
Copyright ©1994-2012 by K. Pattipati

Lecture 3

Prof. Krishna R. Pattipati

Prof. David L. Kleinman

Dept. of Electrical and Computer Engineering

University of Connecticut
Contact: krishna@engr.uconn.edu (860) 486-2890

Digital Interfacing, Sampling, Signal Conditioning, and Models of Sampled Data Systems

ECE 6095/4121

Digital Control of Mechatronic Systems

mailto:krishna@engr.uconn.edu

Copyright ©1994-2012 by K. Pattipati 2

Models of Sampled Data Systems

1. Digital Interfacing

• Signal Conditioning

• A/D and D/A converters

2. Signal Sampling and Data Reconstruction

• Impulse sampling model; Nyquist theorem; Aliasing and

interpretation

• Signal conditioning circuits

3. Discrete Equivalents: State-Space Approach
• Discretization algorithm

4. Discrete Equivalents: Transfer Function Approach
• Relation to original continuous system

5. Model Modifications with Delay in Control

Copyright ©1994-2012 by K. Pattipati

• The system outputs, set points, state variables and control signals are typically

"analog" or continuous variables

• For digital control, the sensed and conditioned (i.e., amplified, attenuated,

isolated, multiplexed, filtered, compensated) system outputs, state variables

and set points are converted from analog to digital form using A/D (or ADC)

and the control sequences from the micro-controller (computer) are converted

from digital to analog form using D/A (or DAC) prior to applying them to the

actuators of the process or system

Digital Interfacing

ALGORITHM D/A PROCESS OR
SYSTEM

A/D

{u(kh)}
u(t)

{r(kh)}

{y(kh)}

r(t)
y(t) OR

x(t)

MULTI-

PLEXER

COMPUTER

Analog electrical “image”

of the physical variables

(position, flow, pressure,...)

Analog electrical signal for

control (e.g., armature

voltage, source frequency,…)

3

Copyright ©1994-2012 by K. Pattipati

Your Signal

DAQ

Dev

ice

Terminal

Block

Data Acquisition (DAQ) Hardware

Mobile

Devices

PC

Micro-

Controller(s)

Internet

Signal

Terminal

 Block

Cable

50 or 68 pin

connector

DAQ Device

Routes signal to specific

pins of DAQ device

• Analog I/O

• Digital I/O

• Counters

• Bus connections (PCI,

 PXI/CompactPCI, USB,

 ISA/AT, PCMCIA,

 1394/Firewire)

50 pin connector

• DAQ Input Configurations

− Resolution/Accuracy

− Range

− Gain

− Code Width

− Mode: typically differential to reject

 common-mode voltage and common-

 mode noise. Two channels used for each

 signal.

4

Copyright ©1994-2012 by K. Pattipati

Back to Basics: Op-Amps - 1

0 ResistanceOutput 3.

ResistanceInput .2

 1.

:Amp-Op Ideal

)(

a











b

about

vvA

gainloopopenA

vvAv

av

bv
-

+
outvA

OP-Amp

+12V

-12V

Positive power
supply (+12V)

Negative power
supply (-12V)

Inverting input

Non-inverting input

741

4

1

2

3

5

6

7

8

Output

R2

-

-
+

+

R1

+

-

-

+

R3

vo

v1

v2

R4

+12V

-12V

Summing amplifier

3 3
0 1 2

1 2 4 1 2 3

1 1 1 1
 () ;

R R
v v v

R R R R R R
     

Comparator

-

- +

+

+

-

-

+

vo

vref

vi

+12V

-12V

A

0

min[(),12] 12

max[(), 12] 12

i ref i ref

i ref i ref

A v v V V if v v
v

A v v V V if v v

  
 

    

Recall A is big! Useful in Temperature Switches.

6

Copyright ©1994-2012 by K. Pattipati

Back to Basics: Op-Amps - 2

• Dual Input Differential Amplifier

• Instrumentation Amplifier (high gain, high CMRR)

-

+ +

-

-

+

-

+

RG

R3

R2

R1

R3 R2
R1 vO

vi1

vi2

vA

vB

vi1

vi2

-

+

+

R2

-

-

+

-

+

vo v2

v1

R1

+12V

-12V

R1 R2 v

v
 

0 01 1

1 2 2 1 2 1

2 2

1 2 1 2 1

2
0 2 1

1

1 1
 ()

1 1
()

v v vv v v
v

R R R R R R

v v vv
v

R R R R R

R
v v v

R


     


   

  

 

 

2
0

1

1 2 1 2

3 3

2 1

3 3

1 2

3 3

3
2 1

,

1 1 1

1 1 1

1 2

B A

i i A i i B

G

B
i i

G G

A
i i

G G

B A i i

G

Know

R
v v v

R

v v v v v v
Also

R R R

v
v v

R R R R

v
v v

R R R R

R
v v v v

R

 

  
 

 
    

 

 
   
 

 
     

  32
0 2 1

1

, 1 2 i i

G

RR
So v v v

R R

 
   

 

(10000) (100dB)

Gain

Gain

7

Copyright ©1994-2012 by K. Pattipati

Why Amplify Sensor Signals Prior to Conversion?

• Helps with Code Width of DAQ System

− Smallest change in the signal that the DAQ system can detect

− Function of gain, G, A/D resolution (number of bits of A/D, b), range of signal to be

digitized, Vmax - Vmin (e.g., 0-10V, -10 to +10V)

− Uncertainty in your measurement after A/D, U = Code width/2 (recall how you round-

off numbers!)

• Thermocouple Example

− J-type thermocouple (measures 0 to 8000 C) has sensitivity of 0.052 mv/deg C for 20-

300 C.

− Consider a 16-bit A/D with G = 1 and Vmax – Vmin = 10V.

− Code width = 10/65535 = 0.153 mv  uncertainty in measurement, U = 0.076mV 

No Good

− A gain of 100 will have a code width of 1.53 V/deg C and uncertainty, U of 0.765

V/deg C

max min
. (2 1)b

V V
Code width

G






You will also be filtering signals prior to conversion. We will see why later.

8

Copyright ©1994-2012 by K. Pattipati

Some Basic Concepts in Signal Conversion

• Resolution

− Determines how many different voltage changes can be measured

− 16 bit-resolution  65,536 levels  4-5 digit accuracy

• Range

− DAQ devices have different ranges available (0-10V, -10V to +10V)

− Smaller range  more precise representation of your signal (It is like selecting a scale

for your plot!)

