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(l Outline of Lecture 4 |

Why do we need to solve Ax=Db ?

Concepts of forward elimination and backward substitution
Basic decomposition methods: LU, QR, Cholesky, SVD

LU decomposition

Sensitivity of the solutionto Ax =b

 Error and residual

« Condition number as an amplification factor for error

(

Iterative improvement

O

Estimation of condition number

kL

O Solution when A is modified by a rank-one correction matrix

Copyright ©2008 by K. Pattipati

YO L



(I Background I

This is one of the most

o Solution of Ax=b = b:ix_ai Important problems in
- - =7 | NUMERICAL ANALYSIS

 Factl: a solution exists only if b is a linear combination of the
columns of A (EXISTENCE CONDITION)
= beR(A)

 Fact 2: for an n x n matrix A, Ax = b has a unique solution if and
only if N(A) is null = Ax = 0 has the only solution x =0
(UNIQUENESS CONDITION)
= Rank(A)=n = dim(R(A)) =n= Ais invertible

O Key problem

[ N N N NS .

O Restricted problem: a0
Assume A is n x n, Rank(A) = n = A is nonsingular .

o d

We want to solve Ax = b -

3 Copyright ©2008 by K. Pattipati



(WhySc)lveAng?-l

0 Why do we need to solve Ax =b ?

1) Data fitting via linear equations (occurs in a wide variety of
applications including nonlinear programming, interpolation,
regression, etc.)

* Suppose, we want to fit an nt" order polynomial to the data

{x,f(x):i=012,..,n}

[ N N N NS .

 Thatis, want

f(x)=a +ax+ax +..+ax"

4 Copyright ©2008 by K. Pattipati



(Whych)lveAng?-z

o
. |
o
: then, the problem of finding {a;: i =0, 1, 2, ..., n} is equivalent to solving:
. Lo % %X |[ag] [f(%)
a 1o x5 x| & [=] f(x)
1 X, Xr% XR | ay | _f(Xn)_

transpose of VVan der Monde matrix
2) s.ssolutionto x=Ax+Bu; = Ax=Db;

b=-Bu

3) Solution of nonlinear equations via Newton’s method

. g(x*) ~g(x)+Vvg' (>_<k)(>_<*—>_<k)+...
« approximate Xy,; such that the following first order condition is

satisfied:
Q(X*) ~ g (% )+ I (X ) (X0 =X, ) =0; where J(x, )= VQT (%) aa
= 3 (%) (K1 %) = =9 (%) = Xioa = X ~[3 (3 )T 9 (%) 3
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Vo5 (I Why Solve Ax=H7?-3 I

4)  Minimization of a scalar function w.r.t. n variables x,, ..., X,

« Approximate f(x) by a quadratic function around the current

minimum; .
f ()_(k+1) ~ f ()_(k )+Vi ()_(k )()_(k+1 _)_(k)

+ ()_(k+1 — Xk )T Vzi ()_(k )()_(k+1 — Xk )/ 2

« Want X,.,; to be the optimum of Quadratic function

[ N N N NS .

= Vf(%1)=0
= Vzi()_(k)()_(k+1_)—(k):_vi()—(k)

5) In computing e”t, JeAt via Pade approximation, we come across
solutions of a sequence of linear equations

Ax =b., i=12,... 1

=i’ d'a
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(I Exploit Key Facts-1 I

d  Method of Attack: Break it up into simpler subproblems
= Decomposition

« FACT1: DIAGONAL & TRIANGULAR SYSTEMS OF EQUATION
ARE EASIER TO SOLVE

— Lower triangular system of equations can be solved via Forward

Elimination
X =0/l
l, 0 - 0]l X b, Xp = (0 =lpyX) /1, etc
Inl In2 Inn Xn bn

n-1
Xo = By 1 Xi) oy
j=1

— FORWARD ELIMINATION requires O(n4/2) operations

— Similarly, upper triangular system of equations can be solved via .
backward substitution "y

Copyright ©2008 by K. Pattipati
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@ (I Exploit Key Facts -2 I

8

X, =b, /u.,
_Ull U12 Uln 1 Xl | _bl | Xn—l - (bn—l o un—l,nxn) / un—l,n—l’ etC
0 Uy Ugp || X2 [=| 0y | =
0 e u X b n
nn n n —_
) T T T X = (bl_zuljxj)/ull
j=2

— BACKWARD SUBSTITUTION requires O(n?/2) operations

« FACT2: ORTHOGONAL MATRICES ARE EASY TO INVERT.
STABLE NUMERICALLY = DO NOT “SCREW UP” THE
ORIGINAL PROBLEM.

