Lecture 4: Matrix Decomposition Mathods for

$A \underline{\underline{x}}=\underline{\underline{b}}$

Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering
University of Connecticut
Contact: krishna@engr.uconn.edu (860) 486-2890

ECE 6435

Adv Numerical Methods in Sci Comp
Fall 2008
September 17, 2008

Outline of Lecture 4

\square Why do we need to solve $A \underline{x}=\underline{b}$?
\square Concepts of forward elimination and backward substitution
\square Basic decomposition methods: $L U, Q R$, Cholesky, SVD
$\square L U$ decomposition
\square Sensitivity of the solution to $A \underline{x}=\underline{b}$

- Error and residual
- Condition number as an amplification factor for error
\square Iterative improvement
\square Estimation of condition number
\square Solution when A is modified by a rank-one correction matrix

Background

\square Key problem

- Solution of $A \underline{x}=\underline{b} \Rightarrow \underline{b}=\sum_{i=1}^{n} x_{i} \underline{a}_{i}$

This is one of the most important problems in NUMERICAL ANALYSIS

- Fact1: a solution exists only if \underline{b} is a linear combination of the columns of A (EXISTENCE CONDITION) $\Rightarrow \underline{b} \in R(A)$
- Fact 2: for an $n \times n$ matrix $A, A \underline{x}=\underline{b}$ has a unique solution if and only if $N(A)$ is null $\Rightarrow A \underline{x}=0$ has the only solution $\underline{x}=0$ (UNIQUENESS CONDITION)
$\Rightarrow \operatorname{Rank}(A)=n \Rightarrow \operatorname{dim}(R(A))=n \Rightarrow A$ is invertible
\square Restricted problem:
Assume A is $n \times n, \operatorname{Rank}(A)=n \Rightarrow A$ is nonsingular
We want to solve $A \underline{x}=\underline{b}$

Why Solve $A \underline{x}=\underline{\underline{b}}$?-1

$\square \quad$ Why do we need to solve $A \underline{x}=\underline{b}$?

1) Data fitting via linear equations (occurs in a wide variety of applications including nonlinear programming, interpolation, regression, etc.)

- Suppose, we want to fit an $n^{\text {th }}$ order polynomial to the data

$$
\left\{x_{i}, f\left(x_{i}\right): i=0,1,2, \ldots, n\right\}
$$

- That is, want

$$
f(x)=a_{0}+a_{1} x+a_{2} x^{2}+\ldots+a_{n} x^{n}
$$

Why Solve $A x=b$

then, the problem of finding $\left\{a_{i}: i=0,1,2, \ldots, n\right\}$ is equivalent to solving:

$$
\left[\begin{array}{ccccc}
1 & x_{0} & x_{0}^{2} & \cdots & x_{0}^{n} \\
1 & x_{1} & x_{1}^{2} & \cdots & x_{1}^{n} \\
1 & x_{n} & x_{n}^{2} & \cdots & x_{n}^{n}
\end{array}\right]\left[\begin{array}{l}
a_{0} \\
a_{1} \\
a_{n}
\end{array}\right]=\left[\begin{array}{l}
f\left(x_{0}\right) \\
f\left(x_{1}\right) \\
f\left(x_{n}\right)
\end{array}\right]
$$

transpose of Van der Monde matrix
2) s.s solution to $\underline{\underline{x}}=A \underline{x}+B \underline{u} ; \Rightarrow A \underline{x}=\underline{b} ; \underline{b}=-B \underline{u}$
3) Solution of nonlinear equations via Newton's method

- $\underline{g}\left(x^{*}\right) \approx g\left(\underline{x}_{k}\right)+\nabla g^{T}\left(\underline{x}_{k}\right)\left(\underline{x}^{*}-\underline{x}_{k}\right)+\ldots$
- approximate \underline{x}_{k+1} such that the following first order condition is satisfied:

$$
\begin{aligned}
& \underline{g}\left(x^{*}\right) \approx g\left(\underline{x}_{k}\right)+J\left(\underline{x}_{k}\right)\left(\underline{x}_{k+1}-\underline{x}_{k}\right)=0 ; \text { where } J\left(\underline{x}_{k}\right)=\nabla \underline{g}^{T}\left(\underline{x}_{k}\right) \\
& \Rightarrow J\left(\underline{x}_{k}\right)\left(\underline{x}_{k+1}-\underline{x}_{k}\right)=-\underline{g}\left(\underline{x}_{k}\right) \Rightarrow \underline{x}_{k+1}=\underline{x}_{k}-\left[J\left(\underline{x}_{k}\right)\right]^{-1} \underline{g}\left(\underline{x}_{k}\right)
\end{aligned}
$$

Why Solve $A x=\underline{x}$? $=3$

4) Minimization of a scalar function w.r.t. n variables x_{1}, \ldots, x_{n}

- Approximate $f(\underline{x})$ by a quadratic function around the current minimum:

$$
\begin{aligned}
f\left(\underline{x}_{k+1}\right) & \approx f\left(\underline{x}_{k}\right)+\nabla \underline{f}^{T}\left(\underline{x}_{k}\right)\left(\underline{x}_{k+1}-\underline{x}_{k}\right) \\
& +\left(\underline{x}_{k+1}-\underline{x}_{k}\right)^{T} \nabla^{2} \underline{f}\left(\underline{x}_{k}\right)\left(\underline{x}_{k+1}-\underline{x}_{k}\right) / 2
\end{aligned}
$$

- Want \underline{x}_{k+1} to be the optimum of Quadratic function

$$
\begin{aligned}
& \Rightarrow \nabla f\left(\underline{x}_{k+1}\right)=0 \\
& \Rightarrow \nabla^{2} \underline{f}\left(\underline{x}_{k}\right)\left(\underline{x}_{k+1}-\underline{x}_{k}\right)=-\nabla \underline{f}\left(\underline{x}_{k}\right)
\end{aligned}
$$

5) In computing $e^{A t}$, $\int e^{A t}$ via Pade approximation, we come across solutions of a sequence of linear equations

$$
A \underline{x}_{i}=\underline{b}_{i}, \quad i=1,2, \ldots
$$

Exploit Key Facts - 1

- Method of Attack: Break it up into simpler subproblems
\Rightarrow Decomposition
- FACT1: DIAGONAL \& TRIANGULAR SYSTEMS OF EQUATIONS ARE EASIER TO SOLVE
- Lower triangular system of equations can be solved via Forward Elimination