• Gain

− Gain setting (typically 0.5, 1, 2, 5, 10, 20, 50, or 100) allows for best fit in A/D range

− For required measurement uncertainty, U, gain, G is set via

100 200 150 50 0
Time (s)

0

1.25

5.00

2.50

3.75

6.25

7.50

8.75

10.00

Amplitude

(volts)

16-Bit Versus 3-Bit Resolution

(5kHz Sine Wave)

16-bit resolution

3-bit resolution

000

001

010

011

100

101

110

111

| | | | |

max min

2 (2 1)

bU
G

V V






9

Copyright ©1994-2012 by K. Pattipati

Some D/A Converters

• Simple minded: Use summing amplifier

− Wide range of precision resistors

− 16 bits  215 = 32,768 range

• R-2R Ladder D/A Converter

− vi = vi+1/2; i=0,1,2,..,b-1; vb = -vref

− So,

2 3
1 2

0

1 1

2 2
 ;

2
.. .

2 2

1
() 1

2

b b
b

ref

o i

i

b i b

b

ref

B B
B

V
v B bit i

B B

Full scale value FSV V

 


  

 
   

  
    
 

  
      

Rf = R/2

8R 4R 2R R
vo

-vref
LSB

(bit 0)

MSB

(bit b-1)

vb-1 v0 vb-2

2

1 1 1
 ...

2 2 2

1
() 1

2

out refb

b

ref

v V

Full scale value FSV V

 
    
 

  
      

-vref

10

Copyright ©1994-2012 by K. Pattipati

Ladder Comparison A/D Converter

• Ladder Comparison (Ramp) A/D Converter

Cheap, but slow

• Apply analog voltage to +ve terminal of a comparator and the output of D/A converter to –ve

 terminal

• Output of comparator triggers a binary counter which drives the D/A converter

• When the D/A converter voltage exceeds analog voltage, counter stops and outputs the code

11

Analog

Input

Sample

Point

DAC

output

Start

pulse

Comparator

output EOC

Sample

time

Both comparator

output and start

line normally high

Start pulse resets the

counter and blocks

clock during reset. At

end of start pulse, the

counter starts.

When the digital ramp

output of the DAC

reaches the signal

voltage Vs , the

comparator goes low,

stopping the count.

Counter increases voltage

out of DAC until it reaches

the input sample voltage Vs

Input clock

pulses

Start

line

Reset

Clock

After

Tocci,

Digital

Systems

Comparator

Counter
Digital

–to–

Analog

Conv.

VS
VS

VS

tC

tC

AND

Copyright ©1994-2012 by K. Pattipati

Successive Approximation A/D Converter

• Successive Approximation A/D Converter

• Check if voltage corresponding to MSB > Vs. If it is, set next bits in succession and see if they

 don’t exceed Vs

• When the D/A converter voltage exceeds analog voltage, counter stops and outputs the code

• Works well in practice

12

To control

logic
Comparator

From

control

logic

VS = 7.2 V

MSB

Digital

–to –

Analog

Converter

The control logic increments

bits, starting with the MSB

D3

D2

D1

D0

MSB is set but

it overshoots VS

and is reset.

Conversion is

finished when

process has

cycled through

all bits.

Next bits are set in

succession and held if

they don’t exceed VS

Copyright ©1994-2012 by K. Pattipati

Flash A/D Converter

• Flash A/D Converter

• Basically, a truth table that coverts the ladder of

 inputs to the binary number output

• Fastest type of A/D converter available

• Very expensive

13

+10V

3K

1K

1K

1K

1K

1K

1K

1K

7

6

5

4

3

2

1

Analog

input

Digital

output

MSB

E
N

C
O

D
E

R
 L

O
G

IC

Comparators

Copyright ©1994-2012 by K. Pattipati 14

Mathematics of Signal Sampling

 2s h 

We will examine the sampling process from a mathematical viewpoint.

 h = sampling period or time step

 fs = sampling frequency = number of samples/sec = 1/h

h 2h

f1

t
f0

f2 f(t)

tk = kh

fk

fk = f(kh) = sampled value of f(t) at t = kh

0

The problem here is that sampling a signal loses information, namely the points in between

(k–1)h and kh.

So if we sample too slowly - we lose information

if we sample too fast - we overwork the computer

Major questions are -
 (1) how fast to sample so as not to lose information? and
 (2) how to reconstruct the signal f(t), or an approximation, from {fk}?

"Impulse" sampling as a mathematical model:

Area of impulse k is fk.
Impulse
Sampler

f f*
f(t)

t
h 2h

f0 f1 f2

0

A/D quantizes (not a major issue

if b = 16, 24, 32) and samples

Copyright ©1994-2012 by K. Pattipati 15

Impulse Sampling

       *

0 1 2 2f t f t f t h f t h       

periodic train of unit impulses t 

 

   

0

0

1

1
1

s

s

e
H s

s s

e H s
s









 

 



     * f t f t m t  

 f̂ t  *f t

1 she

s




can be written as

The signal f*(t) is not "real" but when an impulse sampler is followed by a suitable transfer

function H0(s), we can model almost any practical sampling situation. We are really going

from f(t) to via . f(t) f*(t)
H0(s)

 f̂ t

Ex. If impulse response of H0 is

and we get as output a pulse train.
0

1

h

2h

f(t)

0 h

2h

4h

3h

height of pulse @ kh = fk

3h

 f̂ t

 f̂ t

If = h the transfer function H0(s) is . 

h

3h

This is a "sample-and-hold"
and is the most common form
of sampling process plus
data reconstruction.

2h



Copyright ©1994-2012 by K. Pattipati 16

Laplace Transform of a Sampled Signal

   * * 2

0 1 2
0

 st sh shF s f t e dt f f e f e


      

   *

0

sh

sh

k

k z e
k z e

F s f z F z





 

 

 shz e

           *

22 * *" " " " F F
S j Spectrum of f t F j and S j Spectrum of f t F j      

 
1 2

 , sjn t

n s

n

x t c e
h h

 






 

Take Laplace transform of f*(t) F*(s)

As an aside, since z-1 = e-sh

where F(z) = z-transform of the sampled sequence {fk}. Notationally, F*(s) = Z{f(kh)}

We wish to examine the relationship between F*(s) and F(s) = Laplace transform of f(t),

0ω

 The spectrum indicates where
 a signal has power. (A sine
 wave has impulses at .)

and between

  s
h

jn t

n
o

c x t e dt


 

max

 F j

ω
max

To find L[f(t) · m*(t)] first use Fourier series to get a different way to write m*(t). Recall,

if a signal x(t) is periodic with period h,

 where the Fourier coefficients, .

Copyright ©1994-2012 by K. Pattipati 17

Nyquist Theorem

   * 1
sjn t

n

f t f t e
h






 

       * *1 1
 s s

n n

F s F s jn F j F j jn
h h

   
 

 

    

2N s h   

2s

max
max

 *F
S j

ss

 δ tApply Fourier series to x(t) =

 *

1

1 1
[1 2cos]sjn t

s

n n

m t e n t
h h

 
 

 

   

     * * 1
sjn t

n

F s L f t L f t e
h






      

 
0

 1 s
h

jn t

nc t e dt for all n
 

  

2s2s

 max max2 s Nor    max

So, an alternate representation of m*(t) is

and

Thus,

   atL x t e X s a    Using the relation ,

Nyquist Result: If original signal f(t) does not have any frequency components > ,

we can (in theory) reconstruct/recover f(t) from f*(t) using an ideal low-pass filter.

 is called the Nyquist frequency. Thus, one must sample f(t) at a rate that is

at least twice the highest frequency in the signal, .

