Lecture 3

Digital Interfacing, Sampling, Signal Conditioning, and Models of Sampled Data Systems

Prof. Krishna R. Pattipati
 Prof. David L. Kleinman

Dept. of Electrical and Computer Engineering
University of Connecticut
Contact: krishna@engr.uconn.edu (860) 486-2890

ECE 6095/4121
Digital Control of Mechatronic Systems

1. Digital Interfacing

- Signal Conditioning
- A/D and D/A converters

2. Signal Sampling and Data Reconstruction

- Impulse sampling model; Nyquist theorem; Aliasing and interpretation
- Signal conditioning circuits

3. Discrete Equivalents: State-Space Approach

- Discretization algorithm

4. Discrete Equivalents: Transfer Function Approach

- Relation to original continuous system

5. Model Modifications with Delay in Control

Digital Interfacing

- The system outputs, set points, state variables and control signals are typically "analog" or continuous variables
- For digital control, the sensed and conditioned (i.e., amplified, attenuated, isolated, multiplexed, filtered, compensated) system outputs, state variables and set points are converted from analog to digital form using A/D (or ADC) and the control sequences from the micro-controller (computer) are converted from digital to analog form using D/A (or DAC) prior to applying them to the actuators of the process or system

Back to Basics: Op-Amps - 1

Back to Basics：Op－Amps－ 2

－Dual Input Differential Amplifier

$$
\begin{aligned}
& \frac{v_{1}-v}{R_{1}}=\frac{v-v_{0}}{R_{2}} \Rightarrow \frac{v_{0}}{R_{2}}=-\frac{v_{1}}{R_{1}}+v\left(\frac{1}{R_{2}}+\frac{1}{R_{1}}\right) \\
& \frac{v_{2}-v}{R_{1}}=\frac{v}{R_{2}} \Rightarrow \frac{v_{2}}{R_{1}}=v\left(\frac{1}{R_{2}}+\frac{1}{R_{1}}\right) \\
& \Rightarrow v_{0}=\left(v_{2}-v_{1}\right) \frac{R_{2}}{R_{1}} \longleftarrow \text { Gain }
\end{aligned}
$$

$$
\begin{aligned}
& \text { Know } \\
& v_{0}=\frac{R_{2}}{R_{1}}\left(v_{B}-v_{A}\right) \\
& \text { Also, } \frac{v_{i 1}-v_{i 2}}{R_{G}}=\frac{v_{A}-v_{i 1}}{R_{3}}=\frac{v_{i 2}-v_{B}}{R_{3}} \\
& \Rightarrow \frac{v_{B}}{R_{3}}=\left(\frac{1}{R_{G}}+\frac{1}{R_{3}}\right) v_{i 2}-\frac{1}{R_{G}} v_{i 1} \\
& \frac{v_{A}}{R_{3}}=\left(\frac{1}{R_{G}}+\frac{1}{R_{3}}\right) v_{i 1}-\frac{1}{R_{G}} v_{i 2} \\
& \Rightarrow v_{B}-v_{A}=\left(1+2 \frac{R_{3}}{R_{G}}\right)\left(v_{i 2}-v_{i 1}\right)
\end{aligned}
$$

Why Amplify Sensor Signals Prior to Conversion？

－Helps with Code Width of DAQ System
－Smallest change in the signal that the DAQ system can detect
－Function of gain，$G, \mathrm{~A} / \mathrm{D}$ resolution（number of bits of $\mathrm{A} / \mathrm{D}, b$ ），range of signal to be digitized，$V_{\max }-V_{\min }$（e．g．， $0-10 \mathrm{~V},-10$ to +10 V ）

$$
\text { Code width }=\frac{V_{\max }-V_{\min }}{G .\left(2^{b}-1\right)}
$$

－Uncertainty in your measurement after $\mathrm{A} / \mathrm{D}, U=$ Code width／2（recall how you round－ off numbers！）
－Thermocouple Example
－J－type thermocouple（measures 0 to $800^{\circ} \mathrm{C}$ ）has sensitivity of $0.052 \mathrm{mv} / \mathrm{deg} \mathrm{C}$ for 20 － $30^{0} \mathrm{C}$ ．
－Consider a 16－bit A／D with $G=1$ and $V_{\max }-V_{\min }=10 \mathrm{~V}$ ．
－Code width $=10 / 65535=0.153 \mathrm{mv} \Rightarrow$ uncertainty in measurement，$U=0.076 \mathrm{mV} \Rightarrow$ No Good
－A gain of 100 will have a code width of $1.53 \mu \mathrm{~V} / \mathrm{deg} \mathrm{C}$ and uncertainty，U of 0.765 $\mu \mathrm{V} / \mathrm{deg} \mathrm{C}$

You will also be filtering signals prior to conversion．We will see why later．

Some Basic Concepts in Signal Conversion

- Resolution
- Determines how many different voltage changes can be measured
-16 bit-resolution $\Rightarrow 65,536$ levels $\Rightarrow 4-5$ digit accuracy

- Range
- DAQ devices have different ranges available ($0-10 \mathrm{~V},-10 \mathrm{~V}$ to +10 V)
- Smaller range \Rightarrow more precise representation of your signal (It is like selecting a scale for your plot!)
- Gain
- Gain setting (typically $0.5,1,2,5,10,20,50$, or 100) allows for best fit in A/D range
- For required measurement uncertainty, U, gain, G is set via

$$
G=\frac{2 U\left(2^{b}-1\right)}{V_{\max }-V_{\min }}
$$

Some D/A Converters

- Simple minded: Use summing amplifier

Full scale value $(F S V)=\left(1-\left(\frac{1}{2}\right)^{b}\right) V_{\text {ref }}$

- R-2R Ladder D/A Converter
- $v_{i}=v_{i+1} / 2 ; i=0,1,2, . ., b-1 ; v_{b}=-v_{\text {ref }}$
- So,
$v_{\text {out }}=\left(\frac{1}{2}+\frac{1}{2^{2}}+\ldots+\frac{1}{2^{b}}\right) V_{\text {ref }}$
Full scale value $(F S V)=\left(1-\left(\frac{1}{2}\right)^{b}\right) V_{\text {ref }}$

Ladder Comparison A/D Converter

- Ladder Comparison (Ramp) A/D Converter

Cheap, but slow

- Apply analog voltage to +ve terminal of a comparator and the output of D/A converter to -ve terminal
- Output of comparator triggers a binary counter which drives the D/A converter
- When the D/A converter voltage exceeds analog voltage, counter stops and outputs the code

Copyright © $1994-2012$ by K. Pattipati

Successive Approximation A/D Converter

- Successive Annroximation A/D Converter

- Check if voltage corresponding to MSB $>V_{s}$. If it is, set next bits in succession and see if they don't exceed V_{s}
- When the D/A converter voltage exceeds analog voltage, counter stops and outputs the code
- Works well in practice

Flash A/D Converter

Flash A/D Converter

- Basically, a truth table that coverts the ladder of inputs to the binary number output
- Fastest type of A/D converter available
- Very expensive

Mathematics of Signal Sampling

We will examine the sampling process from a mathematical viewpoint.
$\mathrm{h}=$ sampling period or time step
$\mathrm{f}_{\mathrm{s}}=$ sampling frequency $=$ number of samples $/ \mathrm{sec}=1 / \mathrm{h}$ $\omega_{s}=2 \pi / h$

The problem here is that sampling a signal loses information, namely the points in between ($\mathrm{k}-1$) h and lh.
So if we sample too slowly - we lose information
if we sample too fast - we overwork the computer
Major questions are -
(1) how fast to sample so as not to lose information? and
(2) how to reconstruct the signal $\mathrm{f}(\mathrm{t})$, or an approximation, from $\left\{\mathrm{f}_{\mathrm{k}}\right\}$?
"Impulse" sampling as a mathematical model:

Impulse Sampler

Impulse Sampling

$$
f^{*}(t)=f_{0} \delta(t)+f_{1} \delta(t-h)+f_{2} \delta(t-2 h)+\cdots
$$

can be written as

$$
f^{*}(t)=f(t) \cdot m^{*}(t) \text { periodic train of unit impulses }-\infty<t<\infty
$$

The signal $\mathrm{f}^{*}(\mathrm{t})$ is not "real" but when an impulse sampler is followed by a suitable transfer function $\mathrm{H}_{0}(\mathrm{~s})$, we can model almost any practical sampling situation. We are really going from $\mathrm{f}(\mathrm{t})$ to $\hat{f}(t)$ via $f^{*}(t) . \quad \mathrm{f}(\mathrm{t}) \quad \mathrm{f}^{*}(\mathrm{t}) \quad \mathrm{H}_{0}(\mathrm{~s}) \xrightarrow{\hat{f}(t)}$
Ex. If impulse response of H_{0} is $\frac{1 \square}{0 \mathcal{E}}$
and we get as output a pulse train. $\quad \Rightarrow \begin{aligned} & \frac{1}{s}-\frac{e^{-\varepsilon s}}{s}=H_{0}(s) \\ & \frac{1}{s}\left(1-e^{-\varepsilon s}\right)=H_{0}(s)\end{aligned}$

If $\varepsilon=\mathrm{h}$ the transfer function $\mathrm{H}_{0}(\mathrm{~s})$ is $\frac{1-e^{-s h}}{s}$.