> Q1=Q"; oAzl =|Al, ; [Qxl, =[x, etc

Copyright ©2008 by K. Pattipati
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(I Decomposition Methods - 1 I

d DECOMPOSITION METHODS BASED ON FACT1
A IS an n x n matrix

1) LU Decomposition (Doolittle decomposition) .... Lecture 4
— Writes matrix A=LU or PA=LU
— P is a permutation matrix (permutes rows and columns)
— Can also write itas : PA=LDU
— Solution of PAX=Pb = LUx=Pb = Ly=Pb; Ux=Yy
~ — Once have L & U, can solve Axi=b;, i > 1 in O(n?) operations
— One of the most widely used methods for solving linear systems

2) If A=ATand PD ... Lecture 5
A=LL or A= LDL' (Cholesky decomposition)
— One of the best methods for testing if A is a PD matrix. a'a

Copyright ©2008 by K. Pattipati



(I Decomposition Methods - 2 I

0 DECOMPOSITION METHODS BASED ON FACTS 1 & 2

« Useful for general A, e.g., Least Squares Estimation... see Lectures
6-8

1) A=QR;Q orthogonal = Q*=Q", R upper triangular.......Lectures 6-
Ax=b=QRx=b orRx=Q'b=b
= upper triangular system of equations = backward substitution

[ N N N NS .

2) Singular Value Decomposition (SVD)...Leturel?2
A=UXV'; U,V are orthogonal
= IV x=U'b; Zy=U"b; y=V'x= x=Vy

—=UXV'x=b

10 Copyright ©2008 by K. Pattipati



N5 (I LU Decomposition I

0 LU Decomposition

 Belongs to the class of direct methods
« A=LU = want to determine n2+n entries from n? entries
= Can fix either L = unit lower A or U= unit upper A

[ N N N NS .

1 0 .. 0 u. u. .. U

11 12 In

, 1 .. 0 O u, .. u,
L: . . . U: . . .
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A=LU=| "

— A= ;L L=

12 Copyright ©2008 by K. Pattipati
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5 Example: |5 7

4

- A
1

I

LU Decomposition as Dyadic Sum

6

L U
0 ull u12 e uln all alZ a1n
0 0 u22 e u2n _ aZl a22 " a'2n
1_ | O O unn | _anl an2 " a‘nn |

Note:l u, has non-zero elements in
the lower (n—k +1) by (n—k +1) block only

kL
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N 2 (I Decomposition Process I

« The decomposition is accomplished in n passes
* Onpass k, we get
a) Uy
b) column k of L
c) rowkofU
« Initially, we start with the first column of A
al _Illull :> u _a11/I11:a11 :> I11:1:a11/u11
a,=Lu =1 =a/lu,

21711

a =lu =1 =alu,

nl 11
. A_Iso a;=Uyily; = Usj= &y,
= first row of U = first row of A

* Finished computing the first column of L and first row of U a4
 The sequence of computation is: : :

u, — Diag(U); | — first column of L; u] — first row of U (remaining part) aa

Copyright ©2008 by K. Pattipati
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NI & (I Practical Issues I

* Note: a;; and a;; are used once and never again
— Can overwrite I, and u," in the first column and row of A

Except for I,;, which we know is 1 any way

|, «<—a /a,6i=2..,n
u, <a,Jj=L2..n

d Problem: What if a;,=0 ?

0 1 :
Example: L 6} nonsingular , but a,,=0

Copyright ©2008 by K. Pattipati
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NS (Caneept of Pivoting - 1

O Pivoting Idea

1)Compute I, ,..., |.; except for division = I;;uy,
2) Find the largest | I;; | relative to initial row i norm

>

— Assume that the maximum occurs in row r,

—

| :
il \vll
| aij |

|
= I =arg maxX ——

Sla, |

J
= 3) Swaprowr,and linAand I, Let IP(1)=r;
What dose it mean ?

Copyright ©2008 by K. Pattipati



a (I Concept of Pivoting - 2|

o .

: Multiply A by 0 0 1 0

: 0 1 0

W R'= 2 8 1 8 PERMUTATION MATRIX
_O O_

Note: P® isasymmetric and orthogonal (R")”*=R"
4)  Divide throughout by (new) |, #0togetl,, ,..., 1,

o

5) Uy = l; (new). In actuality, 1, replaces ay;.

o d

A So, really have found the first LU factor, I, u;" of B*A=A and notof |3 =

All a0

e  Can we do it recursively? Is it useful? YES! :

16  Coyright ©2008 by K. Pattipati TYI L1
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Vo5 (I LU Decomposition of PA |

d Consider the situation at column k > 2. Get column k of L and row k
of U from column k and row k of A

[ N N N NS .

k-1
PP ?..R*A=>"lu’ + Lu; +other terms
1

A

17 Copyright ©2008 by K. Pattipati
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step 1: & —lemumkzl =8 ->Ilu ;i=k,.,n
m=1

ik~ kk

k-

Z i on

Ifk =n,setu_=I_and DONE. IP(n)=n
step 2: Find relatlve max |l |, r =row (r. >k)
step 3: swap row k and row r, in lower right (n—k +1) subblock

of A columns |,...l lower A since r >k

stepd: If I, =0, 1 =I /1 ;i=k+1,..,n
If |, =0, then OK sincel =0
step 5: Setu, =I_ and

Z WU j=k+1..,mk" row of U

step 6: set k =k +1 and go to step 1.