0

n= –1 n = 0 n=1

h=0.05;

omegas=2*pi/h;

t=[0:0.001:2];

delta=1/h*ones(size(t));

for i=1:100

 delta=delta+2*cos(omegas*t*i)/h;

 plot(t,delta)

 pause

end

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

500

1000

1500

2000

2500

3000

3500

4000

4500

 *

1

1 2
cos()s

n

m t n t
h h






  

maxs 

Copyright ©1994-2012 by K. Pattipati 18

Recovering f(t) from f*(t)

f̂

     *

0
ˆ F s H s F s

max 2s Assume

• In ideal case:

f(t) f*(t)
H0(s)

 f̂ t

sh1 e

s



 

     

2 2
2 2

0

0 0

- sin 2

2

sin 2
 ; 2 / 2 sec., 2 /

2

j h j h
j h j h

s

e e h
H j e e h

j h

h
H j h H j h delay of h for h

h

 
  


 


     




    

     
  

     

h

0

ω

2s

 0H j

2s

If is as shown then and the signal

is recovered from its samples. However, such an H0(s)

is unrealizable.

   f̂ t f t 0H j

• Suppose H0(s) = , i.e., is a sample and hold (zero-order hold)

This is an approximation to an ideal LPF.

 f̂ tStill get some high frequency components in . Other signal reconstructors H0(s) are possible

(e.g., polynomial interpolators) but usually are not worth the added complexity.

The zero-order hold is the most common form of H0(s) in digital control.

s2 s
0

n = -1 n = 0 n = 2 n = -2 n =1 h

h
4.7

 0H j

2 ss
2s 2s



Copyright ©1994-2012 by K. Pattipati 19

Aliasing

  0 0sin and we sample at 2 .sf t A t   

max10 30s  
max2s 

 sF j jn   *F
S j

Typically, . An interesting phenomenon happens when . In this case

the components of overlap in and it becomes impossible to recover f(t).

In addition, the sampled signal f*(t) has power at frequencies not present in the original signal f(t)!

E x.

0

n = -2 n = 2
n = 1 n = -1

s2 s 2 ss
0 0s  

0s 
0

 0s F*(t) has a low frequency component at .

 f̂ t

The original signal is "hidden", sampled signal is an "alias". The low frequency signal does not

really exist in f(t), but will exist in since H0(s) is a LP filter.

Ex. Sample a signal f(t) that has frequency components at f1 = 0.1 Hz, f2 = 0.8 Hz and f3 = 1.4

 Hz using fs = 2 Hz (note Nyquist says fs > 2.8 Hz). What are the first 5 positive frequency

 components of sampled signal? n = 0 n = 1 n = 2
 f1 0.1 1.9 2.1 3.9 4.1
 f2 0.8 1.2 2.8 3.2 4.8
 f3 1.4 0.6 3.4 2.6 5.4

Copyright ©1994-2012 by K. Pattipati 20

Aliasing Illustrated in Time Domain

Let us take a simple sinusoid of frequency 4 Hz and sample it at 5Hz. We will show

that a signal of 1 Hz is an alias.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

t=[0:0.001:2]

f=sin(2*pi*4*t); % continuous signal

t1=[0:0.2:2];

f1=sin(2*pi*4*t1); % sampled signal at 5Hz

f2=sin(2*pi*t1); % Alias signal 1Hz

plot(t,f,t1,f1,'*',t1,-f2,'o') % note negative sign

* sampled signal

o aliased signal

Copyright ©1994-2012 by K. Pattipati 21

Interpretation of Aliasing in s-Plane

2j N

h



h h    

- Indicates frequency of original signal

- Indicates alias frequencies

All points apart, give same zi.

 2sj h j 

j

2 sj h j 

 0 PRIMARY
STRIP

2π/h

2 j h

j h

After sample and hold (or other type of reconstructor), we pick out
predominantly those signals in the primary strip, .

Since the aliased frequencies are not "real", i.e., not in original signal,
any controller aimed at reducing the "observed" oscillations will fail.

• Aliasing effects will be observed in

 - frequency folding in s-plane
 - time response
 - Fourier spectrum

Nyquist Frequency

Copyright ©1994-2012 by K. Pattipati 22

How to Avoid Aliasing?

  Prefilter the signal before sampling (anti-aliasing).f t

 N h 

m

2 2f N h   

 

 

2

2 2

 2

2

2

f

f

f f

Typical G s
s s

Butterworth Filter



 




 



sω

• There is no way to fix f*(t) after you have sampled. So, you must assure that the signal to

 be sampled has no frequencies higher than .

But, real signals have power in [–∞, ∞] (with caveat).

 f̂ t
f1(t) f1

*(t)
H0(s) Gf(s) f(t)

Low-Pass Filter Data Reconstructor

Usually pick to be safe, but beware of using a Gf(s) in a feedback loop due to

added negative phase shift that reduces . Some authors suggest N/1.28  0.8 N = 0.4 s
 Ex: f(t) = 1.1 sin0.4t + 1.2 sin3.45t signal + high frequency noise. Sample period

 h = 2.0 sec => = 3.14 and aliasing will occur.

0 10 20 30 40 50 60 70
-3
-2
-1
0
1
2
3

0 10 20 30 40 50 60 70
-3
-2
-1
0

1
2
3

0 10 20 30 40 50 60 70
-3
-2

-1
0
1
2

3
f(k)

f
Prefilter f(t) using a 2nd-order Butterworth filter

with = 0.785 and then sample the output, f1(t).

f1(k)

no

prefiltering

Copyright ©1994-2012 by K. Pattipati 23

How to Avoid Aliasing?

Ex: f(t) = 1.1 sin0.4t + 1.2 sin3.45t signal + high frequency noise. Sample period

 h = 2.0 sec => = 3.14 and aliasing will occur.

