

Models of Sampled Data Systems

- 1. Digital Interfacing
 - Signal Conditioning
 - A/D and D/A converters
- 2. Signal Sampling and Data Reconstruction
 - Impulse sampling model; Nyquist theorem; Aliasing and interpretation
 - Signal conditioning circuits
- 3. Discrete Equivalents: State-Space Approach
 - Discretization algorithm
- 4. Discrete Equivalents: Transfer Function Approach
 - **Relation to original continuous system**

5. Model Modifications with Delay in Control

Digital Interfacing

- The system outputs, set points, state variables and control signals are typically "analog" or continuous variables
- For digital control, the sensed and conditioned (i.e., amplified, attenuated, isolated, multiplexed, filtered, compensated) system outputs, state variables and set points are converted from analog to digital form using A/D (or ADC) and the control sequences from the micro-controller (computer) are converted from digital to analog form using D/A (or DAC) prior to applying them to the actuators of the process or system

Why Amplify Sensor Signals Prior to Conversion?

- Helps with Code Width of DAQ System
 - Smallest change in the signal that the DAQ system can detect
 - Function of gain, G, A/D resolution (number of bits of A/D, b), range of signal to be digitized, V_{max} V_{min} (e.g., 0-10V, -10 to +10V)

Code width =
$$\frac{V_{\text{max}} - V_{\text{min}}}{G. (2^b - 1)}$$

- Uncertainty in your measurement after A/D, U = Code width/2 (recall how you round-off numbers!)
- Thermocouple Example
 - J-type thermocouple (measures 0 to 800° C) has sensitivity of 0.052 mv/deg C for 20-30° C.
 - Consider a 16-bit A/D with G = 1 and $V_{max} V_{min} = 10$ V.
 - Code width = $10/65535 = 0.153 \text{ mv} \Rightarrow$ uncertainty in measurement, $U = 0.076 \text{mV} \Rightarrow$ No Good
 - A gain of 100 will have a code width of 1.53 μ V/deg C and uncertainty, U of 0.765 μ V/deg C

You will also be filtering signals prior to conversion. We will see why later.

Some Basic Concepts in Signal Conversion

- Resolution
 - Determines how many different voltage changes can be measured
 - 16 bit-resolution \Rightarrow 65,536 levels \Rightarrow 4-5 digit accuracy

• Range

- DAQ devices have different ranges available (0-10V, -10V to +10V)
- Smaller range ⇒ more precise representation of your signal (It is like selecting a scale for your plot!)
- Gain
 - Gain setting (typically 0.5, 1, 2, 5, 10, 20, 50, or 100) allows for best fit in A/D range
 - For required measurement uncertainty, U, gain, G is set via

$$G = \frac{2U (2^b - 1)}{V_{\text{max}} - V_{\text{min}}}$$

Ladder Comparison A/D Converter

Ladder Comparison (Ramp) A/D Converter

- Apply analog voltage to +ve terminal of a comparator and the output of D/A converter to -ve terminal
- Output of comparator triggers a binary counter which drives the D/A converter
- When the D/A converter voltage exceeds analog voltage, counter stops and outputs the code

- Check if voltage corresponding to $MSB > V_s$. If it is, set next bits in succession and see if they don't exceed V_s
- When the D/A converter voltage exceeds analog voltage, counter stops and outputs the code
- Works well in practice

Flash A/D Converter

Flash A/D Converter

- Basically, a truth table that coverts the ladder of inputs to the binary number output
- Fastest type of A/D converter available
- Very expensive

Mathematics of Signal Sampling

We will examine the sampling process from a mathematical viewpoint.

h = sampling period or time step

f(t)

0

 $f_s = sampling frequency = number of samples/sec = 1/h$ if b = 16

A/D quantizes (not a major issue if b = 16, 24, 32) and samples

 $f_k = f(kh) = sampled value of f(t) at t = kh$

The problem here is that sampling a signal loses information, namely the points in between (k-1)h and kh.