> | This is a "sample-and-hold" |
| :--- |
| and is the most common form |
| of sampling process plus |
| data reconstruction. |

Laplace Transform of a Sampled Signal

Take Laplace transform of $\mathrm{f}^{*}(\mathrm{t}) \triangleq \mathrm{F}^{*}(\mathrm{~s})$

$$
F^{*}(s)=\int_{0}^{\infty} f^{*}(t) e^{-s t} d t=f_{0}+f_{1} e^{-s h}+f_{2} e^{-2 s h}+\cdots
$$

As an aside，since $\mathrm{z}^{-1}=\mathrm{e}^{-\mathrm{sh}}$

$$
F^{*}(s)=\left.\sum_{k=0}^{\infty} f_{k} z^{-k}\right|_{z=e^{s h}}=\left.F(z)\right|_{z=e^{\text {sh }}}
$$

where $\mathrm{F}(\mathrm{z})=\mathrm{z}$－transform of the sampled sequence $\left\{\mathrm{f}_{\mathrm{k}}\right\}$ ．Notationally， $\mathrm{F}^{*}(\mathrm{~s})=\left.\mathrm{Z}\{\mathrm{f}(\mathrm{kh})\}\right|_{z=e^{s^{n}}}$
We wish to examine the relationship between $F^{*}(s)$ and $F(s)=$ Laplace transform of $f(t)$ ， and between

$$
S_{F}(j \omega)=\text { "Spectrum" of } f(t)=|F(j \omega)|^{2} \text { and } S_{F^{*}}(j \omega)=\text { "Spectrum" of } f^{*}(t)=\left|F^{*}(j \omega)\right|^{2}
$$

The spectrum indicates where a signal has power．（A sine wave has impulses at $\pm \omega_{0}$ ）

To find $\mathrm{L}\left[\mathrm{f}(\mathrm{t}) \cdot \mathrm{m}^{*}(\mathrm{t})\right]$ first use Fourier series to get a different way to write $\mathrm{m}^{*}(\mathrm{t})$ ．Recall， if a signal $\mathrm{x}(\mathrm{t})$ is periodic with period $\mathrm{h}, x(t)=\frac{1}{h} \sum_{n=-\infty}^{\infty} c_{n} e^{j n \omega_{s} t}, \quad \omega_{s}=\frac{2 \pi}{h}$
where the Fourier coefficients，$c_{n}=\int_{o}^{h} x(t) e^{-j n o_{s} t} d t$ ．

Nyquist Theorem

Apply Fourier series to $\mathrm{x}(\mathrm{t})=\delta(\mathrm{t})$

$$
\Rightarrow c_{n}=\int_{0}^{h} \delta(t) e^{-j n \omega_{s} t} d t=1 \quad \text { for all } n
$$

So, an alternate representation of $\mathrm{m}^{*}(\mathrm{t})$ is

$$
m^{*}(t)=\frac{1}{h} \sum_{n=-\infty}^{\infty} e^{j n \omega_{s} t}=\frac{1}{h}\left[1+\sum_{n=1}^{\infty} 2 \cos n \omega_{s} t\right] \text { and } f^{*}(t)=\frac{1}{h} \sum_{n=-\infty}^{\infty} f(t) e^{j n \omega_{s} t}
$$

Thus,

$$
F^{*}(s)=L\left[f^{*}(t)\right]=\frac{1}{h} \sum_{n=-\infty}^{\infty} L\left[f(t) e^{j n \omega_{s} t}\right]
$$

Using the relation $L\left[x(t) e^{a t}\right]=X(s-a)$,

Nyquist Result: If original signal $\mathrm{f}(\mathrm{t})$ does not have any frequency components $>\omega_{s} / 2$ we can (in theory) reconstruct/recover $\mathrm{f}(\mathrm{t})$ from $\mathrm{f}^{*}(\mathrm{t})$ using an ideal low-pass filter. $\omega_{N}=\omega_{s} / 2=\pi / h$ is called the Nyquist frequency. Thus, one must sample $f(t)$ at a rate that is at least twice the highest frequency $\omega_{\max }$ in the signal, $\omega_{s}>2 \omega_{\max }\left(\right.$ or $\left.\omega_{N}>\omega_{\max }\right)$.

Recovering $f(t)$ from $f^{*}(t)$

Assume $\omega_{s}>2 \omega_{\max }$

$$
\mathrm{f}(\mathrm{t})
$$

$$
\mathrm{f}^{\mathrm{f}^{*}(\mathrm{t})}
$$

$$
\hat{F}(s)=H_{0}(s) F^{*}(s)
$$

- In ideal case:

$$
\text { If }\left|H_{0}(j \omega)\right| \text { is as shown then } \hat{f}(t)=f(t) \text { and the signal }
$$ is recovered from its samples. However, such an $\mathrm{H}_{0}(\mathrm{~s})$ is unrealizable.

- Suppose $\mathrm{H}_{0}(\mathrm{~s})=\frac{1-\mathrm{e}^{-\mathrm{sh}}}{\mathrm{s}}$, i.e., $\hat{\mathrm{f}}$ is a sample and hold (zero-order hold)
$H_{0}(j \omega)=e^{-j \omega h / 2}\left[\frac{e^{j \omega h / 2}-e^{-j \omega h / 2}}{j \omega}\right]=e^{-j \omega h / 2} \cdot h \cdot\left(\frac{\sin \omega h / 2}{\omega h / 2}\right)$
$\Rightarrow \quad\left|H_{0}(j \omega)\right|=h\left|\frac{\sin \omega h / 2}{\omega h / 2}\right| ; \quad \measuredangle H_{0}(j \omega)=-\omega h / 2\left(\right.$ delay of $h / 2$ sec., for $\left.\omega<2 \pi / h=\omega_{s}\right)$
This is an approximation to an ideal LPF.

Still get some high frequency components in $\hat{f}(t)$. Other signal reconstructors $\mathrm{H}_{0}(\mathrm{~s})$ are possible (e.g., polynomial interpolators) but usually are not worth the added complexity.

The zero-order hold is the most common form of $\mathbf{H}_{\mathbf{0}}(\mathrm{s})$ in digital control.

Aliasing

Typically, $\omega_{s} \sim 10-30 \omega_{\text {max }}$ An interesting phenomenon happens when $\omega_{s} / 2<\omega_{\max }$ In this case the components of $F\left(j \omega-j n \omega_{s}\right)$ overlap in $S_{F^{*}}(j \omega)$ and it becomes impossible to recover $\mathrm{f}(\mathrm{t})$. In addition, the sampled signal $\mathrm{f}^{*}(\mathrm{t})$ has power at frequencies not present in the original signal $\mathrm{f}(\mathrm{t})$! E x. $f(t)=A \sin \omega_{0} t$ and we sample at $\omega_{s}<2 \omega_{0}$.

$F^{*}(t)$ has a low frequency component at $\left(\omega_{s}-\omega_{0}\right)$.

The original signal is "hidden", sampled signal is an "alias". The low frequency signal does not really exist in $\mathrm{f}(\mathrm{t})$, but will exist in $\hat{f}(t)$ since $\mathrm{H}_{0}(\mathrm{~s})$ is a LP filter.
Ex. Sample a signal $f(t)$ that has frequency components at $f_{1}=0.1 \mathrm{~Hz}, \mathrm{f}_{2}=0.8 \mathrm{~Hz}$ and $\mathrm{f}_{3}=1.4$ Hz using $\mathrm{f}_{\mathrm{s}}=2 \mathrm{~Hz}$ (note Nyquist says $\mathrm{f}_{\mathrm{s}}>2.8 \mathrm{~Hz}$). What are the first 5 positive frequency components of sampled signal?

Aliasing Illustrated in Time Domain

Let us take a simple sinusoid of frequency 4 Hz and sample it at 5 Hz . We will show that a signal of 1 Hz is an alias.

$$
\mathrm{t}=[0: 0.001: 2]
$$

$\mathrm{f}=\sin \left(2 * \mathrm{pi} \mathrm{i}^{*} \mathrm{t}\right)$; \% continuous signal $\mathrm{t} 1=$ [0:0.2:2];
$\mathrm{f} 1=\sin \left(2 * \mathrm{pi} * 4^{*} \mathrm{t}\right)$) $\%$ sampled signal at 5 Hz
$\mathrm{f} 2=\sin (2 * \mathrm{pi} * \mathrm{t} 1)$; \% Alias signal 1 Hz
$\operatorname{plot}\left(\mathrm{t}, \mathrm{f}, \mathrm{t} 1, \mathrm{f} 1, ' * ', \mathrm{t} 1,-\mathrm{f} 2, \mathrm{o}^{\prime} \mathrm{o}\right) \%$ note negative sign

$*$	sampled signal
o	aliased signal

How to Avoid Aliasing?

- There is no way to fix $f^{*}(t)$ after you have sampled. So, you must assure that the signal to be sampled has no frequencies higher than $\omega_{N}=\pi / h$.
But, real signals have power in $[-\infty, \infty]$ (with caveat).
\Rightarrow Prefilter the signal $f(t)$ before sampling (anti-aliasing).

$$
\text { Typical } G_{f}(s)=\frac{\omega_{f}^{2}}{s^{2}+2 \zeta \omega_{f} s+\omega_{f}^{2}}
$$

$$
\zeta=\frac{\sqrt{2}}{2} \quad \text { (Butterworth Filter) }
$$

Usually pick $\omega_{f} \sim \omega_{N} / 2=\pi / 2 h$ to be safe, but beware of using a $\mathrm{G}_{\mathrm{f}}(\mathrm{s})$ in a feedback loop due to added negative phase shift that reduces ϕ_{m}. Some authors suggest $\omega_{N} / l .28 \approx 0.8 \omega_{N}=0.4 \omega_{s}$ Ex: $\quad f(t)=1.1 \sin 0.4 t+1.2 \sin 3.45 t \sim$ signal + high frequency noise. Sample period $\mathrm{h}=2.0 \mathrm{sec}=>\omega_{\mathrm{s}}=3.14$ and aliasing will occur.

 Prefilter $\mathrm{f}(\mathrm{t})$ using a 2 nd-order Butterworth filter \qquad with $\omega_{f}=0.785$ and then sample the output, $\mathrm{f}_{1}(\mathrm{t})$.

How to Avoid Aliasing?

Ex:
$\mathrm{f}(\mathrm{t})=1.1 \sin 0.4 \mathrm{t}+1.2 \sin 3.45 \mathrm{t}$ signal + high frequency noise. Sample period $\mathrm{h}=2.0 \mathrm{sec}=>\omega_{s}=3.14$ and aliasing will occur.