% nearly-continuous signal

delt=0.1;

t=[0:delt:70]';

n=length(t);

ft=1.1*sin(0.4*t)+1.2*sin(3.45*t);

plot(t,ft)

pause

% sampled signal

kt=[0:2:70]';

nk=length(kt);

fk=1.1*sin(0.4*kt)+1.2*sin(3.45*kt);

plot(kt,fk,'o')

pause

numgf=[0.785^2];

dengf=[1 2*0.707*0.785 0.785^2];

gfs=tf(numgf,dengf)

[y,t]=lsim(gfs,ft,t);

plot(t,y)

pause

% sampled signal

h=2.;

kt=t([1:h/delt:n])

f1=y([1:h/delt:n])

plot(kt,f1,'O')

s

0 10 20 30 40 50 60 70
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70
-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

0 10 20 30 40 50 60 70
-1.5

-1

-0.5

0

0.5

1

1.5

0 10 20 30 40 50 60 70
-1.5

-1

-0.5

0

0.5

1

1.5

Copyright ©1994-2012 by K. Pattipati

Antialiasing/Aliasing Examples

• Example 1: Consider N = 1024 data points from a signal sampled at 1ms interval (h = 0.001 sec).

• Sampling frequency , fs = 1000 Hz = 1kHz  s = 6280 rad/sec

• Nyquist frequency, fN = 500 Hz  N = 3140 rad/sec

• Antialiasing filter frequency, ff = 250-400 Hz  N = 1570 -2512 rad/sec

• If you did discrete Fourier transform, you will get 1024 points representing frequencies

 (k /N)* fs ; k =0,1,2,..N-1. These are also called spectral lines.

• Spectral line separation = fs /N = 0.9766 Hz.

• For an ideal filter with cut-off frequency of 250-400 Hz, keep the first 244-391frequency

 components (i.e., set the rest to zero) as the useful spectrum and then do an IDFT to

 recover the noise filtered signal.

• Example 2: Suppose you have a sinusoidal signal of frequency 10 Hz and you sample it at 50Hz.

 Another sinusoidal signal of the same amplitude, but higher frequency, f was found to

 yield the same data when sampled at 50Hz. What is the likely frequency, f ?

• Sampling frequency , fs = 50 Hz

• Aliasing frequencies = n fs  10 Hz.

• So, f = 40Hz, 60 Hz, 90Hz, 110Hz,….

24

Copyright ©1994-2012 by K. Pattipati

 

1 1 2
0 1

1 2
2 1 2

0 2

1 2

2

() () () ()
(() ()) (1)

() ()
() () (1) () (2)

() () (3)

() (2) () (1) ()

(2)(1) (1) ()

in

in

v s v s v s v s
v s v s Cs

R R

v s v s
v s Cs v s RCs v s

R

v s Kv s

v s RCs v s KRCs v s

RCs RCs KRCs v s

 
  


   



    

    

Sallen-Key Low Pass Butterworth Filter

v1

v2

v2

2 2

2

2 2

2

2 2

/
()

(3) 1

 =
(3)

1/ 2, 3 2 1.586

f

n

n n

K R C
G s

K
s s

RC R C

K

s K s

For K



 






 

  

   

In general, Butterworth

low pass filters have flat

frequency response . For

order p

2

(0)
| () |

1

f

f
p

n

G
G 







 
  
 

25

Copyright ©1994-2012 by K. Pattipati 26

Sampling for Accuracy

 02s 

0sinA t

0 02 .sh N and N    

0sinA t

 
 

sin 2
max relative error = sin 2

A N
N

A




max 0sine A h

• For a single sine wave, , Nyquist criterion says use more than two (2) samples/period

 ,but reconstruction error using a zero-order hold is terrible ==> we really need to

 sample at a higher rate.

 If we use a sample and hold with N ≥ 4 samples/period, then

Case 2:

-h/2

Case 1:

h
 0sin 2A h

h/2

 
 

max relative error with / 2 shift

2 sin
 = 2sin

h

A N
N

A




  max10 30s  Usually we try for

when using a signal reconstruction criteria

N

rel error Case 1
rel error Case 2

0 10 20 30 40
0.0

0.5

1.0

1.5

m
a
x
im

u
m

 r
el

a
ti

v
e

er
ro

r

Copyright ©1994-2012 by K. Pattipati 27

Sampling Period h for Control

• State space representation: If λ1, λ2, …, λn are the eigenvalues of A, then to avoid aliasing

 we must have λi within primary strip in the s-plane, i.e., | Im (λi) | < π/h.

π/h

- π/h

s-plane

σ

jω

Primary Strip

More manageably, | λi | < π/h i = 1, 2, ... , n
largest eigenvalue of A

 (spectral radius)

 h  c/ |λmax(A) | with c = 0.2 to 0.5 (1/6 → 1/15 of Nyquist sampling interval

An approximation: | λmax(A) | ~ || A || because | λmax(A) | ||A|| for any norm

i.e., poles within circle of radius π/h. hmax = π/ | λmax(A) |

 This is too high a limit from a control viewpoint, instead we seek

• Relation to Closed-loop bandwidth: BW in rad/sec  f BW = BW /2 in Hz

1 1 1 2

30 15 5 5BW BW BW BW

h h
f f  

    

• Relation to Rise time, Tr: about 10% of the rise time  h  0.1 Tr

• Gain cross over frequency, c

0.15 0.5

 is an approx. measure of closed-loop bandwidth 12 to 40 times / 2

c

c c c

h

f



  

 

 

1
A rule of thumb:

2
r

BW

T
f



Need to experiment with

different values of h

during design

Copyright ©1994-2012 by K. Pattipati 28

Example of Aliasing in a Control Setting

pω 2π 2.11 2.98 rad/min 
sω 2π 2 3.14 rad / min 

s pω ω 0.16 rad/min T = 38min  

• Feedwater heating in a ship propulsion plant (Astrom & Wittenmark)

Valve

Feedwater

Pump
steam

to
condenser

to boiler
P T

Problem: Backlash in the valve positioner
 ===> oscillations in pressure (P) and temperature (T)

2.11 min

Continuous recording of P t t

38 min

Sampled recording of T

2 min

 Pressure and temperature are coupled, and should oscillate at the
 same frequency! What happened?

Sampling frequency,

Pressure oscillation frequency,

 Lowest aliasing frequency,

 Conclusion: The sampler did not take this course!

Copyright ©1994-2012 by K. Pattipati 29

Analysis of the Basic Digital Control Loop

 .G z

 G z

ALGORITHM D/A PROCESS OR
SYSTEM

A/D

{u(kh)}
u(t) {r(kh)}

{y(kh)}

r(t) y(t) OR
x(t)

MULTI-
PLEXER

COMPUTER

• The computer algorithm generates a sequence of values u(kh) from the discrete samples

 y(kh) and r(kh), or from e(kh) = r(kh) - y(kh), e.g., u(z) = H(z) e(z).



• Process Model - continuous inputs and outputs
 transfer function or State-Space Model
 G(s) x = Ax + Bu, y = Cx + Du

• Computer outputs values u(kh) and at some time later sees the response y(mh). The computer

 "puts out" samples and "sees" samples, i.e., it sees a discrete system from u(kh) to y(kh)

• Redraw loop from computer's view [eg., u(z) = H(z) e(z)].