 $t_{\nu} = kh$

So if we sample too slowly - we lose information

if we sample too fast - we overwork the computer

h

Major questions are -

 $\omega_{\rm s} = 2\pi/h$

(1) how fast to sample so as not to lose information? and

2h

(2) how to reconstruct the signal f(t), or an approximation, from $\{f_k\}$?

"Impulse" sampling as a <u>mathematical</u> model:

Copyright ©1994-2012 by K. Pattipati

Laplace Transform of a Sampled Signal

Take Laplace transform of $f^*(t) \triangleq F^*(s)$

$$F^{*}(s) = \int_{0}^{\infty} f^{*}(t) e^{-st} dt = f_{0} + f_{1} e^{-sh} + f_{2} e^{-2sh} + \cdots$$

As an aside, since $z_{\infty}^{-1} = e^{-sh}$

$$F^{*}(s) = \sum_{k=0}^{\infty} f_{k} z^{-k} \Big|_{z = e^{sh}} = F(z) \Big|_{z = e^{sh}}$$

where F(z) = z-transform of the sampled sequence $\{f_k\}$. Notationally, $F^*(s) = Z\{f(kh)\}|_{z = e^{sh}}$ We wish to examine the relationship between $F^*(s)$ and F(s) = Laplace transform of f(t), and between

$$S_F(j\omega) = "Spectrum" of f(t) = |F(j\omega)|^2$$
 and $S_{F^*}(j\omega) = "Spectrum" of f^*(t) = |F^*(j\omega)|^2$

The spectrum indicates where a signal has power. (A sine wave has impulses at $\pm \omega_0$.)

To find L[f(t) · m^{*}(t)] first use Fourier series to get a different way to write m^{*}(t). Recall, if a signal x(t) is periodic with period h, $x(t) = \frac{1}{h} \sum_{n=-\infty}^{\infty} c_n e^{jn\omega_s t}$, $\omega_s = \frac{2\pi}{h}$

where the Fourier coefficients, $c_n = \int_0^h x(t) e^{-jn\omega_s t} dt$.

Nyquist Theorem

<u>Nyquist Result</u>: If original signal f(t) does not have any frequency components $> \omega_s/2$, we can (in theory) reconstruct/recover f(t) from f^{*}(t) using an ideal low-pass filter. $\omega_N = \omega_s/2 = \pi/h$ is called the Nyquist frequency. Thus, one must sample f(t) at a rate that is at <u>least</u> twice the highest frequency ω_{max} in the signal, $\omega_s > 2\omega_{max}$ (or $\omega_N > \omega_{max}$).

Aliasing

Typically, $\omega_s \sim 10 - 30\omega_{\text{max}}$ An interesting phenomenon happens when $\omega_s/2 < \omega_{\text{max}}$ In this case the components of $F(j\omega - jn\omega_s)$ overlap in $S_{F^*}(j\omega)$ and it becomes impossible to recover f(t). In addition, the sampled signal $f^*(t)$ has power at frequencies not present in the original signal f(t)! <u>**E**</u> x. $f(t) = A \sin \omega_0 t$ and we sample at $\omega_s < 2\omega_0$.

 $F^*(t)$ has a <u>low</u> frequency component at $(\omega_s - \omega_0)$.

The original signal is "hidden", sampled signal is an "alias". The low frequency signal does not really exist in f(t), but will exist in $\hat{f}(t)$ since $H_0(s)$ is a LP filter.

Sample a signal f(t) that has frequency components at $f_1 = 0.1$ Hz, $f_2 = 0.8$ Hz and $f_3 = 1.4$ Ex. Hz using $f_s = 2$ Hz (note Nyquist says $f_s > 2.8$ Hz). What are the first 5 positive frequency n = 2 n = 0components of sampled signal? 3.9 2.1 f_1 f_2 f_3 1.9 4.1 2.8 3.2 4.8 0.81.2

2.6

5.4

0.6

3.4

Aliasing Illustrated in Time Domain

Let us take a simple sinusoid of frequency 4 Hz and sample it at 5Hz. We will show that a signal of 1 Hz is an alias.

t=[0:0.001:2] f=sin(2*pi*4*t); % continuous signal t1=[0:0.2:2]; f1=sin(2*pi*4*t1); % sampled signal at 5Hz f2=sin(2*pi*t1); % Alias signal 1Hz plot(t,f,t1,f1,'*',t1,-f2,'o') % note negative sign

After sample and hold (or other type of reconstructor), we pick out predominantly those signals in the primary strip, $-\pi/h < \omega < \pi/h$.