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
l_{11} & 0 & \cdots & 0 \\
l_{21} & l_{22} & \cdots & 0 \\
l_{n 1} & l_{n 2} & \cdots & l_{n n}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{n}
\end{array}\right] \Rightarrow \begin{array}{c}
x_{1} / l_{11} \\
x_{2}=\left(b_{2}-l_{21} x_{1}\right) / l_{22}, \text { etc } \\
\cdot \\
x_{n}=\left(b_{n}-\sum_{j=1}^{n-1} l_{n j} x_{j}\right) / l_{n n}
\end{array}}
\end{aligned}
$$

- FORWARD ELIMINATION requires $\mathrm{O}\left(n^{2} / 2\right)$ operations
- Similarly, upper triangular system of equations can be solved via backward substitution

Exploit Key Facts－ 2

$$
\begin{aligned}
& {\left[\begin{array}{cccc}
u_{11} & u_{12} & \cdots & u_{1 n} \\
0 & u_{22} & \cdots & u_{2 n} \\
0 & \cdots & \cdots & u_{n n}
\end{array}\right]\left[\begin{array}{l}
x_{n}=b_{n} / u_{n n} \\
x_{2} \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{n}
\end{array}\right] \Rightarrow \begin{array}{c}
x_{n-1}=\left(b_{n-1}-u_{n-1, n} x_{n}\right) / u_{n-1, n-1}, \text { etc } \\
\cdot \\
x_{1}=\left(b_{1}-\sum_{j=2}^{n} u_{1 j} x_{j}\right) / u_{11}
\end{array}}
\end{aligned}
$$

－BACKWARD SUBSTITUTION requires $\mathrm{O}\left(n^{2} / 2\right)$ operations
－FACT2：ORTHOGONAL MATRICES ARE EASY TO INVERT． STABLE NUMERICALLY \Rightarrow DO NOT＂SCREW UP＂THE ORIGINAL PROBLEM．
$\Rightarrow Q^{-1}=Q^{T} ;\|Q A Z\|_{F}=\|A\|_{F} ;\|Q \underline{x}\|_{2}=\|x\|_{2}$ ，etc．

Decomposition Methods - 1

- DECOMPOSITION METHODS BASED ON FACT1
A is an $n \times n$ matrix

1) $L U$ Decomposition (Doolittle decomposition) Lecture 4

- Writes matrix $A=L U$ or $P A=L U$
$-P$ is a permutation matrix (permutes rows and columns)
- Can also write it as : $P A=L D U$
\Rightarrow - Solution of $P A \underline{x}=P \underline{b} \Rightarrow L U \underline{x}=P \underline{b} \Rightarrow L \underline{y}=P \underline{b} ; U \underline{x}=\underline{y}$
\Rightarrow - Once have $L \& U$, can solve $A \underline{x}_{i}=\underline{b}_{i}, i \geq 1$ in $O\left(n^{2}\right)$ operations
- One of the most widely used methods for solving linear systems

2) If $A=A^{T}$ and $P D \ldots$ Lecture 5

$$
A=L L^{T} \text { or } A=\bar{L} D \bar{L}^{T} \text { (Cholesky decomposition) }
$$

- One of the best methods for testing if A is a $P D$ matrix.

Decomposition Methods - 2

- DECOMPOSITION METHODS BASED ON FACTS $1 \& 2$
- Useful for general A, e.g., Least Squares Estimation... see Lectures 6-8

1) $A=Q R ; Q$ orthogonal $\Rightarrow Q^{-1}=Q^{T}, R$ upper triangular.......Lectures 6-7
$A \underline{x}=\underline{b} \Rightarrow Q R \underline{x}=\underline{b}$ or $R \underline{x}=Q^{T} \underline{b}=\tilde{b}$
\Rightarrow upper triangular system of equations \Rightarrow backward substitution
2) Singular Value Decomposition (SVD)...Leture 12 $A=U \Sigma V^{T} ; U, V$ are orthogonal $\Rightarrow U \Sigma V^{T} \underline{x}=\underline{b} \Rightarrow \Sigma V^{T} \underline{x}=U^{T} \underline{b} ; \Sigma \underline{y}=U^{T} \underline{b} ; \underline{y}=V^{T} \underline{x} \Rightarrow \underline{x}=\underline{V}$

LU Decomposition

- $L U$ Decomposition
- Belongs to the class of direct methods
- $A=L U \Rightarrow$ want to determine $n^{2}+n$ entries from n^{2} entries \Rightarrow Can fix either $L=$ unit lower Δ or $U=$ unit upper Δ

$$
L=\left[\begin{array}{cccc}
1 & 0 & . . & 0 \\
l_{21} & 1 & . . & 0 \\
: & : & & : \\
l_{n 1} & l_{n 2} & . . & 1
\end{array}\right] \quad U=\left[\begin{array}{cccc}
u_{11} & u_{12} & . . & u_{1 n} \\
0 & u_{22} & . & u_{2 n} \\
: & : & & : \\
0 & 0 & . . & u_{n n}
\end{array}\right]
$$

LU Decomposition as Dyadic Sum

$$
\begin{gathered}
\text { Example: }
\end{gathered}\left[\begin{array}{ll}
1 & 1 \\
2 & 7
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 1 \\
0 & 5
\end{array}\right]
$$

$$
A=L U \Rightarrow\left[\begin{array}{cccc}
1 & 0 & . . & 0 \\
l_{21} & 1 & . . & 0 \\
: & : & & : \\
l_{n 1} & l_{n 2} & . . & 1
\end{array}\right]\left[\begin{array}{cccc}
u_{11} & u_{12} & . . & u_{1 n} \\
0 & u_{22} & . . & u_{2 n} \\
: & : & & : \\
0 & 0 & . . & u_{n n}
\end{array}\right]=\left[\begin{array}{cccc}
a_{11} & a_{12} & . . & a_{1 n} \\
a_{21} & a_{22} & . . & a_{2 n} \\
: & : & & : \\
a_{n 1} & a_{n 2} & . . & a_{n n}
\end{array}\right]
$$

$$
\Rightarrow A=\sum_{k=1}^{n} \underline{l}_{k} \underline{u}_{k}^{T} ;{\underset{\sim}{l}}_{=}=\left[\begin{array}{c}
0 \\
\cdot \\
1 \\
l_{k+1, k} \\
\cdot \\
l_{n, k}
\end{array}\right] ; \underline{u}_{k}^{T}=\left[\begin{array}{llllll}
0 & . . & u_{k k} & u_{k, k+1} & . . & u_{k, n}
\end{array}\right]
$$

