 

  
        j 2π/h ω h j 2π/h ω h* jωhG jω G e =G e =conj G e

     
   

 

    

*

* * jπ

G jω  has even symmetry about ω= π h

G jω  has odd symmetry about ω= π h            G jπ/h 0  or 180  since e 1   



•   Examine Bode plot structure of G(ejωh) as a function of ω for ω >  π/h  
     - For any discrete transfer function, G(z), letting z = ejωh: 

so, over the interval [0, 2π/h]: 

π/h 2π/h 4π/h 6π/h ω 

π/h 2π/h 4π/h 6π/h ω 

|G
*

(j
ω

)|
 

ω1 2π/h–ω1 

0 

-180 

 G
*

(j
ω

) 

-360 

==>  If G(s) has a pole at s = 0, then G*(jω) →      for ω = 2πk/h, k = 1, 2, ... 

j h

jω



j h

2

( )

maps to
h

h h h

h




  
 






     

  



Copyright ©1994-2012  by K. Pattipati  46 

 Modeling a Process with Delay  

in Control, τ=Mh+ε 

        
 

           
 

k + 1 h A k + 1 h ξAh

kh
1

kh + ε k + 1 hA k + 1 h ξ A k+1 h ξAh

kh kh + ε
1

x k+1 h  = e x kh + e ξ dξ

                    = e x kh + [ e dξ k 1 + e dξ k ]
j

j

m

j j

j

m

j jj j

j

b u

b u b u





 



  





  
 σ = k+1 h ξ

       
h h ε

Ah Aσ Ah

h ε 0
1

x k+1 h e x kh [ e dσ k 1 e dσ k ]
j

j

m

j jj j

j

b u b u





        

If  

or  G(s) → G(s) Diag [exp(-sτj)] 

what is the appropriate discrete equivalent model?  
    Case 1:  Mj = 0;  τj =εj and 0 ≤  εj < h  
                  (typical model of computational delay)  
      Case 2:  Mj = integer  ≥ 1;  τj = Mj h + εj and 0 ≤  εj < h  
                  (for cases when there is a large delay)  

Consider Case 1 first with state-space model. 

Obtain x [(k+1)h] from  
x(kh) and input to system  
over (kh, (k+1)h]. 

(k-1)h kh (k+1)h 

εj h-εj 

  uj (k-1) 
uj(k) 

 σ = k+1 h ξ

1 1

( ); ( );  column  of 
m m

j j jj j j j

j j

x Ax b u t y Cx d u t d j D 
 

       

Delay Sources 

• Computational delays 

• Transmission delays 

• Plant delays 
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State Model for a Process  

with Fractional Delay 

 
 

 
   01

x k+1
χ k+1 χ k u k

u k 0 0 mI

      
      

    

 h ε h εA h εAh Aσ Aσ Aσ

0j 1j0 h ε 0
where e ;      = e dσ ;    = e dσ  = e e dσ

j jj

j
j j jb b b 

 


    

 
 

n n-1

0kj 1kj nkj

n n-1

1 n

c z  + c z  + + c
g z ; 1,2,.., ; 1,2,..,

z z  + a z  +  + a
kj k p j m  

 
 

 
 

x k
k  an n+m  vector

u k 1


 
 

 

          y k Cx k Du k 1 | χC D k   

To compute Φ, Γ1, Γ0: Do for j = 1,2,..,m  

  

(1)  Use c2d with (A, B, εj):  obtain 

    (2)  Use c2d with (A, B, h-ε):  obtain 

  

(3) 

  

•   Augmented state model,     

Then 

Output equation (as long as ε < h)  

•   Transfer function, G(z)  

  x(z) = (zI – Φ)-1 [Γ1z
-1+ Γ0] u(z)  

y(z) =    z-1 [ C(zI – Φ)-1 (zΓ0 + Γ1) + D ] u(z) 

gkj (z) will have a form  

1 01 0
1 1

( 1) ( ) ( 1) ( ) ( ) ( 1) ( )
m m

j jj j
j j

x k x k u k u k x k u k u k 
 

         

 and ( );jA

je



( )

 and ( - );jA h

je h






( ) ( )

0 1
( ) , ( ) ,  (need to do this for any one ).j j jA h A h A

j jj jj j
h b e b e e j

  
   

 
     

1

0

1

1

0 01 0 1 1

0

Invoke  the previous SS TFM

routine with the augmented system. 