Since the aliased frequencies are not "real", i.e., not in original signal, any controller aimed at reducing the "observed" oscillations will fail.

- Aliasing effects will be observed in
 - frequency folding in s-plane
 - time response
 - Fourier spectrum

How to Avoid Aliasing?

How to Avoid Aliasing?

 $f(t) = 1.1 \sin 0.4t + 1.2 \sin 3.45t$ signal + high frequency noise. Sample period $h = 2.0 \sec \Rightarrow \omega_s = 3.14$ and aliasing will occur.

% nearly-continuous signal delt=0.1; t=[0:delt:70]'; n=length(t); ft=1.1*sin(0.4*t)+1.2*sin(3.45*t);plot(t,ft) pause % sampled signal kt=[0:2:70]'; nk=length(kt); fk=1.1*sin(0.4*kt)+1.2*sin(3.45*kt);plot(kt,fk,'o') pause numgf=[0.785^2]; dengf=[1 2*0.707*0.785 0.785^2]; gfs=tf(numgf,dengf) [y,t]=lsim(gfs,ft,t); plot(t,y) pause % sampled signal h=2.; kt=t([1:h/delt:n]) f1=y([1:h/delt:n])plot(kt,f1,'O')

<u>Ex</u>:

Antialiasing/Aliasing Examples

- Example 1: Consider N = 1024 data points from a signal sampled at 1ms interval (h = 0.001 sec)
 - Sampling frequency, $f_s = 1000 \text{ Hz} = 1 \text{ kHz} \Rightarrow \omega_s = 6280 \text{ rad/sec}$
 - Nyquist frequency, $f_N = 500 \text{ Hz} \implies \omega_N = 3140 \text{ rad/sec}$
 - Antialiasing filter frequency, $f_f = 250-400 \text{ Hz} \Rightarrow \omega_N = 1570 2512 \text{ rad/sec}$
 - If you did discrete Fourier transform, you will get 1024 points representing frequencies $(k/N)^* f_s$; k = 0, 1, 2, ... N-1. These are also called spectral lines.
 - Spectral line separation = $f_s / N = 0.9766$ Hz.
 - For an ideal filter with cut-off frequency of 250-400 Hz, keep the first 244-391 frequency components (i.e., set the rest to zero) as the useful spectrum and then do an IDFT to recover the noise filtered signal.
 - Example 2: Suppose you have a sinusoidal signal of frequency 10 Hz and you sample it at 50Hz. Another sinusoidal signal of the same amplitude, but higher frequency, f was found to yield the same data when sampled at 50Hz. What is the likely frequency, f?
 - Sampling frequency, $f_s = 50 \text{ Hz}$
 - Aliasing frequencies = $n f_s \pm 10$ Hz.
 - So, *f* = 40Hz, 60 Hz, 90Hz, 110Hz,....

Sallen-Key Low Pass Butterworth Filter

$$G_{f}(s) = \frac{K / R^{2}C^{2}}{s^{2} + \frac{(3 - K)}{RC}s + \frac{1}{R^{2}C^{2}}}$$
$$= \frac{K\omega_{n}^{2}}{s^{2} + (3 - K)\omega_{n}s + \omega_{n}^{2}}$$
For $\xi = 1/\sqrt{2}$, $K = 3 - \sqrt{2} = 1.586$

In general, Butterworth low pass filters have flat frequency response . For order p

Sampling for Accuracy

• For a single sine wave, $A \sin \omega_0 t$, Nyquist criterion says use more than two (2) samples/period $(\omega_s > 2\omega_0)$, but reconstruction error using a zero-order hold is terrible ==> we really need to sample at a higher rate.