Decomposition Process

- The decomposition is accomplished in n passes
- On pass k, we get
a) $u_{k k}$
b) column k of L
c) row k of U
- Initially, we start with the first column of A

$$
\begin{aligned}
& a_{11}=l_{11} u_{11} \Rightarrow u_{11}=a_{11} / l_{11}=a_{11} \Rightarrow l_{11}=1=a_{11} / u_{11} \\
& a_{21}=l_{21} u_{11} \Rightarrow l_{21}=a_{21} / u_{11}
\end{aligned}
$$

$$
a_{n 1}=l_{n 1} u_{11} \Rightarrow l_{n 1}=a_{n 1} / u_{11}
$$

- Also $a_{1 j}=u_{1 j} l_{11} \Rightarrow u_{1 j=} a_{1 j}$
\Rightarrow first row of $U=$ first row of A
- Finished computing the first column of L and first row of U
- The sequence of computation is:
$u_{11} \rightarrow \operatorname{Diag}(U) ; \underline{l} \rightarrow$ first column of $L ; \underline{u}^{T} \rightarrow$ first row of U (remaining part)

Practical Issues

－Note：$a_{i 1}$ and $a_{1 j}$ are used once and never again \Rightarrow Can overwrite \underline{l}_{1} and $\underline{u}_{1}{ }^{T}$ in the first column and row of A

Except for \underline{l}_{11} ，which we know is 1 any way

$$
\begin{aligned}
& l_{i 1} \leftarrow a_{i 1} / a_{11}, i=2, \ldots, n \\
& u_{1 j} \leftarrow a_{1 j}, j=1,2, \ldots, n
\end{aligned}
$$

\square Problem：What if $a_{11}=0$ ？
Example：$\left[\begin{array}{ll}0 & 1 \\ 1 & 6\end{array}\right] \underline{\text { nonsingular }}$ ，but $a_{11}=0$

Concept of Pivoting - 1

- Pivoting Idea
1)Compute $l_{i 1}, \ldots, l_{n 1}$ except for division $\Rightarrow l_{i 1} u_{11}$

2) Find the largest $\left|l_{i 1}\right|$ relative to initial row i norm

$$
\Rightarrow \frac{l_{i n}}{\sum_{j}\left|a_{i j}\right|} \forall i
$$

- Assume that the maximum occurs in row r_{1}

$$
\Rightarrow r_{1}=\arg \max _{i} \frac{l_{i 1}}{\sum_{j}\left|a_{i j}\right|}
$$

$\Rightarrow 3)$ Swap row r_{1} and 1 in A and l_{1}. Let $I P(1)=r_{1}$. What dose it mean?

Concept of Pivoting - 2

Multiply A by

$$
P_{1}^{n} \Rightarrow\left[\begin{array}{ccccc}
0 & 0 & . & 1 & 0 \\
0 & 1 & . . & . & 0 \\
0 & 0 & 1 & . & 0 \\
1 & 0 & . . & . & 0 \\
0 & . . & . & . . & 0
\end{array}\right]
$$

PERMUTATION MATRIX

Note: P_{1}^{n} is a symmetric and orthogonal $\left(P_{1}^{n}\right)^{-1}=P_{1}^{n}$
4) Divide throughout by (new) $l_{11} \neq 0$ to get $l_{21}, \ldots, l_{n 1}$

$$
\left[\begin{array}{ll}
1 & 6 \\
0 & 1
\end{array}\right]=U
$$

5) $\quad u_{11}=l_{11}$ (new). In actuality, l_{11} replaces a_{11}.

- So, really have found the first $L U$ factor, $\underline{l}_{1} \underline{u}_{1}{ }^{T}$ of $P_{1}^{n} A=\tilde{A}$ and not of A!!
- Can we do it recursively? Is it useful? YES!!

LU Decomposition of PA1

- Consider the situation at column $k \geq 2$. Get column k of L and row k of U from column k and row k of \tilde{A}

$$
\begin{aligned}
& P_{k-1}^{n-1} P_{k-2}^{n-2} \ldots P_{1}^{n} A=\sum_{i=1}^{k-1} \underline{l} u_{i}^{T}+l_{-} u_{t}^{T}+\text { other terms } \\
& \tilde{A} \\
& {\left[\begin{array}{cccccc}
1 & 0 & 0 & . . & 0 & 0 \\
l_{21} & 1 & 0 & . & 0 & 0 \\
: & : & : & & : & : \\
l_{11} & l_{12} & . . & 1 & . . & 0 \\
: & : & & : & & : \\
l_{n 1} & l_{n 2} & . . & . . & . . & 1
\end{array}\right]\left[\begin{array}{cccccc}
u_{11} & u_{12} & . . & u_{1 k} & . . & u_{1 n} \\
0 & u_{22} & . . & u_{2 k} & . . & u_{2 n} \\
: & : & & : & & . . \\
0 & 0 & . . & u_{k k} & . & u_{k n} \\
: & : & & : & & . . \\
0 & 0 & . . & 0 & . . & u_{n k}
\end{array}\right]}
\end{aligned}
$$

Decomposition Steps

$$
\begin{aligned}
\operatorname{step} 1: \tilde{a}_{i k} & =\sum_{m=1}^{k} l_{i n} u_{m k} \Rightarrow l_{i k} u_{k k}=\tilde{a}_{i k}-\sum_{m=1}^{k-1} l_{i n} u_{m k} ; i=k, \ldots, n \\
\tilde{l}_{i k} & =\tilde{a}_{i k}-\sum_{m=1}^{k-1} l_{i m} u_{m k} ; i=k, \ldots, n
\end{aligned}
$$

If $k=n$, set $u_{n n}=\tilde{l}_{n n}$ and DONE. $\operatorname{IP}(n)=n$
step 2: Find relative max $\left|\tilde{l}_{i k}\right|, r_{k}=$ row $\left(r_{k} \geq k\right)$
step 3: swap row k and row r_{k} in lower right $(n-k+1)$ subblock
of \tilde{A}. columns $\underline{l}_{\underline{l}}, \ldots \underline{l}_{\underline{l}}$ lower Δ since $r_{k} \geq k$
step 4: If $\tilde{l}_{k k} \neq 0, l_{i k}=\tilde{l}_{i k} / \tilde{l}_{k k} ; i=k+1, \ldots, n$
If $\tilde{l}_{k k}=0$, then OK since $l_{i k}=0$
step 5: Set $u_{k k}=\tilde{l}_{k k}$ and

$$
u_{k j}=\tilde{a}_{k j}-\sum_{m=1}^{k-1} l_{k n} u_{m j} ; j=k+1, \ldots, n ; k^{t h} \text { row of } U
$$

step 6: set $k=k+1$ and go to step 1 .