Alternately,compute ( )

& ( ) .Compute numerator 

and denominator

(recall: z shift)

; ;kj kj kj ikj i kj ikj kj i

n

C zI

C zI

c b d c b b d a

b









 

 



    

1 10; 0kj na  
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State Model for a Process  

with Large Delay 

 h ε εA h εAσ Aσ

0 10 0
e dσ ,   e e dσ ; 1,2,..,

j jj

j jj j
b b j m 

 
   

         
1 1

0 1 0 1

previous result with M=0 previous result with M=0

1 1 1
G z C zI z  Diag[z ] = C zI z  Diag[z ],

z z

j jM M M

M
D D

z

             
   

               1 1 1 1 1 2 2 2 2 2

1

χ k [x k u k 1 M u k M . u k 1 u k 1 M u k M . u k 1 ] n vector
m

T

j

j

m M


          

τj = Mj h +εj;  Mj = integer ≥ 1;  0 ≤  εj < h ; j=1,2,..,m 

Modeling approach same as for Case 1, but with added Mj time-step delay,  

•   Augmented State Model (m=2):  Define   

•   Transfer function matrix  

   

01 0211 12
00 .. 0 .. 0 0

00 0 .. 0 .. 0 00 01 0

00 1 .. 0 0 0 00 00 0

00 0 .. 0 0 0 00 00 0

0.. 0 .. 1 .. 0 .0 00 0

χ k+1 0 χ k0 0 .. 0 .. 0 10 00 0

00 0 0 0 .. 0 00 00 1

10 0 0 0 .. 0 00 00 0

00 0 0 0 .. 0 00 00 0

00 0 0 0 .. 1 .0 00 0

00 0 0 0 .. 0 00 00 0

   
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
  

     1 2

0

0

0

0

.

k ; ( ) 0 0 0 .. 0 0 .. 0 χ k0

0

0

0

.

1

u y k C d d

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

1 0
1

1

( 1) ( ) [ ( 1 ) ( )]

( ) ( ) ( 1 );  column   of 

m

j j j jj j
j

m

j jj j

j

x k x k u k M u k M

y k Cx k d u k M d j D

 




       

    





1
max j

j m
M M

 

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SISO State Model for a Process with Large Delay 

 h ε εA h εAσ Aσ

0 1
0 0

e dσB,   e e dσB
 

         
1

0 1M

previous result with M=0

1 1
G z C zI z d   ,

z z

       
 

     

     

1 0 0 0 0

0 0 1 0

χ k+1 χ k u k0 1

1 0

0 0 0 0 0 1

y k c d 0 0 χ k

     
   
   
    
   
   
      



 

 

 

 

 

x k

u k 1 M

Define   χ k u k M n 1 M  vector

.

u k 1

 
 

  
    
 
 
  

 2.39

τ = Mh +ε;  M = integer ≥ 1;  0 ≤  ε < h  

Modeling approach same as for Case 1, but with added M time-step delay,  

x(k+1) = Φ x(k) + Γ1 u(k–1–M) + Γ0 u(k–M) 

y(k) = C x(k) + {d u(k–1–M)}  

•   Augmented State Model,   

•   Transfer function  
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Transfer Function Approach to  

Modeling a Process with Delay 

   

       

Mhs εs

h ε εa h ε a h ε a h εah aσ aσ aε

0 1
0 0

1
G s e e     x ax u t τ

s+a

e ;   e dσ = 1 e a;   e e dσ = e 1 e a

 

         

     

        
  

 
     

 

0.5 1 0.5

3 1 3

a 1.0,   M = 2,   ε = 0.5,   h = 1

1 e z e e 1 0.393 z 0.6071
  G z

z e z z 0.368z

 





     
   

   

   
 

ε s

M 1
g s e

,  g z z 1 z
s

j

j j jM hs M kj

kjBut e z Z



   
  

     
  



 
    a h ε ah aε

M+1 ah

1 e z+e e 11
G z

az z e

  



   
  

  

Approach -                      (1)  Form    
                 (2)  Take L-1  inverse Laplace  
                 (3)  Sample resulting time signal  
                 (4)  Take z-transforms  

Messy! 

Example  

   Ex.   

Note:  In many applications the time-step is dictated by the on-line computational requirements.  

                τ is often comparable to h. 

 
( )

( ) 1
( )

Since ( ) ( ) ,  we have ( ) 1 z
s

j j

j j

M h

M h kj

kj kj kj

g s e
g s g s e g z Z





 

  
  

    
  

 
ε s

g s e
;0

s

j

kj

j h



 
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Summary 

1. Digital Interfacing 

• Signal Conditioning 

• A/D and D/A converters 

2. Signal Sampling and Data Reconstruction 

• Impulse sampling model; Nyquist theorem; Aliasing and 

interpretation 

• Signal conditioning circuits 

3. Discrete Equivalents: State-Space Approach 
• Discretization algorithm 

 

4. Discrete Equivalents: Transfer Function Approach 
• Relation to original continuous system   

 

5. Model Modifications with Delay in Control 

 

 