If we use a sample and hold with N ≥ 4 samples/period, then $h \equiv 2\pi/N\omega_0$ and $\omega_s = N\omega_0$.

Sampling Period h for Control

- State space representation: If $\lambda_1, \lambda_2, ..., \lambda_n$ are the eigenvalues of A, then to avoid aliasing we must have λ_i within primary strip in the s-plane, i.e., $|\operatorname{Im}(\lambda_i)| < \pi/h$. Iargest eigenvalue of A i.e., poles within circle of radius π/h . $\Rightarrow h_{\max} = \pi/|\lambda_{\max}(A)|$ This is too high a limit from a control viewpoint, instead we seek $h \le c/|\lambda_{\max}(A)|$ with c = 0.2 to $0.5 (1/6 \rightarrow 1/15$ of Nyquist sampling interval An approximation: $|\lambda_{\max}(A)| \sim ||A||$ because $|\lambda_{\max}(A)| \le ||A||$ for any norm Primary Strip
 - Relation to Closed-loop bandwidth: ω_{BW} in rad/sec \Rightarrow f $_{BW} = \omega_{BW}/2\pi$ in Hz

$$\frac{1}{30f_{BW}} < h < \frac{1}{15f_{BW}} \Longrightarrow \frac{1}{5\omega_{BW}} < h < \frac{2}{5\omega_{BW}}$$

• **Relation to Rise time,** T_r : about 10% of the rise time $\Rightarrow h \approx 0.1 T_r$ A rule of thumb: $T_r \approx \frac{1}{2f_{BW}}$

Need to experiment with

different values of h

during design

- Gain cross over frequency, $\omega_{\rm c}$

 $0.15 < h\omega_c < 0.5$

 ω_c is an approx. measure of closed-loop bandwidth $\Rightarrow 12$ to 40 times $f_c = \omega_c / 2\pi$

Model for Equivalent Discrete System, $\tilde{G}(z)$ 1. System defined by state equations, no delay 2. System defined by transfer function, no delay 3. Modifications to 1 and 2 when $\tau \neq 0$ State-Space Approach $\dot{\mathbf{x}}(t) = \mathbf{A} \mathbf{x}(t) + \mathbf{B} \mathbf{u}(t)$ $=> G(s) = C(sI - A)^{-1} B + D$ v(t) = C x(t) + D u(t)Compute $\underline{x} [(k+1)h] \triangleq \underline{x}(k+1) = \text{value of } \underline{x}(t) \text{ at } t = (k+1)h \text{ from knowledge of } \underline{x}(kh) = \text{value of } \underline{x}(t) = \frac{1}{2} \sum_{k=1}^{n} \frac{1}{2} \sum_{$ $\underline{\mathbf{x}}(t)$ at t = kh and $\underline{\mathbf{u}}(kh) = system$ input over (kh, (k+1)h]. $h = \frac{0.2}{\parallel A \parallel}$ Use state transition equation, $\underline{\mathbf{x}}(\mathbf{t}_2) = \mathbf{e}^{\mathbf{A}(\mathbf{t}_2 - \mathbf{t}_1)} \underline{\mathbf{x}}(\mathbf{t}_1) + \int_{\mathbf{t}_1}^{\mathbf{t}_2} \mathbf{e}^{\mathbf{A}(\mathbf{t}_2 - \xi)} \mathbf{B} \underline{\mathbf{u}}(\xi) d\xi$ $\mathbf{t}_1 = \mathbf{k}\mathbf{h}, \mathbf{t}_2 = (\mathbf{k}+1)\mathbf{h}$ and $\underline{\mathbf{u}}(\xi) = \underline{\mathbf{u}}(\mathbf{k}\mathbf{h})$ over $(\mathbf{t}_1, \mathbf{t}_2]$ $\underline{\mathbf{x}}\left[(\mathbf{k}+1)\mathbf{h}\right] = e^{A\mathbf{h}}\underline{\mathbf{x}}(\mathbf{k}\mathbf{h}) + \int_{\mathbf{u}}^{(\mathbf{k}+1)\mathbf{h}} e^{A((\mathbf{k}+1)\mathbf{h}-\xi)} \mathbf{B}d\xi \cdot \underline{\mathbf{u}}(\mathbf{k}\mathbf{h})$ let $\sigma = (k+1)h - \xi$ $\underline{\mathbf{x}}\left[\left(\mathbf{k}+1\right)\mathbf{h}\right] = e^{\mathbf{A}\mathbf{h}}\underline{\mathbf{x}}\left(\mathbf{k}\mathbf{h}\right) + \int_{0}^{\mathbf{h}} e^{\mathbf{A}\sigma} d\sigma \mathbf{B}\underline{\mathbf{u}}\left(\mathbf{k}\mathbf{h}\right) \implies \underline{\mathbf{x}}\left(\mathbf{k}+1\right) = \Phi\underline{\mathbf{x}}\left(\mathbf{k}\right) + \Gamma\underline{\mathbf{u}}\left(\mathbf{k}\right)$ where $\Phi = e^{Ah}$; $\Psi(h) = \int_{0}^{h} e^{A\sigma} d\sigma$; $\Gamma = \Psi(h)B$ Output $\underline{y}(kh) = C\underline{x}(kh) + D\underline{u}[(k-1)h]$ value of system input right at time t = kh (subtle point) $y(k) = C\underline{x}(k) + D\underline{u}(k-1)$ Transfer function Matrix (TFM): $\tilde{G}(z) = C(zI - \Phi)^{-1}\Gamma + Dz^{-1}$