Antialiasing/Aliasing Examples

- Example 1: Consider $N=1024$ data points from a signal sampled at 1 ms interval ($h=0.001 \mathrm{sec}$).
- Sampling frequency, $f_{s}=1000 \mathrm{~Hz}=1 \mathrm{kHz} \Rightarrow \omega_{s}=6280 \mathrm{rad} / \mathrm{sec}$
- Nyquist frequency, $f_{N}=500 \mathrm{~Hz} \Rightarrow \omega_{N}=3140 \mathrm{rad} / \mathrm{sec}$
- Antialiasing filter frequency, $f_{f}=250-400 \mathrm{~Hz} \Rightarrow \omega_{N}=1570-2512 \mathrm{rad} / \mathrm{sec}$
- If you did discrete Fourier transform, you will get 1024 points representing frequencies $(k / N) * f_{s} ; k=0,1,2, . . N-1$. These are also called spectral lines.
- \quad Spectral line separation $=f_{s} / N=0.9766 \mathrm{~Hz}$.
- For an ideal filter with cut-off frequency of $250-400 \mathrm{~Hz}$, keep the first 244-391frequency components (i.e., set the rest to zero) as the useful spectrum and then do an IDFT to recover the noise filtered signal.
- Example 2: Suppose you have a sinusoidal signal of frequency 10 Hz and you sample it at 50 Hz . Another sinusoidal signal of the same amplitude, but higher frequency, f was found to yield the same data when sampled at 50 Hz . What is the likely frequency, f ?
- Sampling frequency, $f_{s}=50 \mathrm{~Hz}$
- Aliasing frequencies $=n f_{s} \pm 10 \mathrm{~Hz}$.
- $\mathrm{So}, f=40 \mathrm{~Hz}, 60 \mathrm{~Hz}, 90 \mathrm{~Hz}, 110 \mathrm{~Hz}, \ldots$.

Sallen-Key Low Pass Butterworth Filter

$$
\begin{aligned}
& \begin{aligned}
G_{f}(s) & =\frac{K / R^{2} C^{2}}{s^{2}+\frac{(3-K)}{R C} s+\frac{1}{R^{2} C^{2}}} \\
& =\frac{K \omega_{n}^{2}}{s^{2}+(3-K) \omega_{n} s+\omega_{n}^{2}}
\end{aligned} \\
& \text { For } \xi=1 / \sqrt{2}, K=3-\sqrt{2}=1.586
\end{aligned}
$$

$$
\begin{equation*}
\frac{v_{i n}(s)-v_{1}(s)}{R}+\left(v_{0}(s)-v_{1}(s)\right) C s=\frac{v_{1}(s)-v_{2}(s)}{R} \tag{1}
\end{equation*}
$$

$\frac{v_{1}(s)-v_{2}(s)}{R}=v_{2}(s) C s \Rightarrow v_{1}(s)=(1+R C s) v_{2}(s)(2)$
$v_{0}(s)=K v_{2}(s)(3)$
$\Rightarrow v_{\text {in }}(s)=(2+R C s) v_{1}(s)-(1+K R C s) v_{2}(s)$
$=((2+R C s)(1+R C s)-(1+K R C s)) v_{2}(s)$
In general, Butterworth low pass filters have flat frequency response. For order p

$$
\left|G_{f}(\omega)\right|=\frac{G_{f}(0)}{\sqrt{1+\left(\frac{\omega}{\omega_{n}}\right)^{2 p}}}
$$

Sampling for Accuracy

－For a single sine wave，$A \sin \omega_{0} t$ ，Nyquist criterion says use more than two（2）samples／period $\left(\omega_{s}>2 \omega_{0}\right)$ ，but reconstruction error using a zero－order hold is terrible＝＝＞we really need to sample at a higher rate．
If we use a sample and hold with $\mathrm{N} \geq 4$ samples／period，then $h=2 \pi / N \omega_{0}$ and $\omega_{s}=N \omega_{0}$ ．

Case 1：

max relative error $=\frac{A \sin (2 \pi / N)}{A}=\sin (2 \pi / N)$

Case 2：

max relative error with $h / 2$ shift

$$
=\frac{2 A \sin (\pi / N)}{A}=2 \sin (\pi / N)
$$

Usually we try for $\omega_{s}=(10 \rightarrow 30) \omega_{\text {max }}$ when using a signal reconstruction criteria

Sampling Period h for Control

- State space representation: If $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{\mathrm{n}}$ are the eigenvalues of A , then to avoid aliasing we must have λ_{i} within primary strip in the s-plane, i.e., $\left|\operatorname{Im}\left(\lambda_{i}\right)\right|<\pi / \mathrm{h}$.
More manageably, $\left|\lambda_{\mathrm{i}}\right|<\pi / \mathrm{h} \quad \mathrm{i}=1,2, \ldots, \mathrm{n} \quad$ largest eigenvalue of $\mathrm{A} \quad \mathrm{j} \omega$ s-plane i.e., poles within circle of radius $\pi / \mathrm{h} . \Rightarrow \mathrm{h}_{\max }=\pi /\left|\lambda_{\max }(\mathrm{A})\right|$ This is too high a limit from a control viewpoint, instead we seek $\mathrm{h} \leq \mathrm{c} /\left|\lambda_{\max }(\mathrm{A})\right|$ with $\mathrm{c}=\mathbf{0 . 2}$ to $0.5(1 / 6 \rightarrow 1 / 15$ of Nyquist sampling interval An approximation: $\left|\lambda_{\max }(\mathrm{A})\right| \sim\|\mathrm{A}\|$ because $\left|\lambda_{\max }(\mathrm{A})\right| \leq\|\mathrm{A}\|$ for any norm

Primary Strip

- Relation to Closed-loop bandwidth: $\omega_{\text {BW }}$ in rad $/ \mathrm{sec} \Rightarrow \mathrm{f}_{\mathrm{BW}}=\omega_{\mathrm{BW}} / 2 \pi$ in Hz

$$
\frac{1}{30 f_{B W}}<h<\frac{1}{15 f_{B W}} \Rightarrow \frac{1}{5 \omega_{B W}}<h<\frac{2}{5 \omega_{B W}}
$$

- Relation to Rise time, T_{r} : about 10% of the rise time $\Rightarrow \mathrm{h} \approx 0.1 \mathrm{~T}_{\mathrm{r}}$

A rule of thumb: $T_{r} \approx \frac{1}{2 f_{B W}}$
Need to experiment with different values of h during design
$0.15<h \omega_{c}<0.5$
ω_{c} is an approx. measure of closed-loop bandwidth $\Rightarrow 12$ to 40 times $f_{c}=\omega_{c} / 2 \pi$

Example of Aliasing in a Control Setting

－Feedwater heating in a ship propulsion plant（Astrom \＆Wittenmark）

Pressure and temperature are coupled，and should oscillate at the same frequency！What happened？

Sampling frequency，$\omega_{\mathrm{s}}=2 \pi / 2=3.14 \mathrm{rad} / \mathrm{min}$
Pressure oscillation frequency，$\omega_{\mathrm{p}}=2 \pi / 2.11=2.98 \mathrm{rad} / \mathrm{min}$
Lowest aliasing frequency，$\omega_{\mathrm{s}}-\omega_{\mathrm{p}}=0.16 \mathrm{rad} / \mathrm{min} \Rightarrow \mathrm{T}=38 \mathrm{~min}$
Conclusion：The sampler did not take this course！

Analysis of the Basic Digital Control Loop

- The computer algorithm generates a sequence of values $\underline{u}(k h)$ from the discrete samples $\underline{y}(k h)$ and $\underline{r}(k h)$, or from $\underline{e}(k h)=\underline{r}(k h)-\underline{y}(k h)$, e.g., $\underline{u}(z)=H(z) \underline{e}(z)$.
- Process Model - continuous inputs and outputs

| transfer function | or |
| :---: | :---: | :---: |
| $G(s)$ | \quad State-Space Model |
| \longleftrightarrow | $\underline{x}=A \underline{x}+B \underline{u}, y=C \underline{x}+D \underline{u}$ |

- Computer outputs values $\underline{u}(k h)$ and at some time later sees the response $y(m h)$. The computer "puts out" samples and "sees" samples, i.e., it sees a discrete system from $\underline{u}(k h)$ to $y(k h) \Rightarrow \tilde{G}(z)$.
- Redraw loop from computer's view [eg., $\underline{u}(z)=H(z) \underline{e}(z)]$.

WHY? => 1. to enable analysis as a discrete FB loop
2. to enable design of a discrete $H(z)$ vis-a-vis discrete $\tilde{G}(z)$
3. We are "controlling" $\tilde{G}(z) \underline{\text { not }} G(s)$.

Discrete System Time Signals

Typically there will be delays in the loop

- computational delays
- measurement delays
- process delays
lump as some equivalent delay τ

Assume: D/A is a zero-order hold ; All A/Ds are synchronized
Consider signals around the loop

$u(k h)$ from computer algorithms

$u(t)$ output of D/A (zero-order hold) $=$ input to system

Output of system, $y(t)$

- = sampled values output of A/D input to algorithm

Definitions

$$
y(k)=y(k h)=\text { sampled values of } y(t) \text { at time } t=k h
$$

$\underline{u}(k)=u(k h)=$ values of $\underline{u}(\cdot)$ computed by algorithm using the samples $\underline{y}(k h)$ and $\underline{r}(k h)$; output from computer at time $k h^{+}$, if there is no computational delay
$\Rightarrow \underline{u}(k h)=$ values of system input over $\left[k h^{+},(k+1) h\right]$

Model for Equivalent Discrete System, $\tilde{\mathbf{G}}(\mathrm{z})$

1. System defined by state equations, no delay
2. System defined by transfer function, no delay
3. Modifications to 1 and 2 when $\tau \neq 0$

State-Space Approach

$$
\begin{aligned}
& \dot{\dot{x}}(\mathrm{t})=\mathrm{A} \underline{x}(\mathrm{t})+\mathrm{B} \underline{u}(\mathrm{t}) \\
& \underline{y}(\mathrm{t})=\mathrm{C} \underline{\underline{x}}(\mathrm{t})+\mathrm{D} \underline{\underline{u}}(\mathrm{t}) \quad \Rightarrow \mathrm{G}(\mathrm{~s})=\mathrm{C}(\mathrm{sI}-\mathrm{A})^{-1} \mathrm{~B}+\mathrm{D},
\end{aligned}
$$