ALGORITHM
H(z)

D/A SYSTEM/
PROCESS

A/D

u(kh) y(t) e(kh) r(kh) y(kh)

DIGITAL
ADDITION

COMPUTER

A/D
+

-

r(t)

 G z

 1. to enable analysis as a discrete FB loop
 2. to enable design of a discrete H(z) vis-a-vis discrete
 3. We are "controlling" not G(s).

WHY? =>
 G z

Copyright ©1994-2012 by K. Pattipati 30

Discrete System Time Signals



τ



Typically there will be delays in the loop

 - computational delays lump as some
 - measurement delays equivalent
 - process delays delay

Assume: D/A is a zero-order hold ; All A/Ds are synchronized

Consider signals around the loop

(k-1)h kh (k+1)h

u(kh) from computer

algorithms

u(t)output of D/A (zero-order

hold) = input to system

via D-A

(k-1)h kh (k+1)h

via process

dynamics

(k-1)h kh (k+1)h

Output of system, y(t)

 = sampled values output of A/D
 input to algorithm



Definitions
 y(k) = y(kh) = sampled values of y(t) at time t = kh
 u(k) = u(kh) = values of u() computed by algorithm using the samples
 y(kh) and r(kh); output from computer at time kh+,
 if there is no computational delay

 ==> u(kh) = values of system input over [kh+, (k+1)h]



Copyright ©1994-2012 by K. Pattipati 31

Model for Equivalent Discrete System,



 G z

         
2

2 1 2

1

tA t t A t ξ

2 1
t

x t = e x t + e Bu ξ dξ
 



τ 0

1. System defined by state equations, no delay
 2. System defined by transfer function, no delay

3. Modifications to 1 and 2 when
State-Space Approach

x(t) = A x(t) + B u(t)
y(t) = C x(t) + D u(t)

Compute x [(k+1)h] x(k+1) = value of x(t) at t = (k+1)h from knowledge of x(kh) = value of

x(t) at t = kh and u(kh) = system input over (kh, (k+1)h].

=> G(s) = C(sI – A)-1 B + D

Use state transition equation,

       
 

k+1 h A k+1 h ξAh

kh
x k+1 h = e x kh + e Bdξ u kh


   

   
h

Ah Aσ

0
where e ; h e dσ; = h B     

      x k+1 = Φx k + Γu k     
h

Ah A

0
x k+1 h = e x kh + e dσBu kh   

     

     

Output y kh Cx kh u k 1 h

 y k = Cx k + Du k 1

D    



     1 2 1, 2t = kh, t = k+1 h and u ξ = u kh over (t t]

 let k+1 h ξ  

value of system input right
at time t = kh (subtle point)

   
1 1Transfer funtion Matrix (TFM): G z C zI Φ zD
   

0.2

|| ||
h

A


Copyright ©1994-2012 by K. Pattipati 32

Computing Φ and Γ (or Ψ)

 
h h

Aσ 2 2

0 0
Ψ h = e dσ = 1 + Aσ +A σ 2!+ dσ   

 
1Ah 1

t = h

e sI AL
   

 

   2 2 M MΨ h h I + Ah 2! + A h 3! + +A h M+1 !  

• Note that Φ and Γ are independent of k. Compute once for a given time step h.

Analytic:

exact value obtained, but very time-consuming and not practical for n > 3. Then, need

to obtain Ψ by integrating eAσ over [0, h].

Numerical: If h is small ==> Taylor series approximations are good

 eAh = I + Ah + A2h2/2! + …

To compute Ψ(h) substitute approximation eAσ ~ I + Aσ + A2σ2/2! +…

where the number of terms M must be chosen large enough so that the Taylor approximations

are valid; i.e., we want,

(Ah)M/(M+1)! << I ==> || A ||MhM/(M+1)! < 10-6 . Then Φ = eAh = I + AΨ(h)

Algorithm to find M = # terms in series, given h
 C1 = || A || h/2
 Do for M = 2, 20
 C1 = C1 * || A || h/(M+1)
 if C1 < 10-6 stop  return M, if M < 4 set M = 4
 End do
(Note: || A || 19/20! ~ 10-9 if || Ah || = π)

Copyright ©1994-2012 by K. Pattipati 33

Algorithm for Obtaining Ψ(h) and Φ, Γ

 
Ah Ah Ah Ah

h h I+ I I I
M 2 M 1 M M 1

    

        
      

     
1 1G z = C zI Φ Γ + Dz
 

Once M is determined, compute Ψ(h) via series. Since the magnitude of the higher-

order terms in series decreases as M grows, sum the series using reverse nesting. -

Select M ≥ 4
s.t. ||Ah ||M /(M+1)! < 10-6

Input n, A, B, h

Initialize N = M+1, Φ = A

Do for j = 1, M
 Ψ= I + Φ * (h/N)
 N = N–1
 Φ = A·Ψ
End do

Return Φ,Ψ,Γ
Ψ ← hΨ

Φ← I + hΦ
Γ = ΨB

At this point we have:
Ψ = I + Ah/2! + ... + (Ah)M/(M+1)!
Φ= A + A2h/2! + ... + (A)M+1 hM/(M+1)!

This assures that very small numbers are never added to much bigger numbers.

Flow diagram of a Subroutine "Dscrt" (your own c2d function) for general use:

Then: Use SSTFM code to obtain coefficients.

Discuss how to use MATLAB for this

Copyright ©1994-2012 by K. Pattipati

Modifications to SS  TFM

• Use modified SSTFM code to obtain coefficients.

 1 1

1 2

Let be the column of and be the row of

| |
: () () 1

| |

| | () | |

| |

Let , ,..

Tth th

kj

T

kT j kj

kkj kjj

T

k kjj

j c k C

zI c d
Key relation g z c zI d z

zI z

z zI c d z zI

z zI








 

 



 
     



    




 1 2

1 1

1

1

., be the eigen values of (-) and , ,..., be the eigen values of . Then,

() () ()

 ()

()

[

T

kn nj

n n

i kj i

i i
kj n

i

i

n

c

z z d z z

g z

z z

z z b z

    

 



 



 

   








 



1 2 1 2

2 1 2

1 2

1 2

1 1 2

0 1 2
1 1 01 2

1 2

...] ()[...]

(...)

(...)
 = ; , 0,1,2,.., ;

...

n n n n n

n kj n

n n n

n

n n n

n
i i kj i in n n

n

b z b d z z a z a z a

z z a z a z a

z b z b z b z b
b b d a a i n a

z a z a z a

   

 

  

  

        

   

   
   

   
1 11, 0n nb a   

b(n+2,j,k)=0; a(n+2)=0;

for i =1:n+1

 b(i,j,k)=b(i+1,j,k)+D(k,j)*a(i)-a(i+1);

end

Mods to SS  TFM code

34

Copyright ©1994-2012 by K. Pattipati 35

Example: First Order System

 
    ah 1 ah

ah 1 ah

b 1 e a z 1 e b a
G z

z e 1 z e

  

  

 
 

 

   

     

           

h
h

ah aσ aσ ah ah

0
0

ah ah

x = ax + bu, y = x; G s = b s+a

1
e , e dσ e 1 e a; b 1 e b a

a

 x k+1 e x k 1 e a bu k ; y k x k

    

 



            

    
 



 • Example 1:
Equivalent discrete model for scalar system

 Note omnipresent one unit (h) delay in G (z) (b0 = 0).