Practicalities \& Insights - 1

- Comments
- Don't need 3 matrices. All work can be done in place:

$$
\begin{aligned}
& l_{i k} \leftarrow a_{i k} i=k+1, \ldots, n \\
& u_{k j} \leftarrow a_{k j} j=k, \ldots, n \\
& {\left[\begin{array}{cccc}
u_{11} & u_{12} & . . & u_{1 n} \\
l_{21} & u_{22} & . . & u_{2 n} \\
: & : & & : \\
l_{n 1} & l_{n 2} & . . & u_{n n}
\end{array}\right]}
\end{aligned}
$$

and vector $I P$ that summarizes the permutation matrices

$$
P_{k}^{k}, k=1,2, \ldots, n
$$

- $\operatorname{det} P A=\operatorname{det} P$. $\operatorname{det} A=(-1)^{4 \text { Priost }} \prod_{i=1}^{n} u_{i}$
- P_{k}^{k} are symmetric and orthogonal so

$$
A=P_{1}^{n} P_{2}^{{ }_{2}^{2}} \ldots P_{n}^{n_{n}} L U
$$

Practicalities \& Insights - 2

- $A^{-1}=U^{-1} L^{-1} P_{n}^{r_{n}} \ldots P_{1}^{n}$
- Number of operations

$$
\begin{aligned}
\sum_{k=1}^{n} 2(k-1)(n-k+1) & =2 \sum_{i=1}^{n-1} i(n-i)=n^{2}(n-1)-\frac{n(n-1)(2 n-1)}{3} \\
& =\frac{n(n-1)(n+1)}{3}=O\left(\frac{n^{3}}{3}\right)
\end{aligned}
$$

- Relative round-off error
$\|\bar{L} \bar{U}-P A\|$ proportional to $k(A) f(n) \varepsilon_{m}$, where $k(A)=$ condition number of A and $\varepsilon_{m}=$ machine accuracy
- Pivoting is essential. Otherwise, the method can be unstable
- Accumulate all inner products in DOUBLE PRECISION

Solution of $A \underline{x}=\underline{b}-1$

- Remaining step: solution of $A \underline{x}=\underline{b}$

$$
\begin{aligned}
& P A \underline{x}=P \underline{b} \Rightarrow \underline{\tilde{b}}=P_{n}^{n n} P_{n-1}^{n-1} \ldots P_{1}^{\prime} \underline{b} \\
& \Rightarrow \text { swap } \underline{b} \leftrightarrow \underline{b} \text { etc. can do it in place } \\
& \Rightarrow L U \underline{x}=\underline{\tilde{b}}
\end{aligned}
$$

- Solve:
- $L \underline{y}=\underline{b}$; via FORWARD ELIMINATION and
- $\bar{U} \underline{x}=\underline{y}$; via BACKWARD SUBSTITUTION

$$
\left[\begin{array}{cccccc}
1 & 0 & 0 & . . & 0 & 0 \\
l_{21} & 1 & & & & 0 \\
: & & . . & & & 0 \\
l_{i 1} & l_{i 2} & . . & 1 & & 0 \\
: & & & & . . & 0
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
: \\
: \\
:
\end{array}\right]=\left[\begin{array}{c}
\tilde{b}_{1} \\
\tilde{b}_{2} \\
: \\
: \\
:
\end{array}\right] \Rightarrow \begin{aligned}
& y_{1}=\tilde{b}_{2} \\
& y_{2}=\tilde{b}_{2}-l_{21} y_{1} \\
& y_{k}=\tilde{b}_{k}-\sum_{j=1}^{k-1} l_{k j} y_{j} ; k=1,2, . ., n
\end{aligned}
$$

Solution of $A \underline{x}=\underline{b}-2$

- $O\left(n^{2}-n\right) / 2$ ops
- Can overwrite on \tilde{b}_{k} with y_{k}

$$
\left[\begin{array}{cccccc}
u_{11} & u_{12} & . . & u_{1 k} & . . & u_{1 n} \\
0 & u_{22} & & & & u_{2 n} \\
: & : & . . & & & : \\
0 & 0 & . . & u_{k k} & & u_{k n} \\
: & : & & & . . & : \\
0 & 0 & . . & . . & . . & u_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
: \\
: \\
: \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
y_{1} \\
y_{2} \\
: \\
: \\
: \\
y_{n}
\end{array}\right] \Rightarrow \begin{gathered}
x_{n}=y_{n} / u_{n n} \\
x_{n-1}=\frac{y_{n-1}-u_{n-1, n} x_{n}}{u_{n-1, n-1}} \\
x_{k}=\left(y_{k}-\sum_{i=k+1}^{n} l_{k i} x_{i}\right) / u_{k k}
\end{gathered}
$$

- $O\left(n^{2}+n / 2\right)$ ops
- Total ops $O\left(n^{2}\right) \Rightarrow$ Total $=O\left(n^{3} / 3\right)+O\left(n^{2}\right)$
\square Error bounds
- For Doolittle with DP accumulation of products

$$
\bar{L} \bar{U}=P(A+E) ;\|E\|_{\infty} \leq n g_{n} \in_{m}\|A\|_{\infty} ; g_{n} \leq 2^{n-1}
$$

- Pessimistic estimate. Generally $g_{n} \approx \min (8, n)$

Sensitivity of Linear Systems

- Sensitive of linear systems

Example :

$$
\begin{array}{ll}
8 x_{1}-5 x_{2}=3 & 0.66 x_{1}-3.34 x_{2}=4 \\
4 x_{1}+10 x_{2}=14 & 1.99 x_{1}+10.01 x_{2}=12
\end{array}
$$