Computing Φ and Γ (or Ψ)

• Note that Φ and Γ are independent of k. Compute once for a given time step h.

<u>Analytic</u>: $e^{Ah} = L^{-1} \left[\left(sI - A \right)^{-1} \right]_{t=h}$

exact value obtained, but very time-consuming and not practical for n > 3. Then, need to obtain Ψ by integrating $e^{A\sigma}$ over [0, h]. <u>Numerical</u>: If h is small ==> Taylor series approximations are good $e^{Ah} = I + Ah + A^2h^2/2! + ...$ To compute $\Psi(h)$ substitute approximation $e^{A\sigma} \sim I + A\sigma + A^2\sigma^2/2! + ...$ $\Psi(h) = \int_0^h e^{A\sigma} d\sigma = \int_0^h [1 + A\sigma + A^2\sigma^2/2! + ...] d\sigma$ $\Psi(h) \doteq h [I + Ah/2! + A^2h^2/3! + ... + A^Mh^M/(M+1)!]$ where the number of terms M must be chosen large enough so that the Taylor approximations are valid; i.e., we want, $(Ah)^{M}/(M+1)! << I ==> ||A||^Mh^M/(M+1)! < 10^{-6}$. Then $\Phi = e^{Ah} = I + A\Psi(h)$ Algorithm to find M = # terms in series, given h $C_1 = ||A|| h/2$

C₁ = || A || II/2
Do for M = 2, 20
C₁ = C₁ * || A || h/(M+1)
if C₁ < 10⁻⁶ stop → return M, if M < 4 set M = 4
End do
(Note: || A || ¹⁹/20! ~ 10⁻⁹ if || Ah || =
$$\pi$$
)

Algorithm for Obtaining $\Psi(h)$ and Φ , Γ

Once M is determined, compute $\Psi(h)$ via series. Since the magnitude of the higherorder terms in series decreases as M grows, sum the series using reverse nesting. -

$$\Psi(h) = h \left[I + \dots \frac{Ah}{M-2} \left(I + \frac{Ah}{M-1} \left(I + \frac{Ah}{M} \left(I + \frac{Ah}{M+1} \right) \right) \right) \dots \right]$$

This assures that very small numbers are never added to much bigger numbers.