()G z
z






Copyright ©1994-2012 by K. Pattipati 36

Example: Second Order System

   

 

ah
1 1 ah

h
Aσ

ah0 1 ah

1 1
h h e 1 a h + a e 1a a

e dσ ; B
1 e a e 1

0
a


  

  

  
       

           
    
  

 



 
   ah

1Ah 1 1 -ah

t = h ah

t = h

1 1
1

1 1 es s + a
e sI A Eigenvalues 1, e a

1 0 e0
s + a

s
L L


 



 
            

    
  

 

1

2

λ 0

λ a



 

 

  

ah ah
ah

ah

2 ah

1 e ahe
ah + e 1 z +

ah + e 1

a z 1 z e

 






  
  

 
 

 

 

 

 
 

       

1 1

2 2

1

x t x t0 1 0
u t

x t x t0 1

y t 1 0 x k = x k

a

      
       

      



• Example 2:

This is typical of a model for a motor.

1
s + a

1
s

y(t) u(t)
x2 x1

Armature

Dynamics

x2 = shaft RPM (rad/sec)

x1 = shaft rotation (rad)

Analytic approach for arbitrary a:

G(z) = transfer function of equivalent discrete system, C(zI – Φ)-1Γ (tedious via hand calculation!)

Copyright ©1994-2012 by K. Pattipati 37

Example 2a: Double Integrator System

   
 

 
   

2
2

2 2 2

2 2

1 h
h

z 1 z 1
G z 1 0 2

1 h0
z 1

h 2 h h z + 1
G z =

z 1 2z 1 z 1

 
      
  
   

  

 
  

     
21 h h 2

x k+1 x k u k
0 1 h

  
    
   

2 2
h

Aσ

0

h h 2 h 2
e dσ ; B

0 h h

   
         

   


 
2

1Ah 1 1

t = h

t = h

1 1

1 hs s
e sI A

1 0 1
0

s

L L
 

 
   

          
  

  

Special case of Example 2 when a = 0 => G(s) = 1/s2

We can consider lim as a  0 using L'Hospital's rule (messy), or redo problem for

 0
0

1
0

0
1

A = ; B = ; C = [1 0]

Copyright ©1994-2012 by K. Pattipati 38

Example 3: F-8 Aircraft Model - 1

) mod

0 0 1 0 0 0 0 0

1.5 1.5 0 0.0057 1.5 0.16 0.80 0
1 0

;12 12 0.6 0.0344 12 19 3 0
0 1

0.852 0.290 0 0.014 0.29 0.015 0.0087 0

0 0 0 0 0.730 0 0 1.1459

a continuous system el

x x u d y

     
     


     
             
     
         
          

2 2

3 2 3 2

4 3 2

2

3 2

0 0 0

0 0 0

19 26.85 0.3425 3 5.058 0.06823

0.16 0.09817 26.58 0.2847 0.8 0.4912 5.107 0.06238
() ;

2.114 12.93 0.1503 0.009442

13.75 0.1811

1.719 1.053 0.013
()d

x

s s s s

s s s s s s
G s

s s s s

s s

s s
G s

 
 
 

      
 

      
   

 

 


5 4 3 2

2

3 0.01082

2.844 14.47 9.588 0.1192 0.006892

0.2
) : 0.0095 0.01sec

|| ||

s

s s s s s

b select h h h
A

 
 

 

    

   

4 3 6

5 5

4

3 3 5

) mod

0.9994 5.958.10 9.968.10 -1.705.10 -0.0005943

0.01488 0.9851 7.447.10 5.656.10 0.01483

(1) -0.1187 0.1187 0.9934 3.3395.10 -0.1183

8.496.10 2.876.10 -4.244.10 0.9999 2.866.10

c Discrete system el

x k

  

 



  

  

 

4 4 6

3 3 5

4

3 4 5 5

9.477.10 0 1.481.10 -2.276.10

1.583.10 7.94.10 8.53.10

() () (0.1893 0.02943 6.81.10

1.10.10 -7.503.10 -1.649.10

0 0 0 0 0.9927 0 0 0.01142

x k u k d

  

  



   

      
     
     
        
     

     
     
     

)k

Copyright ©1994-2012 by K. Pattipati 39

Example 3: F-8 Aircraft Model - 2

3 2 3 2

4 3 2 4 3 2

)

-0.0009477 z + 0.0009366 z + 0.0009433 z - 0.0009322 -0.0001481 z + 0.0001525 z + 0.0001443 z - 0.0001487

z - 3.978 z + 5.935 z - 3.936 z + 0.9791 z - 3.978 z + 5.935 z - 3.9
()

d Discrete TFM

G z 
3 2 3 2

4 3 2 4 3 2

36 z + 0.9791

 0.001583 z - 0.004767 z + 0.004757 z - 0.001574 0.00794 z - 0.02377 z + 0.02372 z - 0.007891

z - 3.978 z + 5.935 z - 3.936 z + 0.9791 z - 3.978 z + 5.935 z - 3.936 z + 0.9791








4 3 2

5 4 3 2

4 3 2

-2.276e-006 z - 4.487e-006 z + 1.355e-005 z - 4.549e-006 z - 2.243e-006

z - 4.971 z + 9.884 z - 9.827 z + 4.886 z - 0.972
()

8.53e-005 z - 0.0001707 z + 1.371e-006 z + 0.0001682 z
dG z






 




5 4 3 2

 - 8.415e-005

z - 4.971 z + 9.884 z - 9.827 z + 4.886 z - 0.972

 
 
 
 
 
 

• MATLAB functions:

• sysc=ss(A,B,C,D)

• gs=tf(sysc)

• sysd=c2d(sysc,h)

• gz=tf(sysd)

• gz=c2d(gs,h)

Copyright ©1994-2012 by K. Pattipati 40

Discrete System Equivalents

– Xfer Function Approach

H(z) D/A PROCESS
G(s)

u(t) y(t)
e(k)

y(k)

A/D r(k) +

-

G(z)

u(k)

A B

If the process to be controlled is described by a transfer function G(s), can we find G(z) directly?

Indirect approach - (1) Write a state-space model for the process e.g., SCF or SOF or Balanced
 (2) Find Φ, Γ using state variable approach
 (3) Compute G(z) = C(zI –Φ)-1 Γ

 G z• Direct approach - Find Z-transform of unit pulse response , between points A and B.