Compute $\underline{x}[(k+1) h] \triangleq \underline{x}(k+1)=$ value of $\underline{x}(t) \underline{a t} t=(k+1) h$ from knowledge of $\underline{x}(k h)=$ value of $\underline{x}(\mathrm{t})$ at $\mathrm{t}=\mathrm{kh}$ and $\underline{\mathrm{u}}(\mathrm{kh})=$ system input over $(\mathrm{kh},(\mathrm{k}+1) \mathrm{h}]$.
Use state transition equation,

$$
h=\frac{0.2}{\|A\|}
$$

$$
\underline{x}\left(t_{2}\right)=e^{A\left(t_{2}-t_{1}\right)} \underline{x}\left(t_{1}\right)+\int_{t_{1}}^{t_{1}} e^{A\left(t_{2}-\xi\right)} B \underline{u}(\xi) d \xi
$$

$$
\mathrm{t}_{1}=\mathrm{kh}, \mathrm{t}_{2}=(\mathrm{k}+1) \mathrm{h} \text { and } \underline{\mathrm{u}}(\xi)=\underline{\mathrm{u}}(\mathrm{kh}) \text { over }\left(\mathrm{t}_{1}, \mathrm{t}_{2}\right]
$$

$$
\underline{\mathrm{x}}[(\mathrm{k}+1) \mathrm{h}]=\mathrm{e}^{\mathrm{Ah}} \underline{x}(\mathrm{kh})+\int_{\mathrm{kh}}^{(k+1) \mathrm{h}} \mathrm{e}^{A((k+1) \mathrm{h}-\xi)} \mathrm{Bd} \xi \cdot \underline{u}(\mathrm{kh})
$$

let $\sigma=(\mathrm{k}+1) \mathrm{h}-\xi$

$$
\underline{\mathrm{x}}[(\mathrm{k}+1) \mathrm{h}]=\mathrm{e}^{\mathrm{Ah}} \underline{\mathrm{x}}(\mathrm{kh})+\int_{0}^{\mathrm{h}} \mathrm{e}^{\mathrm{A} \sigma} \mathrm{~d} \sigma \mathrm{~B} \underline{\mathrm{u}}(\mathrm{kh}) \Rightarrow \underline{\mathrm{x}}(\mathrm{k}+1)=\Phi \underline{\mathrm{x}}(\mathrm{k})+\Gamma \underline{\mathrm{u}}(\mathrm{k})
$$

Transfer funtion Matrix (TFM): $\tilde{\mathrm{G}}(\mathrm{z})=\mathrm{C}(\mathrm{zI}-\Phi)^{-1} \Gamma+D \mathrm{z}^{-1}$

Computing Φ and $\Gamma($ or $\Psi)$

- Note that Φ and Γ are independent of k . Compute once for a given time step h .

Analytic: $\quad \mathrm{e}^{\mathrm{Ah}}=\left.L^{-1}\left[(\mathrm{sI}-\mathrm{A})^{-1}\right]\right|_{\mathrm{t}=\mathrm{h}}$
exact value obtained, but very time-consuming and not practical for $n>3$. Then, need
to obtain Ψ by integrating $\mathrm{e}^{\mathrm{A} \mathrm{\sigma}}$ over $[0, \mathrm{~h}]$.

$$
\mathrm{e}^{\mathrm{Ah}}=\mathrm{I}+\mathrm{Ah}+\mathrm{A}^{2} \mathrm{~h}^{2} / 2!+\ldots
$$

To compute $\Psi(h)$ substitute approximation $\mathrm{e}^{\mathrm{A} \sigma} \sim \mathrm{I}+\mathrm{A} \sigma+\mathrm{A}^{2} \sigma^{2} / 2!+\ldots$

$$
\begin{aligned}
& \Psi(\mathrm{h})=\int_{0}^{\mathrm{h}} \mathrm{e}^{\mathrm{A} \mathrm{\sigma}} \mathrm{~d} \sigma=\int_{0}^{\mathrm{h}}\left[1+\mathrm{A} \sigma+\mathrm{A}^{2} \sigma^{2} / 2!+\cdots\right] \mathrm{d} \sigma \\
& \Psi(\mathrm{~h}) \doteq \mathrm{h}\left[\mathrm{I}+\mathrm{Ah} / 2!+\mathrm{A}^{2} \mathrm{~h}^{2} / 3!+\cdots+\mathrm{A}^{\mathrm{M}} \mathrm{~h}^{\mathrm{M}} /(\mathrm{M}+1)!\right]
\end{aligned}
$$

where the number of terms M must be chosen large enough so that the Taylor approximations are valid; i.e., we want,

$$
(\mathrm{Ah})^{\mathrm{M}} /(\mathrm{M}+1)!\ll \mathrm{I}==>\|\mathrm{A}\|^{\mathrm{M}} \mathrm{~h}^{\mathrm{M}} /(\mathrm{M}+1)!<10^{-6} . \text { Then } \Phi=\mathrm{e}^{\mathrm{Ah}}=\mathrm{I}+\mathrm{A} \Psi(\mathrm{~h})
$$

Algorithm to find $\mathrm{M}={ }^{\#}$ terms in series, given h
$\mathrm{C}_{1}=\|\mathrm{A}\| \mathrm{h} / 2$
Do for $\mathrm{M}=2,20$
$\mathrm{C}_{1}=\mathrm{C}_{1} *\|\mathrm{~A}\| \mathrm{h} /(\mathrm{M}+1)$
if $C_{1}<10^{-6}$ stop \rightarrow return M, if $M<4$ set $M=4$
End do
(Note: $\|\mathrm{A}\|^{19} / 20!\sim 10^{-9}$ if $\|\mathrm{Ah}\|=\pi$)

Algorithm for Obtaining $\Psi(\mathrm{h})$ and Φ, Γ

Once M is determined, compute $\Psi(\mathrm{h})$ via series. Since the magnitude of the higherorder terms in series decreases as M grows, sum the series using reverse nesting. -

$$
\Psi(h)=h\left[I+\cdots \frac{A h}{M-2}\left(I+\frac{A h}{M-1}\left(I+\frac{A h}{M}\left(I+\frac{A h}{M+1}\right)\right)\right) \cdots\right]
$$

This assures that very small numbers are never added to much bigger numbers.
Flow diagram of a Subroutine "Dscrt" (your own c2d function) for general use:

Modifications to SS \rightarrow TFM

- Use modified SS \rightarrow TFM code to obtain coefficients.

Let $\underline{\gamma}_{j}$ be the $j^{\text {th }}$ column of Γ and \underline{c}_{k}^{T} be the $k^{\text {th }}$ row of C
ㄹ.
Key relation: $g_{k j}(z)=\underline{c}_{k}^{T}(z I-\Phi)^{-1} \underline{\gamma}_{j}+d_{k j} z^{-1}=\frac{\left|z I-\Phi+\underline{\gamma}_{j} \underline{c}_{k}^{T}\right|}{|z I-\Phi|}-1+\frac{d_{k j}}{z}$

$$
=\frac{z\left|z I-\Phi+\underline{\gamma}_{j} \underline{c}_{k}^{T}\right|+\left(d_{k j}-z\right)|z I-\Phi|}{z|z I-\Phi|}
$$

Let $\delta_{1}, \delta_{2}, \ldots, \delta_{n}$ be the eigen values of $\left(\Phi-\underline{\gamma}_{j} \underline{c}_{k}^{T}\right)$ and $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ be the eigen values of Φ. Then,

$$
\begin{aligned}
g_{k j}(z) & =\frac{z \prod_{i=1}^{n}\left(z-\delta_{i}\right)+\left(d_{k j}-z\right) \prod_{i=1}^{n}\left(z-\lambda_{i}\right)}{z \prod_{i=1}^{n}\left(z-\lambda_{i}\right)} \\
& =\frac{z\left[z^{n}+\tilde{b}_{1} z^{n-1}+\tilde{b}_{2} z^{n-2}+\ldots+\tilde{b}_{n}\right]+\left(d_{k j}-z\right)\left[z^{n}+a_{1} z^{n-1}+a_{2} z^{n-2}+\ldots+a_{n}\right]}{z\left(z^{n}+a_{1} z^{n-1}+a_{2} z^{n-2}+\ldots+a_{n}\right)} \\
& =\frac{z^{-1}\left(b_{0} z^{n}+b_{1} z^{n-1}+b_{2} z^{n-2}+\ldots+b_{n}\right)}{z^{n}+a_{1} z^{n-1}+a_{2} z^{n-2}+\ldots+a_{n}} ; b_{i}=\tilde{b}_{i+1}+d_{k j} a_{i}-a_{i+1}, i=0,1,2, \ldots, n ; a_{0}=1, \tilde{b}_{n+1}=a_{n+1}=0
\end{aligned}
$$

$\mathbf{b}(\mathrm{n}+2, \mathrm{j}, \mathrm{k})=\mathbf{0 ;} \mathbf{a}(\mathrm{n}+2)=0$;
for $i=1: n+1$
$\mathbf{b}(\mathbf{i}, \mathbf{j}, \mathbf{k})=\mathbf{b}(\mathbf{i}+\mathbf{1}, \mathbf{j}, \mathbf{k})+\mathbf{D}(\mathbf{k}, \mathbf{j}) * \mathbf{a}(\mathbf{i})-\mathbf{a}(\mathbf{i}+\mathbf{1}) ;$
end
Mods to SS \rightarrow TFM code

Example: First Order System

- Example 1:

Equivalent discrete model for scalar system

$$
\begin{aligned}
& \dot{\mathrm{x}}=-\mathrm{ax}+\mathrm{bu}, \mathrm{y}=\mathrm{x} ; \mathrm{G}(\mathrm{~s})=\mathrm{b} /(\mathrm{s}+\mathrm{a}) \\
& \Phi=\mathrm{e}^{-\mathrm{ah}}, \Psi=\int_{0}^{\mathrm{h}} \mathrm{e}^{-\mathrm{a} \sigma} \mathrm{~d} \sigma=-\left.\frac{1}{\mathrm{a}}\left(\mathrm{e}^{-\mathrm{ac}}\right)\right|_{0} ^{\mathrm{h}}=\left(1-\mathrm{e}^{-\mathrm{ah}}\right) / \mathrm{a} ; \quad \Gamma=\mathrm{b} \Psi=\left(1-\mathrm{e}^{-\mathrm{ah}}\right) \mathrm{b} / \mathrm{a} \\
& \mathrm{x}(\mathrm{k}+1)=\mathrm{e}^{-\mathrm{ah}} \mathrm{x}(\mathrm{k})+\left[\left(1-\mathrm{e}^{-\mathrm{ah}}\right) / \mathrm{a}\right] \mathrm{bu}(\mathrm{k}) ; \quad \mathrm{y}(\mathrm{k})=\mathrm{x}(\mathrm{k}) \quad \tilde{G}(\mathrm{z})=\frac{\Gamma}{z-\Phi} \\
& \tilde{\mathrm{G}}(\mathrm{z})=\frac{\mathrm{b}\left(1-\mathrm{e}^{-\mathrm{ah}}\right) / \mathrm{a}}{\mathrm{z}-\mathrm{e}^{-\mathrm{ah}}}=\frac{\mathrm{z}^{-1}\left(1-\mathrm{e}^{-\mathrm{ah}}\right)(\mathrm{b} / \mathrm{a})}{1-\mathrm{z}^{-1} \mathrm{e}^{-\mathrm{ah}}} \\
& \rightarrow \text { Note omnipresent one unit }(\mathrm{h}) \text { delay in } \widetilde{\mathrm{G}}(\mathrm{z})\left(\mathrm{b}_{0}=0\right) .
\end{aligned}
$$

Example: Second Order System

$$
\begin{aligned}
{\left[\begin{array}{c}
\dot{\mathrm{x}}_{1}(\mathrm{t}) \\
\dot{\mathrm{x}}_{2}(\mathrm{t})
\end{array}\right] } & =\left[\begin{array}{cc}
0 & 1 \\
0 & -a
\end{array}\right]\left[\begin{array}{l}
\mathrm{x}_{1}(\mathrm{t}) \\
\mathrm{x}_{2}(\mathrm{t})
\end{array}\right]+\left[\begin{array}{l}
0 \\
1
\end{array}\right] \mathrm{u}(\mathrm{t}) \\
\mathrm{y}(\mathrm{t}) & =\left[\begin{array}{ll}
1 & 0
\end{array}\right] \underline{\mathrm{x}}(\mathrm{k})=\mathrm{x}_{1}(\mathrm{k})
\end{aligned} \begin{array}{ll}
\lambda_{1} & =0 \\
\lambda_{2} & =-\mathrm{a}
\end{array}
$$

This is typical of a model for a motor.

Armature
Dynamics

$$
\begin{aligned}
& \text { Analytic approach for arbitrary } a:\left[\begin{array}{cc}
\frac{1}{s} & \frac{1}{\mathrm{~s}(\mathrm{~s}+\mathrm{a})} \\
\qquad \Phi=\mathrm{e}^{\mathrm{Ah}}=L^{-1}\left[(\mathrm{sI}-\mathrm{A})^{-1}\right]_{\mathrm{t}=\mathrm{h}} & =L^{-1} \\
0 & \frac{1}{\mathrm{~s}+\mathrm{a}}
\end{array}\right]_{\mathrm{t}=\mathrm{h}}=\left[\begin{array}{cc}
1 & \frac{1}{\mathrm{a}}\left(1-\mathrm{e}^{-\mathrm{ah}}\right) \\
0 & \mathrm{e}^{-\mathrm{ah}}
\end{array}\right] \text { Eigenvalues } 1, \mathrm{e}^{-\mathrm{ah}}
\end{aligned}
$$

$$
\Psi=\int_{0}^{\mathrm{h}} \mathrm{e}^{\mathrm{A} \mathrm{\sigma}} \mathrm{~d} \sigma=\left[\begin{array}{cc}
\mathrm{h} & \frac{1}{\mathrm{a}}\left[\mathrm{~h}+\frac{1}{\mathrm{a}}\left(\mathrm{e}^{-\mathrm{ah}}-1\right)\right. \\
0 & \frac{1-\mathrm{e}^{-\mathrm{ah}}}{\mathrm{a}}
\end{array}\right] ; \quad \Gamma=\Psi B=\left[\begin{array}{c}
\mathrm{a}^{-1}\left[\mathrm{~h}+\mathrm{a}^{-1}\left(\mathrm{e}^{-\mathrm{ah}}-1\right)\right] \\
-\mathrm{a}^{-1}\left(\mathrm{e}^{-\mathrm{ah}}-1\right)
\end{array}\right]
$$

$\tilde{G}(z)=$ transfer function of equivalent discrete system, $C(z I-\Phi)^{-1} \Gamma$ (tedious via hand calculation!)

$$
=\frac{\left(a h+\mathrm{e}^{-\mathrm{ah}}-1\right)\left(\mathrm{z}+\frac{1-\mathrm{e}^{-\mathrm{ah}}-\mathrm{ahe}^{-\mathrm{ah}}}{\mathrm{ah}+\mathrm{e}^{-\mathrm{ah}}-1}\right)}{\mathrm{a}^{2}(\mathrm{z}-1)\left(\mathrm{z}-\mathrm{e}^{-\mathrm{ah}}\right)}
$$

Example 2a: Double Integrator System

Special case of Example 2 when $\mathrm{a}=0 \Rightarrow \mathrm{G}(\mathrm{s})=1 / \mathrm{s}^{2}$
We can consider lim as $a \rightarrow 0$ using L'Hospital's rule (messy), or redo problem for

$$
\begin{aligned}
& \mathrm{A}=\left[\begin{array}{cc}
0 & 1 \\
0 & 0
\end{array}\right] ; \quad \mathrm{B}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] ; \quad \mathrm{C}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] \\
& \Phi=\mathrm{e}^{\mathrm{Ah}}=\left.L^{-1}\left[(\mathrm{sI}-\mathrm{A})^{-1}\right]\right|_{\mathrm{t}=\mathrm{h}}=\left.L^{-1}\left[\begin{array}{cc}
\frac{1}{\mathrm{~s}} & \frac{1}{\mathrm{~s}^{2}} \\
0 & \frac{1}{\mathrm{~s}}
\end{array}\right]\right|_{\mathrm{t}=\mathrm{h}}=\left[\begin{array}{cc}
1 & \mathrm{~h} \\
0 & 1
\end{array}\right] \\
& \Psi=\int_{0}^{\mathrm{h}} \mathrm{e}^{\mathrm{A} \sigma} \mathrm{~d} \sigma=\left[\begin{array}{cc}
\mathrm{h} & \mathrm{~h}^{2} / 2 \\
0 & \mathrm{~h}
\end{array}\right] ; \quad \Gamma=\Psi \mathrm{B}=\left[\begin{array}{c}
\mathrm{h}^{2} / 2 \\
\mathrm{~h}
\end{array}\right] \\
& \underline{x}(k+1)=\left[\begin{array}{ll}
1 & h \\
0 & 1
\end{array}\right] \underline{x}(k)+\left[\begin{array}{c}
h^{2} / 2 \\
h
\end{array}\right] u(k) \\
& \tilde{G}(z)=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
\frac{1}{z-1} & \frac{h}{(z-1)^{2}} \\
0 & \frac{1}{z-1}
\end{array}\right]\left[\begin{array}{c}
\frac{h^{2}}{2} \\
h
\end{array}\right] \\
& \tilde{G}(\mathrm{z})=\frac{\mathrm{h}^{2} / 2}{\mathrm{z}-1}+\frac{\mathrm{h}^{2}}{(\mathrm{z}-1)^{2}}=\frac{\mathrm{h}^{2}}{2} \frac{\mathrm{z}+1}{(\mathrm{z}-1)^{2}}
\end{aligned}
$$

Example 3: F-8 Aircraft Model - 1

a) continuous system mod el

$$
\begin{aligned}
& \underline{\dot{x}}=\left[\begin{array}{ccccc}
0 & 0 & 1 & 0 & 0 \\
1.5 & -1.5 & 0 & 0.0057 & 1.5 \\
-12 & 12 & -0.6 & -0.0344 & -12 \\
-0.852 & 0.290 & 0 & -0.014 & -0.29 \\
0 & 0 & 0 & 0 & -0.730
\end{array}\right] \underline{x}+\left[\begin{array}{cl}
0 & 0 \\
0.16 & 0.80 \\
-19 & -3 \\
-0.015 & -0.0087 \\
0 & 0
\end{array}\right] \underline{u}+\left[\begin{array}{c}
0 \\
0 \\
0 \\
0 \\
1.1459
\end{array}\right] d ; \underline{y}=\left[\begin{array}{lllll}
1 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0
\end{array}\right] \underline{x} \\
& G(s)=\frac{\left[\begin{array}{cc}
-19 s^{2}-26.85 s-0.3425 & -3 s^{2}+5.058 s+0.06823 \\
0.16 s^{3}+0.09817 s^{2}-26.58 s-0.2847 & 0.8 s^{3}+0.4912 s^{2}+5.107 s+0.06238
\end{array}\right] ; ~}{s^{4}+2.114 s^{3}+12.93 s^{2}+0.1503 s+0.009442} ; \\
& \left.G_{d}(s)=\frac{\left[\begin{array}{c}
-13.75 s^{2}-0.1811 s \\
s^{5}+2.844 s^{4}+14.47 s^{3}+9.588 s^{2}+0.1192 s+0.006892
\end{array}\right]}{1.71 .053 s^{2}+0.0133 s+0.01082}\right]
\end{aligned}
$$

b) select $h: h=\frac{0.2}{\|A\|_{2}}=0.0095 \Rightarrow h=0.01 \mathrm{sec}$
c) Discrete system mod el

$$
\underline{x}(k+1)=\left[\begin{array}{ccccc}
0.9994 & 5.958 .10^{-4} & 9.968 .10^{-3} & -1.705 .10^{-6} & -0.0005943 \\
0.01488 & 0.9851 & 7.447 .10^{-5} & 5.656 .10^{-5} & 0.01483 \\
-0.1187 & 0.1187 & 0.9934 & -3.3395 .10^{-4} & -0.1183 \\
-8.496 .10^{-3} & 2.876 .10^{-3} & -4.244 .10^{-5} & 0.9999 & -2.866 .10^{-3} \\
0 & 0 & 0 & 0 & 0.9927
\end{array}\right] \underline{x}(k)+\left[\begin{array}{ccc}
-9.477 .10^{-4} & 0-1.481 .10^{-4} \\
1.583 .10^{-3} & 7.94 .10^{-3} \\
-0.1893 & -0.02943 \\
-1.10 .10^{-4} & -7.503 .10^{-5} \\
0 & 0
\end{array}\right] \underline{u}(k)+\left[\begin{array}{c}
-2.276 .10^{-6} \\
8.53 .10^{-5} \\
-6.81 .10^{-4} \\
-1.649 .10^{-5} \\
0.01142
\end{array}\right] d(k)
$$