Flow diagram of a Subroutine "Dscrt" (your own c2d function) for general use:

Modifications to SS
$$\rightarrow$$
 TFM
• Use modified SS- \rightarrow TFM code to obtain coefficients.
Let $\underline{\gamma}_{j}$ be the j^{th} column of Γ and \underline{c}_{k}^{T} be the k^{th} row of C
Key relation: $g_{ij}(z) = \underline{c}_{k}^{T}(zI - \Phi)^{-1}\underline{\gamma}_{j} + d_{ij}z^{-1} = \frac{|zI - \Phi + \underline{\gamma}_{j}c_{k}^{T}|}{|zI - \Phi|} - 1 + \frac{d_{ij}}{z}$
 $= \frac{z|zI - \Phi + \underline{\gamma}_{j}c_{k}^{T}| + (d_{ij} - z)|zI - \Phi|}{z|zI - \Phi|}$
Let $\delta_{1}, \delta_{2}, ..., \delta_{n}$ be the eigen values of $(\Phi - \underline{\gamma}_{j}c_{k}^{T})$ and $\lambda_{1}, \lambda_{2}, ..., \lambda_{n}$ be the eigen values of Φ . Then,
 $g_{ij}(z) = \frac{z[\prod_{i=1}^{n}(z - \delta_{i}) + (d_{ij} - z)]\prod_{i=1}^{n}(z - \lambda_{i})}{z[\prod_{i=1}^{n}(z - \lambda_{i})}$
 $= \frac{z|z^{n} + \tilde{b}_{1}z^{n-1} + \tilde{b}_{2}z^{n-2} + ... + \tilde{b}_{n}| + (d_{ij} - z)|z^{n} + a_{1}z^{n-1} + a_{2}z^{n-2} + ... + a_{n}|}{z(z^{n} + a_{1}z^{n-1} + a_{2}z^{n-2} + ... + a_{n})}$
 $= \frac{z^{-1}(b_{0}z^{n} + b_{1}z^{n-1} + b_{2}z^{n-2} + ... + b_{n}]}{z^{n} + a_{2}z^{n-2} + ... + a_{n}}; b_{i} = \tilde{b}_{i+1} + d_{ij}a_{i} - a_{i+1}, i = 0, 1, 2, ..., n; a_{0} = 1, \tilde{b}_{n+1} = a_{n+1} = 0$
(b(n+2,j,k)=0; a(n+2)=0;
for i = 1:n+1
b(i,j,k)=b(i+1,j,k)+D(k,j)*a(i)-a(i+1);
end
34 Copyright@199422012 by K-Pattipation

.....

Example: First Order System

Copyright ©1994-2012 by K. Pattipati

Example 2a: Double Integrator System

h

1

Special case of Example 2 when $a = 0 \implies G(s) = 1/s^2$

We can consider lim as $a \rightarrow 0$ using L'Hospital's rule (messy), or redo problem for

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}; \qquad B = \begin{bmatrix} 0 \\ 1 \end{bmatrix}; \qquad C = \begin{bmatrix} 1 & 0 \end{bmatrix}$$
$$\Phi = e^{Ah} = L^{-1} \begin{bmatrix} (sI - A)^{-1} \end{bmatrix}_{t=h} = L^{-1} \begin{bmatrix} \frac{1}{s} & \frac{1}{s^{2}} \\ 0 & \frac{1}{s} \end{bmatrix}_{t=h} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$$
$$\Psi = \int_{0}^{h} e^{A\sigma} d\sigma = \begin{bmatrix} h & h^{2}/2 \\ 0 & h \end{bmatrix}; \qquad \Gamma = \Psi B = \begin{bmatrix} h^{2}/2 \\ h \end{bmatrix}$$
$$\underline{x}(k+1) = \begin{bmatrix} 1 & h \\ 0 & 1 \end{bmatrix} \underline{x}(k) + \begin{bmatrix} h^{2}/2 \\ h \end{bmatrix} u(k)$$
$$\tilde{G}(z) = \begin{bmatrix} 1 & 0 \end{bmatrix} \begin{bmatrix} \frac{1}{z-1} & \frac{h}{(z-1)^{2}} \\ 0 & \frac{1}{z-1} \end{bmatrix} \begin{bmatrix} \frac{h^{2}}{2} \\ h \end{bmatrix}$$
$$\tilde{G}(z) = \frac{h^{2}/2}{z-1} + \frac{h^{2}}{(z-1)^{2}} = \frac{h^{2}}{2} \frac{z+1}{(z-1)^{2}}$$