Copyright ©2008 by K. Pattipati
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d Comments

* Don’t need 3 matrices. All work can be done in place:

When done

and vector IP that summarizes the permutation matrices

. detPA=det P. detA=(-1)"""]]u,
- B*are symmetric and orthogonaﬁlso

Copyright ©2008 by K. Pattipati

. <a i=k+1..,n

u, <-a, J=k,..,n

u

11

21

nl

u

12

u

22

n2

u
u

u

1n

2n

nn

P*.k=12,..,n

A=P"P2. P"LU

¥#+——|Practicalities & Insights - 1 |
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{Praetiealities & Insights - 2 I

. A'=UL'PR..P
* Number of operations

S 2(k-D(n-k+1) =23 i(n-i) = n*(n-1) -

_n(n-1)(n+1) _O(n_“‘)
B 3 -3

n(n-1)(2n-1)
3

» Relative round-off error
| LU —PA|| proportional to k(A) f (n)e._,
where k(A) = condition number of A and £ = machine accuracy

* Pivoting is essential. Otherwise, the method can be unstable
« Accumulate all inner products in DOUBLE PRECISION a4

Copyright ©2008 by K. Pattipati



s X | Solution of Ax=5-1 I
o
: O Remaining step: solution of Ax=b
a PAx=Pb=b=P"P" Pp
| ..
N —swap b <> b etc. can do it in place
— LUx=b
d  Solve:

e Ly= b; via FORWARD ELIMINATION and
« Ux=y ; via BACKWARD SUBSTITUTION

1 0 0 . 0 0]y,
I21 1 y2

v O

.
N

21 Copyright ©2008 by K. Pattipati
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¥/ solutionofAx=p-2 |

. O(n°—n)/2 ops

* Can overwrite on b, withy,

u11 u12 v ulk ' uln X1 y1 X = y /U
O u22 u2n XZ y2 y _ u X

: :> Xn_l — n-1 n-1,n" 'n

= unfl,nfl
O O ukk ukn : n
: X, :(yk_zlkixi)/ukk
i=k+1
0 0 u, L% | |V, ]

e O(n*+n/2) ops
* Total ops O(n*) = Total = O(n’/3)+0O(n?*)

O Error bounds

* For Doolittle with DP accumulation of products : :

LU =P(A+E); [|E|.<ng, &l Al.; 9, <2", jj

* Pessimistic estimate. Generally g, = min(8,n) r

Copyright ©2008 by K. Pattipati TY YL :
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O Sensitive of linear systems

' (I Sensitivity of Linear Systems l

Example :
8X, —5X, =3 0.66x —3.34x, =4
4x +10x, =14 1.99x, +10.01x, =12
1 ~
(L1) \Wanel
0610375 35 X
e Suppose b —b+ ob where
2.96 3.96
b+ ob= :M:O.OO% b+ ob= :Mw.oos
13.94]  ||bll, 11.94] bl
0.993 6
= = oxll. _ 0.007 = 0.7% change || X, =| . |= loxll. _ 5= 500% change
0.997] I xIL. 0] lixIL. 42
= well-conditioned = ill-conditioned D
= Bode Sensitivity : S, = lox]l. /|| obl. =1.63||= Bode Sensitivity = | 55”“’/ Iobl. =1000 J:
[ X1l lIbll, I x1l, 1B, o
Copyright ©2008 by K. Pattipati ‘ . . . ‘ ‘
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Ve (I Error Analysis - 1 l

Let X be the computed solution to the linear system Ax = band let X~ be the true
solution. There are two measures of the discrepancy in X:

A

-error: e=X —X

-residual: r =b—AX = A(X —X) = Ae

O Key results: (valid for any norm. we will use co-norm here)
» LU decomposition with partial pivoting is guaranteed to produce
small residuals, i.e., small ||r||.
Iril.<ng, I AILIRIL &,
» However, error depends on the condition number of A, i.e., how
close A is to being “near singular”.
lell,.<ng x(A)IRI], &,; &(A) =l ALIIAL,
 Larger «(A) = error is larger or more sensitive to changes in A
and b. (Note: «(A) can be defined w.r.t. any norm)

«d o

L Consider changes in b only: a2
* Suppose that LU is exact, but the data vector b is “noisy”. : :

* Q: How “sensitive” is the solution? a
Copyright ©2008 by K. Pattipati ‘ . . . ‘ :
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Ve (I Error Analysis - 2 l

AX +0X)=b+6b=Ax +6b
= AdX=0Db
| ox[I<|| A™[lll ob ||
since, 1/ x"[|<|| Al[/||b]|, we have

I|||5§<|||| A ||” t?H“ Bl _ (p) _””‘lbl IH «(A) is like Bode Sensitivity|
X 1) LS4

[ N N N NS .