Example 3: F-8 Aircraft Model - 2

d) Discrete TFM
$\tilde{G}(z)=\left[\begin{array}{ccc}\frac{-0.0009477 \mathrm{z}^{3}+0.0009366 \mathrm{z}^{2}+0.0009433 \mathrm{z}-0.0009322}{\mathrm{z}^{4}-3.978 \mathrm{z}^{3}+5.935 \mathrm{z}^{2}-3.936 \mathrm{z}+0.9791} & & \frac{-0.0001481 \mathrm{z}^{3}+0.0001525 \mathrm{z}^{2}+0.0001443 \mathrm{z}-0.0001487}{\mathrm{z}^{4}-3.978 \mathrm{z}^{3}+5.935 \mathrm{z}^{2}-3.936 \mathrm{z}+0.9791} \\ \frac{0.001583 \mathrm{z}^{3}-0.004767 \mathrm{z}^{2}+0.004757 \mathrm{z}-0.001574}{\mathrm{z}^{4}-3.978 \mathrm{z}^{3}+5.935 \mathrm{z}^{2}-3.936 \mathrm{z}+0.9791} & & \frac{0.00794 \mathrm{z}^{3}-0.02377 \mathrm{z}^{2}+0.02372 \mathrm{z}-0.007891}{\mathrm{z}^{4}-3.978 \mathrm{z}^{3}+5.935 \mathrm{z}^{2}-3.936 \mathrm{z}+0.9791}\end{array}\right]$
$\tilde{G}_{d}(z)=\left[\begin{array}{c}\frac{-2.276 \mathrm{e}-006 \mathrm{z}^{4}-4.487 \mathrm{e}-006 \mathrm{z}^{3}+1.355 \mathrm{e}-005 \mathrm{z}^{2}-4.549 \mathrm{e}-006 \mathrm{z}-2.243 \mathrm{e}-006}{\mathrm{z}^{5}-4.971 \mathrm{z}^{4}+9.884 \mathrm{z}^{3}-9.827 \mathrm{z}^{2}+4.886 \mathrm{z}-0.972} \\ \frac{8.53 \mathrm{e}-005 \mathrm{z}^{4}-0.0001707 \mathrm{z}^{3}+1.371 \mathrm{e}-006 \mathrm{z}^{2}+0.0001682 \mathrm{z}-8.415 \mathrm{e}-005}{\mathrm{z}^{5}-4.971 \mathrm{z}^{4}+9.884 \mathrm{z}^{3}-9.827 \mathrm{z}^{2}+4.886 \mathrm{z}-0.972}\end{array}\right]$

- MATLAB functions:
- $\operatorname{sysc}=\mathrm{ss}(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D})$
- gs=tf(sysc)
- sysd=c2d(sysc,h)
- gz=tf(sysd)
- gz=c2d(gs,h)

Discrete System Equivalents
 - Xfer Function Approach

If the process to be controlled is described by a transfer function $\mathrm{G}(\mathrm{s})$, can we find $\widetilde{\mathrm{G}}(\mathrm{z})$ directly? Indirect approach - (1) Write a state-space model for the process e.g., SCF or SOF or Balanced
(2) Find Φ, Γ using state variable approach
(3) Compute $\widetilde{\mathrm{G}}(\mathrm{z})=\mathrm{C}(\mathrm{zI}-\Phi)^{-1} \Gamma$

- Direct approach - Find Z-transform of unit pulse response $\equiv \tilde{\mathrm{G}}(\mathrm{z})$, between points A and B. First obtain the step response.
(1) Let $\mathrm{u}(\mathrm{k})$ be a unit step input

$$
\mathrm{u}(\mathrm{z})=1 /\left(1-\mathrm{z}^{-1}\right) .
$$

(2) If the D/A Converter is a zero-order hold, then $u(t)$ will be a pure step, $u(t)=1$ for $t>0==>u(s)=1 / s$.
(3) Since the process is continuous, $\mathrm{y}(\mathrm{s})=\mathrm{G}(\mathrm{s}) / \mathrm{s}$ and $\mathrm{y}(\mathrm{t})=L^{-1}[\mathrm{G}(\mathrm{s}) / \mathrm{s}]$.
(4) Sampling $y(t)$ and taking the z-transform yields $y(z)$ $\mathrm{y}(\mathrm{z})=\mathrm{Z}\left\{L^{-1}[\mathrm{G}(\mathrm{s}) / \mathrm{s}]\right\}=\mathrm{z}$-transform of step response usual notation: $\mathrm{Z}\left\{L^{-1}[\mathrm{~F}(\mathrm{~s})]\right\} \triangleq \mathrm{Z}\{\mathrm{F}(\mathrm{s})\}$.
(5) If $u(k)=1$, the response is $\left(1-z^{-1}\right) y(z)=(z-1) y(z) / z$

$$
\widetilde{\mathrm{G}}(\mathrm{z})=\left(1-\mathrm{z}^{-1}\right) \mathrm{Z}\left\{L^{-1}(\mathrm{G}(\mathrm{~s}) / \mathrm{s})\right\}
$$

Discrete System Equivalents（Cont＇d）

The resulting $\mathrm{G}(\mathrm{z})$ must be the same as that obtained via state－space．
Example：$G(s)=\frac{a}{s+a} \Rightarrow \frac{G(s)}{s}=\frac{a}{s(s+a)}=\left[\frac{1}{s}-\frac{1}{s+a}\right]$
$L^{-1}\left[\frac{\mathrm{G}(\mathrm{s})}{\mathrm{s}}\right]=1-\mathrm{e}^{-\mathrm{at}}=\mathrm{y}(\mathrm{t})$ ；sampled $\mathrm{y}(\mathrm{kh})=1-\mathrm{e}^{-\mathrm{ahk}}$

$$
Z\{\mathrm{y}(\mathrm{kh})\}=\frac{1}{1-\mathrm{z}^{-1}}-\frac{1}{1-\mathrm{e}^{-\mathrm{ah}} \mathrm{z}^{-1}} \Rightarrow\left(1-\mathrm{z}^{-1}\right) Z\{\mathrm{y}(\mathrm{kh})\}=1-\frac{1-\mathrm{z}^{-1}}{1-\mathrm{e}^{-\mathrm{ah}} \mathrm{z}^{-1}}=\frac{\mathrm{z}^{-1}\left(1-\mathrm{e}^{-\mathrm{ah}}\right)}{1-\mathrm{e}^{-\mathrm{ah}} \mathrm{z}^{-1}}
$$

The direct approach gets quite messy for $\mathrm{n}>2$ ．Preferred method is via state－space Φ ，Γ then $\widetilde{\mathrm{G}}(\mathrm{z})$

Remember！（1）The computer is＂controlling＂a discrete process with transfer function $\widetilde{\mathrm{G}}(\mathrm{z})$ not a continuous process $\mathrm{G}(\mathrm{s})$ ．
（2）Zero－order D／A holds have been assumed（it is possible to re－do state－space approach with first order holds）．
\Rightarrow Of concern is the comparison of $\left.G(\mathrm{~s})\right|_{\mathrm{s}=\mathrm{j} \omega}$ vs．$\left.\tilde{\mathrm{G}}(\mathrm{z})\right|_{\mathrm{z}=\mathrm{e}^{\text {joh }}}$ ．

Relationship Between $\mathrm{G}(\mathrm{s})$ and $\widetilde{\mathrm{G}}(\mathrm{z})$

How close is $\left.\widetilde{\mathrm{G}}(\mathrm{z})\right|_{\mathrm{z}=\mathrm{e}^{\mathrm{sh}}}$ to original $\mathrm{G}(\mathrm{s})$ when $\mathrm{s}=\mathrm{j} \omega$?
Can expect differences in both magnitude and phase

$$
\tilde{\mathrm{G}}(\mathrm{z})=\left.\left(1-\mathrm{z}^{-1}\right) Z\left\{\frac{\mathrm{G}(\mathrm{~s})}{\mathrm{s}}\right\} \Rightarrow \tilde{\mathrm{G}}(\mathrm{z})\right|_{\mathrm{z}=\mathrm{e}^{\mathrm{s}}}=\left(1-\mathrm{e}^{-\mathrm{sh}}\right)\left[\frac{\mathrm{G}(\mathrm{~s})}{\mathrm{s}}\right]^{*}
$$

$\left.\operatorname{Recall} F^{*}(s) \triangleq F(z)\right|_{z=e^{s i n}}$, and relationship between $F^{*}(s)$ and $\left.F(s), F^{*}(s)=\frac{1}{h} \sum_{n=-\infty}^{\infty} F\left(s-j n \omega_{s}\right)\right]$

$$
\Rightarrow\left[\frac{G(s)}{s}\right]^{*} \sim \frac{1}{h}\left[\frac{G(s)}{s}+\frac{G\left(s-j \omega_{s}\right)}{s-j \omega_{s}}+\frac{G\left(s+j \omega_{s}\right)}{s+j \omega_{s}}\right]
$$