First obtain the step response.

(1) Let u(k) be a unit step input

u(z) = 1/(1–z-1).

(2) If the D/A Converter is a zero-order hold, then u(t) will be a pure step,

u(t) = 1 for t > 0 ==> u(s) = 1/s.

(3) Since the process is continuous, y(s) = G(s)/s and y(t) = L-1 [G(s)/s].

(4) Sampling y(t) and taking the z-transform yields y(z)

y(z) = Z{L-1 [G(s)/s] } = z-transform of step response usual notation: Z{L-1 [F(s)] } Z{F(s)}.

(5) If u(k) = 1, the response is (1–z-1) y(z) = (z-1) y(z)/z

0 h 2h 3h

u(k)
1.0

· ·

·

G(z) = (1–z-1) Z{L-1(G(s)/s)}

Copyright ©1994-2012 by K. Pattipati 41

Discrete System Equivalents (Cont’d)

 
   

       
 

1 at ahk

1 ah1
1

1 ah 1 ah 1 ah 1

G s
1 e y t ; sampled y kh 1 e

s

z 1 e1 1 1 z
y kh 1 z y kh 1

1 z 1 e z 1 e z 1 e z

L

Z Z

  

 


      

 
     

 


      

   

    jωhs = jω z = e
Of concern is the comparison of G s vs. G z .

 
 

 

G sa a 1 1
G s

s + a s s s + a s s + a

 
     

 

The resulting G(z) must be the same as that obtained via state-space.

 Example:

The direct approach gets quite messy for n > 2. Preferred method is via state-space Φ, Γ then G(z).

Remember! (1) The computer is "controlling" a discrete process with
 transfer function G(z) not a continuous process G(s).

 (2) Zero-order D/A holds have been assumed (it is possible
 to re-do state-space approach with first order holds).

 

Copyright ©1994-2012 by K. Pattipati 42

Relationship Between G(s) and G(z)

   
 

   
 

sh

1 sh

z = e

G s G s
G z 1 z G z 1 e

s s
 Z



 
   

       
   

   
   sh

sh

z = e

G s G s1 1 e
 and G z G s

s h s sh


     

     
    

shz e

   sh jωh 2

s = jω

sin ωh 2
G e e G jω

ωh 2
   

  
 

       s s

s s

G s G s G s jω G s + jω1
 +

s h s s jω s + jω



   
   

   

           sh

*

sz = e
n

1
Recall F s F z , and relationship between F s and F s , F s F s jnω

h


 



 
  

 




How close is G(z) to original G(s) when s = jω?

Can expect differences in both magnitude and phase

If ω << ωs /2 = π/h, and | G(jω ± jωs) | << 1 then to a first approximation;

Sample & Hold ÷ h

h/2 sec Delay Magnitude Distortion

 To a crude first approximation, equivalent discrete transfer function is ~ original continuous

 one with some magnitude distortion and an h/2 sec delay, in the region ω << π/h.

"Exact" comparison requires Bode plot of G(jω) vs. G(ejωh) – c2d, bode

Copyright ©1994-2012 by K. Pattipati 43

Comparison of Continuous and

Discrete Equivalent Bode Plots

G(s) = 1/(s + 1); h = 0.2 ==> G(z) = 0.1813/(z – 0.8187)

5 15.71 / secrad
h


 

-40

-30

-20

-10

0

M
a
g
n
itu

d
e
 (

d
B

)

10
-2

10
-1

10
0

10
1

10
2

-180

-135

-90

-45

0

P
h
a
s
e
 (

d
e
g
)

Bode Diagram

Frequency (rad/sec)

Code:

gs = tf([1],[1 1])

h=0.2

gz=c2d(gs,h)

bode(gs),grid

hold

bode(gz)

()G s

()G z

Copyright ©1994-2012 by K. Pattipati 44

Effects of Time Step h on G(z)

  max2

max

10 π π
G s = ; h 1.0

s +s+10 λ 10
 

-100

-80

-60

-40

-20

0

20

M
a
g
n
itu

d
e
 (

d
B

)

10
-2

10
-1

10
0

10
1

10
2

-270

-180

-90

0

P
h
a
s
e
 (

d
e
g
)

Bode Diagram

Frequency (rad/sec)

()G s

1h 

0.5h 
0.2h 

0.05h 

Suggested h = 0.05

Copyright ©1994-2012 by K. Pattipati 45

Anatomy of a Discrete Transfer Function



   *π π 2π
Over 2k , 2 k+1 , k=1, 2, , G jω is the same as that over 0,

h h h

   
   
   

   

   

*

*

G jω G 2π/h jω

G jω G 2π/h jω





 

  
        j 2π/h ω h j 2π/h ω h* jωhG jω G e =G e =conj G e

     
   

 

    

*

* * jπ

G jω has even symmetry about ω= π h

G jω has odd symmetry about ω= π h G jπ/h 0 or 180 since e 1   



• Examine Bode plot structure of G(ejωh) as a function of ω for ω > π/h
 - For any discrete transfer function, G(z), letting z = ejωh:

so, over the interval [0, 2π/h]:

π/h 2π/h 4π/h 6π/h ω

π/h 2π/h 4π/h 6π/h ω

|G
*

(j
ω

)|

ω1 2π/h–ω1

0

-180

 G
*

(j
ω

)

-360

==> If G(s) has a pole at s = 0, then G*(jω) → for ω = 2πk/h, k = 1, 2, ...

j h

jω



j h

2

()

maps to
h

h h h

h




  
 






     

  

Copyright ©1994-2012 by K. Pattipati 46

 Modeling a Process with Delay

in Control, τ=Mh+ε

        
 

           
 

k + 1 h A k + 1 h ξAh

kh
1

kh + ε k + 1 hA k + 1 h ξ A k+1 h ξAh

kh kh + ε
1

x k+1 h = e x kh + e ξ dξ

 = e x kh + [e dξ k 1 + e dξ k]
j

j

m

j j

j

m

j jj j

j

b u

b u b u





 



  





  
 σ = k+1 h ξ

       
h h ε

Ah Aσ Ah

h ε 0
1

x k+1 h e x kh [e dσ k 1 e dσ k]
j

j

m

j jj j

j

b u b u





        

If 

or G(s) → G(s) Diag [exp(-sτj)]

what is the appropriate discrete equivalent model?
 Case 1: Mj = 0; τj =εj and 0 ≤ εj < h
 (typical model of computational delay)
 Case 2: Mj = integer ≥ 1; τj = Mj h + εj and 0 ≤ εj < h
 (for cases when there is a large delay)

Consider Case 1 first with state-space model.

Obtain x [(k+1)h] from
x(kh) and input to system
over (kh, (k+1)h].