- Suppose $\underline{b} \rightarrow \underline{b}+\delta \underline{b}$ where

$$
\begin{array}{ll|l|l}
\underline{b}+\delta \underline{b}=\left[\begin{array}{c}
2.96 \\
13.94
\end{array}\right] \Rightarrow \frac{\|\delta \underline{b}\|_{\infty}}{\|\underline{b}\|_{\infty}}=0.0043 & \underline{b}+\delta \underline{b}=\left[\begin{array}{c}
3.96 \\
11.94
\end{array}\right] \Rightarrow \frac{\|\delta \underline{b}\|_{\infty}}{\|\underline{b}\|_{\infty}}=0.005 \\
x_{\text {new }}=\left[\begin{array}{c}
0.993 \\
0.997
\end{array}\right] \Rightarrow \frac{\|\delta \underline{x}\|_{\infty}}{\| \underline{\|_{\infty}}}=0.007 \Rightarrow 0.7 \% \text { change } & \begin{array}{l}
x_{\text {new }}=\left[\begin{array}{c}
6 \\
0
\end{array}\right] \Rightarrow \frac{\|\delta \underline{x}\|_{\infty}}{\|\underline{x}\|_{\infty}}=5 \Rightarrow 500 \% \text { change } \\
\Rightarrow \text { well-conditioned } \\
\Rightarrow \text { Bode Sensitivity }: S_{b}^{x}=\frac{\|\delta \underline{x}\|_{\infty}}{\|\underline{x}\|_{\infty}} / \frac{\|\delta \underline{b}\|_{\infty}}{\|\underline{b}\|_{\infty}}=1.63
\end{array} \Rightarrow \Rightarrow \text { ill-conditioned } & \Rightarrow \text { Bode Sensitivity }=\frac{\|\delta \underline{x}\|_{\infty}}{\|\underline{x}\|_{\infty}} / \frac{\|\delta \underline{b}\|_{\infty}}{\|\underline{b}\|_{\infty}}=1000
\end{array}
$$

Error Analysis - 1

Let $\underline{\hat{x}}$ be the computed solution to the linear system $A \underline{x}=\underline{b}$ and let \underline{x}^{*} be the true solution. There are two measures of the discrepancy in $\underline{\hat{x}}$:

- error : $\underline{e}=\underline{x}^{*}-\underline{\hat{x}}$
- residual : $\underline{r}=\underline{b}-A \underline{\hat{x}}=A(\underline{x}-\underline{\hat{x}})=A \underline{e}$
\square Key results: (valid for any norm. we will use ∞-norm here)
- $L U$ decomposition with partial pivoting is guaranteed_to produce small residuals, i.e., small $\|\underline{r}\|$.

$$
\|r\|_{\infty} \leq n g_{n}\|A\|_{\infty}\|\underline{\hat{x}}\|_{\infty} \varepsilon_{m}
$$

- However, error depends on the condition number of A, i.e., how close A is to being "near singular".

$$
\|\underline{e}\|_{\infty} \leq n g_{n} \kappa(A)\|\underline{\hat{x}}\|_{\infty} \varepsilon_{m} ; \kappa(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}
$$

- Larger $\kappa(A) \Rightarrow$ error is larger or more sensitive to changes in A and \underline{b}. (Note: $\kappa(A)$ can be defined w.r.t. any norm)
\square Consider changes in b only:
- Suppose that $L U$ is exact, but the data vector \underline{b} is "noisy".
- Q: How "sensitive" is the solution?

Error Anallysis－ 2

$$
\begin{aligned}
& A\left(\underline{x}^{*}+\delta \underline{\hat{x}}\right)=\underline{b}+\delta \underline{b}=A \underline{x}^{*}+\delta \underline{b} \\
\Rightarrow & A \delta \underline{x}=\delta \underline{b} \\
& \|\delta \underline{x}\| \leq\left\|A^{-1}\right\|\|\delta \underline{b}\| \\
& \text { since, } 1 /\left\|x^{*}\right\| \leq\|A\| /\|b\|, \text { we have } \quad\left\|A \underline{x}^{*}\right\|-\|\underline{b}\| \leq\|A\|\left\|\underline{x^{*}}\right\| \Rightarrow \frac{1}{\|\underline{b}\|} \geq \frac{1}{\mid A\| \|\left\|\underline{x^{*}}\right\|} \\
& \frac{\|\delta x\|}{\left\|x^{*}\right\|} \leq \frac{\left\|A^{-1}\right\|\| \| A\| \| \delta \underline{b} \|}{\|\underline{b}\|}=\kappa(A) \frac{\|\delta \underline{b}\|}{\|\underline{b}\|} \kappa(A) \text { is like Bode Sensitivity }
\end{aligned}
$$

\square Consider changes in A only：
－The computed solution $\underline{\hat{x}}$ is the true solution to $(A+E) \underline{\hat{x}}=\underline{b}$ ，
where $\|E\|_{\infty} \leq n g_{n} \varepsilon_{m}\|A\|_{\infty}$

$$
\Rightarrow \underline{r}=\underline{b}-A \underline{\hat{x}}=E \underline{\hat{x}}
$$

－So，

$$
\begin{aligned}
& \|\underline{r}\|_{\infty}=\|E \underline{\hat{x}}\|_{\infty} \leq\|E\|_{\infty}\|\underline{\hat{x}}\|_{\infty} \leq n g_{n} \varepsilon_{m}\|A\|_{\infty}\|\underline{\hat{x}}\|_{\infty} \\
& \frac{\|\underline{r}\|_{\infty}}{\|A\|_{\infty}\|\underline{\hat{x}}\|_{\infty}} \leq n g_{n} \varepsilon_{m} \Rightarrow \text { size of residuals is small }
\end{aligned}
$$

Error Analysis－ 3

－What about error，$\underline{e}=\underline{x}^{*}-\underline{\hat{x}}$ ？

$$
\begin{aligned}
& \underline{e}=A^{-1} \underline{r} \\
& \|\underline{e}\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|\underline{r}\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|E\|_{\infty}\|\underline{\hat{x}}\|_{\infty} \\
& \frac{\|\underline{e}\|_{\infty}}{\|\underline{\hat{x}}\|_{\infty}} \leq\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty} \frac{\|E\|_{\infty}}{\|A\|_{\infty}}=n g_{n}\left\|A^{-1}\right\|_{\infty}\|A\|_{\infty} \varepsilon_{m}=n g_{n} \varepsilon_{m} \kappa(A)
\end{aligned}
$$

－So，condition $A, \kappa(A)$ is an amplification factor．
－$\kappa(A) \geq 1$ is a measure of how close A is to singularity．
－Larger $\kappa(A) \Leftrightarrow$ more difficult to solve $A \underline{x}=\underline{b}$
$\square \quad$ Changes in both A and b
－It is easy to show that（e．g．，by linearity and neglecting second order term $E \underline{e}$ ）that

$$
\frac{\|\underline{e}\|_{\infty}}{\|\underline{\hat{x}}\|_{\infty}} \leq\left[n g_{n} \varepsilon_{m}+\frac{\|\delta \underline{b}\|_{\infty}}{\|\underline{b}\|_{\infty}}\right] \kappa(A)
$$

Test Matrices

- Some difficult test matrices:
- Hilbert $a_{i j}=1 /(i+j-1) ; \kappa(A)=10^{n} ; n=$ size of matrix

$$
\left[\begin{array}{cccc}
1 & 1 / 2 & 1 / 3 & 1 / 4 \\
1 / 2 & 1 / 3 & 1 / 4 & 1 / 5 \\
1 / 3 & 1 / 4 & 1 / 5 & 1 / 6 \\
1 / 4 & 1 / 5 & 1 / 6 & 1 / 7
\end{array}\right]
$$

- Poisson $a_{i j}=a_{i-1, j}+a_{i, j+1} ; \kappa(A)=10^{n} ; n=$ size of matrix

$$
\left[\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 2 & 3 & 4 \\
1 & 3 & 6 & 10 \\
1 & 4 & 10 & 20
\end{array}\right]
$$

- Others from books on test matrices

How to Reduce Errors?