$$u(z) = 1/(1-z^{-1}).$$

(2) If the D/A Converter is a zero-order hold, then u(t) will be a pure step, u(t) = 1 for t > 0 ==> u(s) = 1/s.

- (3) Since the process is continuous, y(s) = G(s)/s and $y(t) = L^{-1} [G(s)/s]$.
- (4) Sampling y(t) and taking the z-transform yields y(z) y(z) = Z{L⁻¹ [G(s)/s]} = z-transform of step response usual notation: $Z{L^{-1} [F(s)]} \triangleq Z{F(s)}$. (5) If u(k) = 1, the response is (1-z⁻¹) y(z) = (z-1) y(z)/z $\widetilde{G}(z) = (1-z^{-1}) Z{L^{-1}(G(s)/s)}$

How close is
$$\tilde{G}(x)_{k=e^{th}}$$
 to original $G(s)$ when $s = j\omega$?
The vacuum of the ences in both magnitude and phase

$$\begin{aligned}
\tilde{G}(z) = (1-z^{-1})Z \left\{ \frac{G(s)}{s} \right\} &\Rightarrow \tilde{G}(z)_{k=u^{th}} = (1-e^{-th}) \left[\frac{G(s)}{s} \right] \\
\left[\left[\operatorname{Recall} F^{*}(s) \triangleq F(z)_{k=u^{th}}, \text{ and relationship between } F^{*}(s) \text{ and } F(s), F^{*}(s) = \frac{1}{h} \sum_{n=-\infty}^{\infty} F(s-jn\omega_{s}) \right] \\
&= \left[\frac{G(s)}{s} \right] - \frac{1}{h} \left[\frac{G(s)}{s} + \frac{G(s-j\omega_{s})}{s-j\omega_{s}} + \frac{G(s+j\omega_{s})}{s+j\omega_{s}} \right] \\
\text{If $\omega < \omega_{s}/2 = \pi/h$, and $|G(j\omega \pm j\omega_{s})| << 1$ then to a first approximation;

$$\left[\frac{G(s)}{s} \right] - \frac{1}{h} \left[\frac{G(s)}{s} \right] \text{ and } \tilde{G}(z)_{k=e^{th}} - \frac{\left[\frac{1-e^{-sh}}{sh} \right] G(s)}{(s)^{k}} \right] \\
&= 2 \operatorname{Recall} F(s) \operatorname{Recall} F($$$$

Anatomy of a Discrete Transfer Function

- Examine Bode plot structure of $G(e^{j\omega h})$ as a function of ω for $\omega > \pi/h$ - For any discrete transfer function, G(z), letting $z = e^{j\omega h}$: $G^{*}(j\omega) \triangleq G(e^{j\omega h}) = G[e^{-j(2\pi/h-\omega)h}] = \operatorname{conj}\left\{G[e^{j(2\pi/h-\omega)h}]\right\} \implies \frac{|G^{*}(j\omega)| = |G^{*}(2\pi/h-j\omega)|}{\measuredangle G^{*}(j\omega) = -\measuredangle G^{*}(2\pi/h-j\omega)}$ so, over the interval $[0, 2\pi/h]$:
 - $|\mathbf{G}^*(j\omega)|$ has even symmetry about $\omega = \pi/h$ $\measuredangle G^*(j\omega)$ has odd symmetry about $\omega = \pi/h$ $\{\measuredangle G^*(j\pi/h) = 0^\circ \text{ or } \pm 180^\circ \text{ since } e^{j\pi} = -1\}$ Over $\left| 2k\frac{\pi}{h}, 2(k+1)\frac{\pi}{h} \right|$, k=1, 2, ..., G^{*}(j ω) is the same as that over $\left[0, \frac{2\pi}{h} \right]$ $|G^*(j\omega)|$ $2\pi/h-\omega_1$ ω_1 $4\pi/h$ π/h $2\pi/h$ 6π/h $\mathbf{0}$