(k-1)h kh (k+1)h

εj h-εj

 uj (k-1)
uj(k)

 σ = k+1 h ξ

1 1

(); (); column of
m m

j j jj j j j

j j

x Ax b u t y Cx d u t d j D 
 

       

Delay Sources

• Computational delays

• Transmission delays

• Plant delays

Copyright ©1994-2012 by K. Pattipati 47

State Model for a Process

with Fractional Delay

 
 

 
   01

x k+1
χ k+1 χ k u k

u k 0 0 mI

      
      

    

 h ε h εA h εAh Aσ Aσ Aσ

0j 1j0 h ε 0
where e ; = e dσ ; = e dσ = e e dσ

j jj

j
j j jb b b 

 


    

 
 

n n-1

0kj 1kj nkj

n n-1

1 n

c z + c z + + c
g z ; 1,2,.., ; 1,2,..,

z z + a z + + a
kj k p j m  

 
 

 
 

x k
k an n+m vector

u k 1


 
 

 

          y k Cx k Du k 1 | χC D k   

To compute Φ, Γ1, Γ0: Do for j = 1,2,..,m

(1) Use c2d with (A, B, εj): obtain

 (2) Use c2d with (A, B, h-ε): obtain

(3)

• Augmented state model,

Then

Output equation (as long as ε < h)

• Transfer function, G(z)

 x(z) = (zI – Φ)-1 [Γ1z
-1+ Γ0] u(z)

y(z) = z-1 [C(zI – Φ)-1 (zΓ0 + Γ1) + D] u(z)

gkj (z) will have a form

1 01 0
1 1

(1) () (1) () () (1) ()
m m

j jj j
j j

x k x k u k u k x k u k u k 
 

         

 and ();jA

je



()

 and (-);jA h

je h






() ()

0 1
() , () , (need to do this for any one).j j jA h A h A

j jj jj j
h b e b e e j

  
   

 
     

1

0

1

1

0 01 0 1 1

0

Invoke the previous SS TFM

routine with the augmented system.

Alternately,compute ()

& () .Compute numerator

and denominator

(recall: z shift)

; ;kj kj kj ikj i kj ikj kj i

n

C zI

C zI

c b d c b b d a

b









 

 



    

1 10; 0kj na  

Copyright ©1994-2012 by K. Pattipati 48

State Model for a Process

with Large Delay

 h ε εA h εAσ Aσ

0 10 0
e dσ , e e dσ ; 1,2,..,

j jj

j jj j
b b j m 

 
   

         
1 1

0 1 0 1

previous result with M=0 previous result with M=0

1 1 1
G z C zI z Diag[z] = C zI z Diag[z],

z z

j jM M M

M
D D

z

             
   

               1 1 1 1 1 2 2 2 2 2

1

χ k [x k u k 1 M u k M . u k 1 u k 1 M u k M . u k 1] n vector
m

T

j

j

m M


          

τj = Mj h +εj; Mj = integer ≥ 1; 0 ≤ εj < h ; j=1,2,..,m

Modeling approach same as for Case 1, but with added Mj time-step delay,

• Augmented State Model (m=2): Define

• Transfer function matrix

   

01 0211 12
00 .. 0 .. 0 0

00 0 .. 0 .. 0 00 01 0

00 1 .. 0 0 0 00 00 0

00 0 .. 0 0 0 00 00 0

0.. 0 .. 1 .. 0 .0 00 0

χ k+1 0 χ k0 0 .. 0 .. 0 10 00 0

00 0 0 0 .. 0 00 00 1

10 0 0 0 .. 0 00 00 0

00 0 0 0 .. 0 00 00 0

00 0 0 0 .. 1 .0 00 0

00 0 0 0 .. 0 00 00 0

   
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
  

     1 2

0

0

0

0

.

k ; () 0 0 0 .. 0 0 .. 0 χ k0

0

0

0

.

1

u y k C d d

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

1 0
1

1

(1) () [(1) ()]

() () (1); column of

m

j j j jj j
j

m

j jj j

j

x k x k u k M u k M

y k Cx k d u k M d j D

 




       

    





1
max j

j m
M M

 


Copyright ©1994-2012 by K. Pattipati 49

SISO State Model for a Process with Large Delay

 h ε εA h εAσ Aσ

0 1
0 0

e dσB, e e dσB
 

         
1

0 1M

previous result with M=0

1 1
G z C zI z d ,

z z

       
 

     

     

1 0 0 0 0

0 0 1 0

χ k+1 χ k u k0 1

1 0

0 0 0 0 0 1

y k c d 0 0 χ k

     
   
   
    
   
   
      



 

 

 

 

 

x k

u k 1 M

Define χ k u k M n 1 M vector

.

u k 1

 
 

  
    
 
 
  

 2.39

τ = Mh +ε; M = integer ≥ 1; 0 ≤ ε < h

Modeling approach same as for Case 1, but with added M time-step delay,

x(k+1) = Φ x(k) + Γ1 u(k–1–M) + Γ0 u(k–M)

y(k) = C x(k) + {d u(k–1–M)}

• Augmented State Model,

• Transfer function

Copyright ©1994-2012 by K. Pattipati 50

Transfer Function Approach to

Modeling a Process with Delay

   

       

Mhs εs

h ε εa h ε a h ε a h εah aσ aσ aε

0 1
0 0

1
G s e e x ax u t τ

s+a

e ; e dσ = 1 e a; e e dσ = e 1 e a

 

         

     

        
  

 
     

 

0.5 1 0.5

3 1 3

a 1.0, M = 2, ε = 0.5, h = 1

1 e z e e 1 0.393 z 0.6071
 G z

z e z z 0.368z

 





     
   

   

   
 

ε s

M 1
g s e

, g z z 1 z
s

j

j j jM hs M kj

kjBut e z Z



   
  

     
  



 
    a h ε ah aε

M+1 ah

1 e z+e e 11
G z

az z e

  



   
  

  

Approach - (1) Form
 (2) Take L-1 inverse Laplace
 (3) Sample resulting time signal
 (4) Take z-transforms

Messy!

Example

 Ex.

Note: In many applications the time-step is dictated by the on-line computational requirements.

 τ is often comparable to h.

 
()

() 1
()

Since () () , we have () 1 z
s

j j

j j

M h

M h kj

kj kj kj

g s e
g s g s e g z Z





 

  
  

    
  

 
ε s

g s e
;0

s

j

kj

j h



 

Copyright ©1994-2012 by K. Pattipati 51

Summary

1. Digital Interfacing

• Signal Conditioning

• A/D and D/A converters

2. Signal Sampling and Data Reconstruction

• Impulse sampling model; Nyquist theorem; Aliasing and

interpretation

• Signal conditioning circuits

3. Discrete Equivalents: State-Space Approach
• Discretization algorithm

4. Discrete Equivalents: Transfer Function Approach
• Relation to original continuous system

5. Model Modifications with Delay in Control