$\square \quad$ What can we do about errors?

- Iterative improvement (method of residual correction)
- Balancing the A matrix
\square Iterative improvement
- Suppose $A \underline{x}=\underline{b}$ has been solved via $P A=L U$
- Suppose $\underline{\hat{x}}=\underline{x}_{0}$ is the solution
- Can I improve the solution \underline{x}_{0} knowing the residual $\underline{r}_{\theta}=\underline{b}-A \underline{x}_{0}$? YES !!
- $L U \sim O\left(n^{3} / 3\right) ; \underline{x}_{0}$ in $O\left(n^{2}\right)$

Consider true $\underline{x}^{*}=\underline{x}_{0}+\underline{e}$
$\Rightarrow A \underline{x}^{*}-\underline{b}=0 ; A \underline{x}_{0}-\underline{b}+A \underline{e}=0 ;$
$\Rightarrow A \underline{e}=\underline{b}-A \underline{x}_{0}={\underset{r}{r}}^{(}$(residual)

- So, solve for \underline{e} via $\bar{L} \bar{U} \underline{e}=P \underset{r}{r}$ using decomposition obtained already !
- Feasible to do, since requires only $O\left(n^{2}\right)$ operations.

Iterative Improvement - 1

- Then $\underline{x}_{1}=\underline{x}_{0}+\underline{e}$ is the improved solution. We can repeat the process.
- But, critical that we accumulate $\underline{r}_{0}=\underline{b}-A \underline{x}_{0}$ in double precision. Otherwise, \underline{e} obtained will be worthless.
- Geometrically,

$$
r_{o i}=b_{i}-\sum_{j=1}^{n} a_{i j} x_{0 j}
$$

Iterative Improvement - 2

$$
\begin{gathered}
\begin{array}{c}
\underline{x}_{0}=\underline{\hat{x}} \\
l=0
\end{array} \\
l=l+1 \square \\
\begin{array}{l}
\underline{r}_{l}=\underline{b}-A \underline{x} \\
\\
\text { Solve } \bar{L} \bar{U} e_{l}=P \underline{r}_{l} \text { for } \underline{e}_{l}
\end{array}
\end{gathered}
$$

rapid convergence, but still up
against finite word length

$$
\Rightarrow \text { do 2-3 iterations }
$$

\square Heuristic: If $k_{\infty}(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}=2^{q}$ then after " l " iterations through the loop, \underline{x} will have approximately $\min (t, l(t-q))$ bits of accuracy
\square Note: need original A stored somewhere to compute residual
\square Stopping criteria

- If (1) $\|r\|_{\infty} /\|x\|_{\infty}<\varepsilon$
(2) $l>l_{\text {max }}$
(3) $\left\|\underline{e}_{l}\right\| /\left\|\underline{x}_{l}\right\|>\left\|\underline{e}_{l-l}\right\| /\left\|\underline{x}_{l-1}\right\| \ldots$ guards against oscillations, when approaching ε_{m}

Convergence Analysis

$\square \quad$ When does this process work ? i.e., will $\underline{x}_{l} \rightarrow \underline{x}^{*}$

- Solution $\underline{e}_{l}=\underline{x}_{l+1}-\underline{x}_{l}$ satisfies
$(A+E) \underline{e}_{l}=\underline{r}_{l}$ with $\|E\| \leq \varepsilon_{m} f(n)\|A\| ; f(n)=n g_{n}$ for ∞-norm
- $A(I+F) \underline{e}_{l}=\underline{r}_{l} ; F=A^{-1} E$ and $\|F\| \leq k(A) \varepsilon_{m} f(n)$
- Assume $\|F\|<1 / 2$; so $(I+F)^{-1}$ exists and

$$
\begin{aligned}
& (I+F)^{-1}=I-F+F^{2}-F^{3}+\ldots \\
& \left\|(I+F)^{-1}\right\| \leq 1+\|F\|+\|F\|^{2}+\|F\|^{3} \ldots=1 /(1-\|F\|) \\
& A(I+F) \underline{e}_{l}=\underline{r}_{l}=\underline{b}-A \underline{x}_{l} \\
& (I+F) \underline{e}_{l}=A^{-1} \underline{b}-\underline{x}_{l}=\left(\underline{x}^{*}-\underline{x}_{l}\right) \Rightarrow(I+F)\left(\underline{x}_{l+1}-\underline{x}_{l}\right)=\left(\underline{x}^{*}-\underline{x}_{l}\right) \\
& (I+F) \underline{x}_{l+1}=F \underline{x}_{l}+\underline{x}^{*} \Rightarrow(I+F)\left(\underline{x}_{l+1}-\underline{x}^{*}\right)=F\left(\underline{x}_{l}-\underline{x}^{*}\right) \\
& \left(\underline{x}_{l+1}-\underline{x}^{*}\right)=(I+F)^{-1} F\left(\underline{x}_{l}-\underline{x}^{*}\right) \\
& \left\|\underline{e}_{l+1}\right\| \leq\left\|(I+F)^{-1}\right\|\|F\|\left\|\underline{e}_{l}\right\| \leq[\|F\| /(1-\|F\|)]\left\|\underline{e}_{l}\right\|
\end{aligned}
$$

- Since $\|F\|<1 / 2 \Rightarrow\left\|\underline{e}_{+1}\right\| \leq \tau\left\|\underline{e}_{\|}\right\|$where $\tau=\|F\| /(1-\|F\|)<1$
\Rightarrow linear convergence
- If $\tau=0.1$, pick up at least one digitaccuracy with each iteration.