 $i\pi/h$

 $-j\pi/h$

 $\omega \frac{\pi}{h} + \omega maps to$ $-\frac{2\pi}{h} + \frac{\pi}{h} + \omega = -\frac{\pi}{h} + \omega$ $=-(\frac{\pi}{L}-\omega)$ $4\pi/h$ ω π/h $2\pi/h$ $6\pi/h$ => If G(s) has a pole at s = 0, then $G^*(j\omega) \rightarrow \infty$ for $\omega = 2\pi k/h$, k = 1, 2, ...

$$Fransfer Function Approach to Modeling a Process with Delay Since $g_{ij}(s) \rightarrow g_{ij}(s)e^{-(M,h=\varepsilon_i)}$, we have $\tilde{g}_{ij}(z) = (1-z^{-1})Z\left\{\frac{g_{ij}(s)e^{-(M,h=\varepsilon_i)}}{s}\right\}$
 $But, e^{-M,hs} = z^{-M_i} \Rightarrow \tilde{g}_{kj}(z) = z^{-M_i} (1-z^{-1})Z\left\{\frac{g_{kj}(s)e^{-\varepsilon_is}}{s}\right\}$
 $But, e^{-M,hs} = z^{-M_i} \Rightarrow \tilde{g}_{kj}(z) = z^{-M_i} (1-z^{-1})Z\left\{\frac{g_{kj}(s)e^{-\varepsilon_is}}{s}\right\}$
Approach - (1) Form $\frac{g_{kj}(s)e^{-\varepsilon_is}}{(2) \operatorname{Take } L^{-1}}$ inverse Laplace
(3) Sample resulting time signal
(4) Take z-transforms
 $Messy!$
 $Example$
 $G(s) = \frac{1}{s+a}e^{-Mis}e^{-ss} \Rightarrow \dot{x} = -ax + u(t-\tau)$
 $\Phi = e^{-ah}; \ \Gamma_0 = \int_0^{h-\varepsilon}e^{-ac}d\sigma = \left[1-e^{-a(h-\varepsilon)}\right]/a; \ \Gamma_1 = e^{-a(h-\varepsilon)}\int_0^{\varepsilon}e^{-a\sigma}d\sigma = e^{-a(h-\varepsilon)}(1-e^{-a\varepsilon})/a$
 $\tilde{G}(z) = \frac{1}{az^{M+1}}\left\{\frac{(1-e^{-a(h-\varepsilon)})z+e^{-ab}(e^{a\varepsilon}-1)}{z-e^{-ah}}\right\}$
 $Ex. \ a = 1.0, \ M = 2, \ \varepsilon = 0.5, \ h = 1$
 $\Rightarrow \ \tilde{G}(z) = \frac{1}{z^3}\left\{\frac{(1-e^{-d5})z+e^{-1}(e^{0.5}-1)}{z-e^{-1}}\right\} = \frac{0.393(z+0.607)}{z^3(z-0.368)}$
Note: In many applications the time-step is dictated by the on-line computational requirements.$$

 $\Rightarrow \tau$ is often comparable to h.

Summary

- 1. Digital Interfacing
 - Signal Conditioning
 - A/D and D/A converters
- 2. Signal Sampling and Data Reconstruction
 - Impulse sampling model; Nyquist theorem; Aliasing and interpretation
 - Signal conditioning circuits
- 3. Discrete Equivalents: State-Space Approach
 - Discretization algorithm
- 4. Discrete Equivalents: Transfer Function Approach
 - **Relation to original continuous system**
- 5. Model Modifications with Delay in Control