If $\omega \ll \omega_{\mathrm{s}} / 2=\pi / \mathrm{h}$, and $\left|\mathrm{G}\left(\mathrm{j} \omega \pm \mathrm{j} \omega_{\mathrm{s}}\right)\right| \ll 1$ then to a first approximation;

$$
\begin{aligned}
& \left[\frac{\mathrm{G}(\mathrm{~s})}{\mathrm{s}}\right]^{*} \sim \frac{1}{\mathrm{~h}}\left[\frac{\mathrm{G}(\mathrm{~s})}{\mathrm{s}}\right] \text { and }\left.\tilde{\mathrm{G}}(\mathrm{z})\right|_{\mathrm{z}=\mathrm{e}^{\mathrm{sh}}} \sim \underbrace{\mathrm{sh}}_{\text {Sample \& Hold } \div \mathrm{h}}] \mathrm{C}\left(\mathrm{e} \mathrm{e}^{-\mathrm{sh}}\right] \mathrm{G}) \\
& \left.\tilde{\mathrm{G}}\left(\mathrm{e}^{\mathrm{sh}}\right)\right|_{\mathrm{s}=\mathrm{j} \omega}=\underbrace{}_{\mathrm{h} / 2 \sec \text { Delay }}=\underbrace{\mathrm{e}^{-\mathrm{j} \omega \mathrm{~h}} / 2}_{\text {Magnitude Distortion }}
\end{aligned}
$$

\Rightarrow To a crude first approximation, equivalent discrete transfer function is \sim original continuous one with some magnitude distortion and an $\mathrm{h} / 2 \mathrm{sec}$ delay, in the region $\omega \ll \pi / \mathrm{h}$.
"Exact" comparison requires Bode plot of $\mathrm{G}(\mathrm{j} \omega)$ vs. $\mathrm{G}\left(\mathrm{e}^{\mathrm{j} \omega \mathrm{h}}\right)$ - c2d, bode

Anatomy of a Discrete Transfer Function

- Examine Bode plot structure of $\mathrm{G}\left(\mathrm{e}^{\mathrm{j} \omega \mathrm{h}}\right)$ as a function of ω for $\omega>\pi / \mathrm{h}$
- For any discrete transfer function, $\mathrm{G}(\mathrm{z})$, letting $\mathrm{z}=\mathrm{e}^{\mathrm{j} \omega \mathrm{h}}$:

$$
\begin{aligned}
\mathrm{G}^{*}(\mathrm{j} \omega) \triangleq \mathrm{G}\left(\mathrm{e}^{\mathrm{j} \omega \mathrm{~h}}\right)=\mathrm{G}\left[\mathrm{e}^{-\mathrm{j}(2 \pi \mathrm{~h}-\omega) \mathrm{h}}\right]=\operatorname{conj}\left\{\mathrm{G}\left[\mathrm{e}^{\mathrm{j}(2 \pi \mathrm{~h}-\omega) \mathrm{h}}\right]\right\} \Rightarrow \begin{array}{l}
\left|\mathrm{G}^{*}(\mathrm{j} \omega)\right|=\left|\mathrm{G}^{*}(2 \pi / \mathrm{h}-\mathrm{j} \omega)\right| \\
\\
\\
\end{array} \mathrm{G}^{*}(\mathrm{j} \omega)=-\measuredangle \mathrm{G}^{*}(2 \pi / \mathrm{h}-\mathrm{j} \omega)
\end{aligned}
$$

so, over the interval $[0,2 \pi / \mathrm{h}]$:
$\left|\mathrm{G}^{*}(\mathrm{j} \omega)\right|$ has even symmetry about $\omega=\pi / \mathrm{h}$
$\measuredangle \mathrm{G}^{*}(\mathrm{j} \omega)$ has odd symmetry about $\omega=\pi / \mathrm{h} \quad\left\{\measuredangle \mathrm{G}^{*}(\mathrm{j} \pi / \mathrm{h})=0^{\circ}\right.$ or $\pm 180^{\circ}$ since $\left.\mathrm{e}^{\mathrm{j} \pi}=-1\right\}$
Over $\left[2 \mathrm{k} \frac{\pi}{\mathrm{h}}, 2(\mathrm{k}+1) \frac{\pi}{\mathrm{h}}\right], \mathrm{k}=1,2, \ldots, \mathrm{G}^{*}(\mathrm{j} \omega)$ is the same as that over $\left[0, \frac{2 \pi}{\mathrm{~h}}\right]$

$\overline{\widehat{3}}$
$\stackrel{*}{*}$

$==>$ If $\mathrm{G}(\mathrm{s})$ has a pole at $\mathrm{s}=0$, then $\mathrm{G}^{*}(\mathrm{j} \omega) \rightarrow \infty$ for $\omega=2 \pi \mathrm{k} / \mathrm{h}, \mathrm{k}=1,2, \ldots$

Modeling a Process with Delay in Control, $\tau=\mathrm{Mh}+\varepsilon$

$$
\underline{\underline{x}}=A \underline{x}+\sum_{j=1}^{m} \underline{b}_{j} u_{j}\left(t-\tau_{j}\right) ; \underline{y}=C \underline{x}+\sum_{j=1}^{m} d_{j} u_{j}\left(t-\tau_{j}\right) ; \underline{d}_{j}=\text { column } j \text { of } D \text { or } \mathrm{G}(\mathrm{~s}) \rightarrow \mathrm{G}(\mathrm{~s}) \operatorname{Diag}\left[\exp \left(-\mathrm{s} \tau_{\mathrm{j}}\right)\right]
$$ what is the appropriate discrete equivalent model?

Case 1: $\mathrm{M}_{\mathrm{j}}=0 ; \tau_{\mathrm{j}}=\varepsilon_{\mathrm{j}}$ and $0 \leq \varepsilon_{\mathrm{j}}<\mathrm{h}$ (typical model of computational delay)
Case 2: $\mathrm{M}_{\mathrm{j}}=$ integer $\geq 1 ; \tau_{\mathrm{j}}=\mathrm{M}_{\mathrm{j}} \mathrm{h}+\varepsilon_{\mathrm{j}}$ and $0 \leq \varepsilon_{\mathrm{j}}<\mathrm{h}$ (for cases when there is a large delay)

Delay Sources

- Computational delays
- Transmission delays
- Plant delays Consider Caṣe 1 first, with state-space model.

Obtain $\underline{x}[(k+1) h]$ from $\underline{x}(k h)$ and input to system over (kh, (k+1)h].

$$
\begin{aligned}
& \text { (k-1)h kh } \quad(\mathrm{k}+1) \mathrm{h} \\
& \underline{\mathrm{x}}[(\mathrm{k}+1) \mathrm{h}]=\mathrm{e}^{\mathrm{Ah}} \underline{\mathrm{x}}(\mathrm{kh})+\sum_{j=1}^{m} \int_{\mathrm{kh}}^{(\mathrm{k}+1) \mathrm{h}} \mathrm{e}^{\mathrm{A}((\mathrm{k}+1) \mathrm{h}-\xi)} \underline{b}_{j} u_{j}(\xi) \mathrm{d} \xi
\end{aligned}
$$

$$
\begin{aligned}
& \underline{\mathrm{x}}[(\mathrm{k}+1) \mathrm{h}]=\mathrm{e}^{\mathrm{Ah}} \underline{\mathrm{x}}(\mathrm{kh})+\sum_{j=1}^{m}\left[\int_{\mathrm{h}-\varepsilon_{j}}^{\mathrm{h}} \mathrm{e}^{\mathrm{A} \mathrm{\sigma}} \mathrm{~d} \sigma \underline{b}_{j} u_{j}(\mathrm{k}-1)+\int_{0}^{\mathrm{h}-\varepsilon_{j}} \mathrm{e}^{\mathrm{Ah}} \mathrm{~d} \sigma \underline{b}_{j} u_{j}(\mathrm{k})\right]
\end{aligned}
$$

State Model for a Process
 with Fractional Delay

$$
\underline{x}(k+1)=\Phi \underline{x}(k)+\sum_{j=1}^{m} \underline{\gamma}_{1 j} u_{j}(k-1)+\sum_{j=1}^{m} \underline{\gamma}_{0 j} u_{j}(k)=\Phi \underline{x}(k)+\Gamma_{1} \underline{u}(k-1)+\Gamma_{0} \underline{u}(k)
$$

where $\Phi=\mathrm{e}^{\mathrm{Ah}} ; \quad \underline{\gamma}_{0 \mathrm{j}}=\int_{0}^{\mathrm{h}-\varepsilon_{j}} \mathrm{e}^{\mathrm{A} \mathrm{\sigma}} \mathrm{~d} \sigma \underline{b_{j}} ; \quad \underline{\gamma}_{1 \mathrm{j}}=\int_{\mathrm{h}-\varepsilon_{j}}^{\mathrm{h}} \mathrm{e}^{\mathrm{A} \mathrm{\sigma}} \mathrm{~d} \sigma \underline{b}_{j}=\mathrm{e}^{\mathrm{A}\left(\mathrm{h}-\varepsilon_{j}\right)} \int_{0}^{\varepsilon_{j}} \mathrm{e}^{\mathrm{A} \sigma} \mathrm{d} \sigma \underline{b}_{j}$
To compute $\Phi, \Gamma_{1}, \Gamma_{0}$: Do for $j=1,2, . ., \mathrm{m}$
(1) Use c 2 d with (A, B, ε_{j}): obtain $e^{A \varepsilon_{j}}$ and $\Psi\left(\varepsilon_{j}\right)$;
(2) Use c2d with (A, B, h- ε): obtain $e^{A\left(h-\varepsilon_{j}\right)}$ and $\Psi\left(h-\varepsilon_{j}\right)$;
(3) $\underline{\gamma}_{0 j}=\Psi\left(h-\varepsilon_{j}\right) \underline{b}_{j}, \underline{\gamma}_{1 j}=e^{\Lambda\left(h-\varepsilon_{j}\right)} \Psi\left(\varepsilon_{j}\right) \underline{b}_{j}, \Phi=e^{A\left(h-\varepsilon_{j}\right)} e^{A \varepsilon_{j}}$ (need to do this for any one j).