Balancing

- Balancing
- Can we transform $A \rightarrow \bar{A} \ni \kappa(\bar{A}) \ll \kappa(A)$ and solve $A \underline{x}=\underline{b}$ using \bar{A}. Yes, in some cases, but not by a scalar.
- Need Diagonal scaling

$$
\begin{aligned}
& \bar{A}=D^{-1} A D ; D=\operatorname{diag}\left(d_{1} d_{2} \ldots . d_{n}\right) \\
& \quad=\operatorname{diag}\left(2^{i_{1}} 2^{i_{2}} \ldots .2^{i_{n}}\right) \\
& A \underline{x}=\underline{b} \Rightarrow D^{-1} A D D^{-1} \underline{x}=D^{-1} \underline{b} \Rightarrow \bar{A} \underline{y}=\bar{b} \Rightarrow \text { solve for } \underline{y} \text { and } \underline{x}=D \underline{y} \\
& \bar{A}=\left[a_{i j} d_{j} / d_{i}\right] ; \bar{b}_{i}=b_{i} / d_{i} ; \\
& \Rightarrow \text { Try to pick } d_{k} \text { such that } k^{\text {th }} \text { row of } \bar{A} \text { and } k^{\text {th }} \text { column of } \bar{A} \\
& \quad \text { have } \approx \text { same norm. That is, } \sum_{j}\left|\bar{a}_{k j}\right| \approx \sum_{i}\left|\bar{a}_{i k}\right| \\
& \Rightarrow \sum_{j}\left|a_{k j} d_{j} / d_{k}\right|=\sum_{j}\left|a_{j k} d_{k} / d_{j}\right|
\end{aligned}
$$

\Rightarrow Balancing is useful.
\Rightarrow Note that similarity transformation has no effect on $k(A)$ of a symmetric matrix.
$\Rightarrow \quad$ Usually standard controllable form and standard observable form have worst $\kappa(A)$

Estimation of $k(A)$ - 1

\square Estimation of $\kappa(A)$: Method 1
Assume $\delta \underline{b}=0$
$\|\underline{e}\|_{\infty} \leq n g_{n} \kappa(A)\|\underline{\hat{x}}\|_{\infty} \varepsilon_{m}$
From the $1^{s t}$ step of iterative process, obtain \underline{e} and $\underline{\hat{x}}$.
Estimate $k(A) \approx\left[1 / \varepsilon_{m} n g_{n}\right]\left[\|\underline{e}\|_{\infty} /\left\|\hat{\underline{x}}_{1}\right\|_{\infty}\right]$
Do this on $1^{\text {st }}$ step only. Use $g_{n} \approx 1$.
Generally, the estimate is not very accurate!
\square Estimation of $\kappa(A)$: Method 2 (provides a good estimate)

- Consider $\kappa(A)=\|A\|_{\infty}\left\|A^{-1}\right\|_{\infty}$
- Can easily obtain $\|A\|_{\infty}$
- The problem is to get $\left\|A^{-1}\right\|_{\infty}$.
- Consider $A y=\underline{d}$

$$
\begin{aligned}
\Rightarrow & \|y\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|d\|_{\infty} \\
& \left\|A^{-1}\right\|_{\infty} \geq\|y\|_{\infty} /\|d\|_{\infty}
\end{aligned}
$$

- Choose d_{k} from ($-1,1$). can do it if A is upper triangular. Idea: choose $\underline{d} \ni\|y\|_{\infty}$ is as large as possible !

Estimation of $k(A)$ - 2

- Read: A.K. Cline, C.B. Moler, G.W. Stewart and J.H. Wilkinson, " An estimate for the condition number of a matrix," SIAM J. of Numerical Analysis, vol. 16, 1979, pp. 368-375.
- Suppose A is upper triangular

$$
\begin{gathered}
{\left[\begin{array}{cccccc}
a_{11} & a_{12} & . . & a_{1 k} & . . & a_{1 n} \\
0 & a_{22} & & & & a_{2 n} \\
: & & . . & & & : \\
0 & 0 & . . & a_{k k} & & a_{k n} \\
: & & & & . . & \vdots \\
0 & 0 & . . & . . & . . & a_{m n}
\end{array}\right]\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
\vdots \\
\vdots \\
y_{n}
\end{array}\right]=\left[\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
\vdots \\
\vdots \\
d_{n}
\end{array}\right] \Rightarrow y_{k}=\left(d_{k}-p_{k}\right) / a_{k k}} \\
\text { where } p_{k}=\sum_{j=k+1}^{n} a_{k j} y_{j}
\end{gathered}
$$

Estimation of $k(A)$ - 3

\square Computation of p_{i}^{s} : Initally let $p_{i}=0 \quad i=1,2, \ldots, n$

$$
\text { For } k=n, \ldots ., 1 \mathrm{DO}
$$

$$
\begin{aligned}
& y_{k}=\left(d_{k}-p_{k}\right) / a_{k k} \\
& p_{i}=p_{i}+a_{i k} y_{k} ; i=1,2, \ldots, k-1
\end{aligned}
$$

End DO
$\square \quad \mathrm{Q}:$ Can we pick d_{k} such that $\|y\|_{\infty}$ is large $\Rightarrow\|y\|_{\infty} \gg\|d\|_{\infty}$
A: select d_{k} from $(-1,1)$ according to whether $\left(1-p_{k}\right) / a_{k k}$ or $-\left(1+p_{k}\right) / a_{k k}$ is large, i.e., $y_{k}=\left(-\operatorname{sign}\left(p_{k}\right)-p_{k}\right) / a_{k k}$
\square Since $\|d\|_{\infty}=1 \Rightarrow\|\kappa\|_{\infty}=\|A\|_{\infty}\|y\|_{\infty},\|\kappa\|_{\infty}=$ condition number of A using ∞ - norm.

Estimation of k(A) - 4

\square A more complicated estimator:

- Encourage growth in y_{k} and running sums of p_{1}, \ldots, p_{k-1}
- Algorithm:

Let $w_{1}, w_{2}, \ldots, w_{n}$ be a set of weights $\left(w_{i} \propto 1 /\left|a_{i i}\right|\right)$

$$
p_{i}=0 \quad i=1,2, \ldots, n
$$

$$
\text { For } k=n, \ldots, 1
$$

$$
\begin{aligned}
& y_{k}^{+}=\left(1-p_{k}\right) / a_{k k} \\
& y_{k}^{-}=-\left(1+p_{k}\right) / a_{k k} \\
& s^{+}=\left|y_{k}^{+}\right|+\sum_{i=1}^{k-1} w_{i}\left|p_{i}+a_{i k} y_{k}^{+}\right| \\
& s^{-}=\left|y_{k}^{-}\right|+\sum_{i=1}^{k-1} w_{i}\left|p_{i}+a_{i k} y_{k}^{-}\right|
\end{aligned}
$$