- Augmented state model, $\underline{\chi}(\mathrm{k}) \triangleq\left[\begin{array}{c}\underline{\mathrm{x}}(\mathrm{k}) \\ \underline{\mathrm{u}}(\mathrm{k}-1)\end{array}\right]$ an $(\mathrm{n}+\mathrm{m})$ - vector

Then

$$
\underline{\chi}(\mathrm{k}+1)=\left[\begin{array}{c}
\underline{\mathrm{x}}(\mathrm{k}+1) \\
\underline{\mathrm{u}}(\mathrm{k})
\end{array}\right]=\left[\begin{array}{cc}
\Phi & \Gamma_{1} \\
0 & 0
\end{array}\right] \underline{\chi}(\mathrm{k})+\left[\begin{array}{c}
\Gamma_{0} \\
I_{m}
\end{array}\right] \underline{\mathrm{u}}(\mathrm{k})
$$

Output equation (as long as $\varepsilon<\mathrm{h}$)

$$
\underline{\mathrm{y}}(\mathrm{k})=\mathrm{C} \underline{\mathrm{x}}(\mathrm{k})+\{\mathrm{D} \underline{\mathrm{u}}(\mathrm{k}-1)\}=[C \mid D] \underline{\gamma}(k)
$$

- Transfer function, $\widetilde{G}(z)$

$$
\begin{aligned}
\underline{\mathrm{x}}(\mathrm{z}) & =(\mathrm{zI}-\Phi)^{-1}\left[\Gamma_{1} \mathrm{z}^{-1}+\Gamma_{0}\right] \underline{\mathrm{u}}(\mathrm{z}) \\
\mathrm{y}(\mathrm{z}) & =\mathrm{z}^{-1}\left[\mathrm{C}(\mathrm{zI}-\Phi)^{-1}\left(\mathrm{z} \Gamma_{0}+\Gamma_{1}\right)+\mathrm{D}\right] \mathrm{u}(\mathrm{z})
\end{aligned}
$$

Invoke the previous $\mathrm{SS} \rightarrow \mathrm{TFM}$
routine with the augmented system.
Alternately,compute $C(z I-\Phi)^{-1} \Gamma_{0}$
$\& C(z I-\Phi)^{-1} \Gamma_{1}$.Compute numerator
and denominator
(recall: $\mathrm{z} \rightarrow$ shift $)$
$c_{0 k j}=b_{01 k j}+d_{k j} ; c_{i k j}=b_{0 i+1 k j}+b_{1 i k j}+d_{k j} a_{i} ;$
$b_{0 n+1 k j}=0 ; a_{n+1}=0$

$\tilde{\mathrm{g}}_{\mathrm{kj}}(\mathrm{z})$ will have a form $\tilde{\mathrm{g}}_{k j}(\mathrm{z})=\frac{\mathrm{c}_{0 \mathrm{kj}} \mathrm{z}^{\mathrm{n}}+\mathrm{c}_{1 \mathrm{kj}} \mathrm{z}^{\mathrm{n}-1}+\cdots+\mathrm{c}_{\mathrm{nkj}}}{\mathrm{z}\left(\mathrm{z}^{\mathrm{n}}+\mathrm{a}_{1} \mathrm{z}^{\mathrm{n}-1}+\cdots+\mathrm{a}_{\mathrm{n}}\right)} ; k=1,2, . ., p ; j=1,2, \ldots, m$

SISO State Model for a Process with Large Delay

$$
\tau=\mathrm{Mh}+\varepsilon ; \mathrm{M}=\text { integer } \geq 1 ; 0 \leq \varepsilon<\mathrm{h}
$$

Modeling approach same as for Case 1, but with added M time-step delay,

$$
\begin{align*}
\underline{\mathrm{x}}(\mathrm{k}+1) & =\Phi \underline{\mathrm{x}}(\mathrm{k})+\Gamma_{1} \mathrm{u}(\mathrm{k}-1-\mathrm{M})+\Gamma_{0} \mathrm{u}(\mathrm{k}-\mathrm{M}) \tag{2.39}\\
\mathrm{y}(\mathrm{k}) & =\mathrm{C} \underline{\mathrm{x}}(\mathrm{k})+\{\mathrm{d} \mathbf{u}(\mathrm{k}-1-\mathrm{M})\}
\end{align*}
$$

- Augmented State Model,

$$
\begin{aligned}
& \text { Define } \underline{\chi}(k) \triangleq\left[\begin{array}{c}
\underline{x}(k) \\
u(k-1-M) \\
u(k-M) \\
\cdot \\
u(k-1)
\end{array}\right]=n+1+M \text { vector } \\
& \underline{\chi}(\mathrm{k}+1)=\left[\begin{array}{c:ccccc}
\Phi & \Gamma_{1} & \Gamma_{0} & 0 & \cdots & 0 \\
\hdashline 0 & 0 & 1 & & & \\
0 & & & 1 & & \\
\vdots & & & & & \\
0 & 0 & 0 & 0 & \cdots & 0
\end{array}\right] \underline{\chi}(\mathrm{k})+\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0 \\
1
\end{array}\right] \mathrm{u}(\mathrm{k}) \\
& \left.\mathrm{y}(\mathrm{k})=\left[\begin{array}{llll}
\mathrm{c} & \mathrm{~d} & 0 & \cdots
\end{array}\right] \quad 0\right](\mathrm{k})
\end{aligned}
$$

- Transfer function

$$
\tilde{\mathrm{G}}(\mathrm{z})=\frac{1}{\mathrm{z}^{\mathrm{M}}} \cdot \underbrace{\frac{1}{\mathrm{z}}\left[\mathrm{C}(\mathrm{zI}-\Phi)^{-1}\left(\mathrm{z} \Gamma_{0}+\Gamma_{1}\right)+\mathrm{d}\right]}, \quad \Gamma_{0}=\int_{0}^{\mathrm{h}-\varepsilon} \mathrm{e}^{\mathrm{Ac}} \mathrm{~d} \sigma \mathrm{~B}, \quad \Gamma_{1}=\mathrm{e}^{\mathrm{A}(\mathrm{~h}-\varepsilon)} \int_{0}^{\varepsilon} \mathrm{e}^{\mathrm{Ac}} \mathrm{~d} \sigma \mathrm{~B}
$$

Transfer Function Approach to Modeling a Process with Delay

Since $g_{k j}(s) \rightarrow g_{k j}(s) e^{-\left(M, h+\varepsilon_{j}\right)}$, we have $\tilde{g}_{k j}(z)=\left(1-\mathrm{z}^{-1}\right) Z\left\{\frac{g_{k j}(s) e^{-\left(M \mu_{j} h+\varepsilon_{j}\right)}}{\mathrm{s}}\right\}$

Approach -
(1) Form $\frac{\mathrm{g}_{k j}(\mathrm{~s}) \mathrm{e}^{-\varepsilon_{j, s}}}{\mathrm{~s}} ; 0 \leq \varepsilon_{j} \leq h$
(2) Take L^{-1} inverse Laplace
(3) Sample resulting time signal
(4) Take z-transforms

Example

$$
\begin{aligned}
& \mathrm{G}(\mathrm{~s})=\frac{1}{\mathrm{~s}+\mathrm{a}} \mathrm{e}^{-\mathrm{Mhs}} \mathrm{e}^{-\varepsilon s} \Rightarrow \dot{\mathrm{x}}=-\mathrm{ax}+\mathrm{u}(\mathrm{t}-\tau) \\
& \Phi=\mathrm{e}^{-\mathrm{ah}} ; \Gamma_{0}=\int_{0}^{\mathrm{h}-\varepsilon} \mathrm{e}^{-\mathrm{az}} \mathrm{~d} \sigma=\left[1-\mathrm{e}^{-\mathrm{a}(\mathrm{~h}-\varepsilon)}\right] / \mathrm{a} ; \Gamma_{1}=\mathrm{e}^{-\mathrm{a}(\mathrm{~h}-\varepsilon)} \int_{0}^{\varepsilon} \mathrm{e}^{-\mathrm{az} \sigma} \mathrm{~d} \sigma=\mathrm{e}^{-\mathrm{a}(\mathrm{~h}-\varepsilon)}\left(1-\mathrm{e}^{-\mathrm{az}}\right) / \mathrm{a} \\
& \tilde{\mathrm{G}}(\mathrm{z})=\frac{1}{\mathrm{az}^{\mathrm{M+1}}\left\{\frac{\left(1-\mathrm{e}^{-\mathrm{a}(\mathrm{~h}-\varepsilon)}\right) \mathrm{z}+\mathrm{e}^{-\mathrm{ah}}\left(\mathrm{e}^{\mathrm{as}}-1\right)}{\mathrm{z}-\mathrm{e}^{-a h}}\right\}}
\end{aligned}
$$

Ex. $\mathrm{a}=1.0, \mathrm{M}=2, \varepsilon=0.5, \mathrm{~h}=1$

$$
\Rightarrow \tilde{\mathrm{G}}(\mathrm{z})=\frac{1}{z^{3}}\left\{\frac{\left(1-\mathrm{e}^{-0.5}\right) \mathrm{z}+\mathrm{e}^{-1}\left(\mathrm{e}^{0.5}-1\right)}{\mathrm{z}-\mathrm{e}^{-1}}\right\}=\frac{0.393(\mathrm{z}+0.607)}{\mathrm{z}^{3}(\mathrm{z}-0.368)}
$$

Note: In many applications the time-step is dictated by the on-line computational requirements. $\Rightarrow \tau$ is often comparable to h .

Summary

1. Digital Interfacing

- Signal Conditioning
- A/D and D/A converters

2. Signal Sampling and Data Reconstruction

- Impulse sampling model; Nyquist theorem; Aliasing and interpretation
- Signal conditioning circuits

3. Discrete Equivalents: State-Space Approach

- Discretization algorithm

4. Discrete Equivalents: Transfer Function Approach

- Relation to original continuous system

5. Model Modifications with Delay in Control