Estimation of $k(A)$ - 5

if $s^{+} \geq s^{-}$then

$$
y_{k}=y_{k}^{+}
$$

else

$$
y_{k}=y_{k}^{-}
$$

end if

$$
p_{i}=p_{i}+a_{i k} y_{k} ; i=1,2, \ldots, k-1
$$

end

- Requires $O\left(5 n^{2} / 2\right)$ flops.
\Rightarrow can devise a lower Δ version easily.
\square For general A : know $L U$ of $P A$
- Recall that

$$
\begin{aligned}
& \left\|A^{-1}\right\|=1 / \min _{\underline{x}} \frac{\|A \underline{x}\|}{\|\underline{x}\|}=\max _{\underline{x}} \frac{\|\underline{x}\|}{\|A \underline{x}\|}=\max _{\underline{\underline{x}}} \frac{\left\|A^{-1} \underline{y}\right\|}{\|\underline{y}\|} \\
& \text { where } \underline{y}=A \underline{x} .
\end{aligned}
$$

Estimation of $x(A 1)=6$

- Idea: pick \underline{y} carefully, solve $A \underline{z}=\underline{y}$ using $L U$ factors and use $\left\|A^{-1}\right\|_{\infty}=\|\underline{z}\|_{\infty} /\|y\|_{\infty}$.
- How to pick y :
- Suppose A is ill-conditioned $\Rightarrow U$ is ill-conditioned, L is generally OK.
- Recall that $A^{\dagger}=V \Sigma^{\dagger} U^{T}$ where V and U are orthogonal (note: U is not an $L U$ factor here !!) \Rightarrow vector $£$ tends to be rich in the direction of left singular vector associated with $\sigma_{\min }(A)$.
- One way of getting such a \underline{y} is to solve : $A^{T} P \underline{y}=\underline{d}$, where \underline{d} is a vector with ± 1 elements, which are chosen to maximize $\|y\|_{\infty}$
- So, to get $\underline{\Sigma}$:

1) Solve $U^{T} \underline{w}=\underline{d}$ using a lower Δ version of the algorithm.
2) Solve $L^{T}[P \underline{y}]=\underline{w} \Rightarrow \underline{y}=P\left(L^{-1}\right)^{T}\left(U^{-1}\right)^{T} \underline{d}=\left(A^{-1}\right)^{T} \underline{d}$ or solves $A^{T} \underline{y}=\underline{d}$

Estimation of $k(A)$ - 7

To get \underline{z} :
3) Solve $L \underline{r}=P \underline{y}$
4) Solve $U \underline{z}=\underline{r} \Rightarrow \underline{z}=U^{-1} L^{-1} P \underline{y}=A^{-1} \underline{y}$ or solves $A \underline{z}=\underline{y}$

$$
\begin{aligned}
& \|\underline{z}\|_{\infty} \leq\left\|A^{-1}\right\|_{\infty}\|y\|_{\infty} \\
& \|\kappa(A)\|\left\|_{\infty} \approx\right\| A\left\|_{\infty} .\right\| \underline{z}\left\|_{\infty} /\right\| y \|_{\infty}
\end{aligned}
$$

Example: consider the following 2×2 matrix and its factors

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
0.66 & 3.34 \\
1.99 & 10.01
\end{array}\right] \\
& \\
& =P L U=\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]\left[\begin{array}{cc}
1 & 0 \\
-0.3317 & 10.01
\end{array}\right]\left[\begin{array}{cc}
1.99 & 10.01 \\
0 & 0.0201
\end{array}\right] \\
& \text { - Using } \underline{d}=\left[\begin{array}{c}
1 \\
-1
\end{array}\right] \text {, step 1 gives: } \underline{w}=\left[\begin{array}{c}
0.5025 \\
-300.0075
\end{array}\right]
\end{aligned}
$$

Estimation of $k(A)$ - 8

- step 2 gives: $P \underline{y}=\left[\begin{array}{c}-99.0100 \\ -300.0075\end{array}\right]$
- step 3 gives: $\underline{r}=\left[\begin{array}{c}-99.0100 \\ -332.8491\end{array}\right]$
- step 4 gives: $\underline{z}=\left[\begin{array}{c}83248 \\ -16560\end{array}\right]$
- $\quad\|\kappa(A)\|_{\infty} \approx\|A\|_{\infty} \cdot\|z\|_{\infty} /\|y\|_{\infty}=12 * 83248 / 300.0075=3329.8$
- Actual condition number of A using ∞-norm $=4005$
- The estimate is within 16.854% of actual value.
\square Rank-one updates
- Suppose have solved $A \underline{x}=\underline{b}$. But, now want to solve a slightly modified problem: $\tilde{A} \underline{\tilde{x}}=\underline{b}$ where $\tilde{A}=A+\underline{u} \underline{v}^{T}$
- Know from Sherman-Morrison-Woodbury formula that:

$$
\left(A+\underline{u} \underline{v}^{T}\right)^{-1}=A^{-1}-\frac{A^{-1} \underline{u} \underline{v}^{T} A^{-1}}{\left(1-\underline{v}^{T} A^{-1} \underline{u}\right)}
$$

Rank One Updates

- So, to solve

$$
\tilde{A} \underline{\tilde{x}}=\left[A+\underline{u} \underline{v}^{T}\right] \underline{x}=\underline{b}:
$$

(a) solve $A \underline{x}=\underline{b} \Rightarrow \underline{x}=A^{-1} \underline{b}$
(b) solve $A \underline{y}=\underline{u} \Rightarrow \underline{y}=A^{-1} \underline{u}$
(c) solve $A^{T} \underline{z}=\underline{v} \Rightarrow \underline{z}=\left[A^{-1}\right]^{T} \underline{v}$
(d) obtain $\alpha=1 /\left(1-\underline{v}^{T} \underline{y}\right)$
(e) obtain $\beta=\underline{z}^{T} \underline{b}$
(f) obtain $\underline{\tilde{x}}=\underline{x}+\alpha \beta \underline{y}$

- For LU updates with rank-one corrections to a matrix, see:
"P.E. Gill, G.H. Golub, W. Murray, and M.A. Saunders, " Methods for modifying matrix factorizations ," Mathematics of Computation, Vol. 28, pp. 311-350, 1974 .

Summary

$\square \quad$ Why do we need to solve $A \underline{x}=\underline{b}$?
\square Concepts of forward elimination and backward substitution
\square Basic decomposition methods: $L U, Q R$, Cholesky, SVD
$\square L U$ decomposition
$\square \quad$ Sensitivity of the solution to $A \underline{x}=\underline{b}$

- Error and residual
- Condition number as an amplification factor for error
\square Iterative improvement
\square Estimation of condition number
\square Solution when A is modified by a rank-one correction matrix