* * 1 1
1A [HIRII=< Al X l= -2 ;
1l TAIIX I

L Consider changes in A only:
 The computed solution £ is the true solutionto (A+E)X=Db,
where| E|l,<ng., || All

= I =b—-AX=EX

* S0,
Il = EXILNEILIX].<ng,&, | AlLIXIL.
od
r : : :
I ”‘i <ng &, = size of residuals is small 43
FAILITXIL ' e

25 Copyright ©2008 by K. Pattipati
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Yes ™ (I Error Analysis - 3 l

« What about error, e =x —X?

e=A"r
lell.<I AT LA ILITEILINXL
lell, _y p I E|l, .
— =< ATLITAIL =ng, [[ A~ LIl All, &, =ng,&,x(A)
I X1, | Al

S0, condition A, x(A) i1s an amplification factor.
* x(A)>1 is a measure of how close A Is to singularity.
 Larger x(A) < more difficult to solve Ax=b

O Changes in both Aand b
* |tis easy to show that (e.g., by linearity and neglecting second order
term E e) that

od
||%||oo S[ngn8m+”5Q”w]K(A) ::
| X1, 1Bl

Copyright ©2008 by K. Pattipati
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NT 4 (I Test Matrices l

O  Some difficult test matrices:

* Hilbert a;; =1/(i+]-1); x(A) =10"; n=size of matrix
1 1/2 1/3 1/4
1/2 1/3 1/4 1/5
1/3 1/4 1/5 1/6
1/4 1/5 1/6 1/7]

* Poisson a;;=a;;;+ &, ; k(A) =10"; n=size of matrix

11 1 1]

12 3 4

13 6 10

1 4 10 20|
od o
o d

e Others from books on test matrices

Copyright ©2008 by K. Pattipati
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(I How to Reduce Errors? I

O What can we do about errors?
* [terative improvement (method of residual correction)
 Balancing the A matrix

O Iterative improvement
« Suppose Ax=b has been solved via PA=LU
« Suppose X =x, is the solution
 Can | improve the solution x, knowing the residual , =b—Ax?
YES !I

« LU ~0(n33); X, in O(n?)

Consider true X' =x +¢€

= AX —b=0;Ax, —b+ Ae =0;

= Ae =b—- Ax, =, (residual)
« S0, solve for e via LUe = P r using decomposition obtained already ! |5 4
« Feasible to do, since requires only O(n?) operations. a3

Copyright ©2008 by K. Pattipati



(I Iterative Improvement - 1 |

* Then x; =X, + e is the improved solution. We can repeat the process.

 But, critical that we accumulate r,= b - Ax, in double precision.
Otherwise, e obtained will be worthless.

« Geometrically,

I :bi _Zn:ainOj
MN) R(A)

A

[ N N N NS .
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(I Iterative Improvement - 2 I

l(O:
|=0
——>I, =b - Ax

[ ><>

rapid convergence, but still up
T against finite word length
I=1+1 Solve LUe, =Pr, for ¢, — do 2-3 iterations

X, =X +E

a  Heuristic: Ifk_(A) = ||All.. [|A2]].,= 29 then after ““ | ” iterations
through the loop, x will have approximately min(t, I(t-q)) bits of
accuracy

Note: need original A stored somewhere to compute residual
Stopping criteria

« 1T (D) Irll/ Xl < e

U

(2) 1> 4 d

) e/ 11Xl = 1lerall/ |1%.4]] ... guards against oscillations, o

when approaching ¢, u %

r

30 Copyright ©2008 by K. Pattipati ‘ . . ‘ ‘ :
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N 4 (I Convergence Analysis I

O When does this process work ? i.e., will X, —»x”
- Solution e, =x,, — X, satisfies
(A+E)e, =r, with ||[E|g¢, f(n)||A]l; f(n)=ng, for co-norm

« A(l +F)e,=r;; F=A"E and ||F|I<k(A)e, f(n)

« Assume || F|l<1/2; so (I + F)™ exists and
(I+F)"=1-F+F°-F°+...
IO +F) IS FN+IFIF+IFIP . =1/ QF )
A(l +F)e =r, =b—Ax,
(I1+F)g =A"b-x =(X =x)= (I +F)(X,,— X)=(X"-X,)
(1 +F)%., =Fx +X = (1 +F)(X,,-x)=F(x,-X)
(X=X )= +F)"F(x - X))

e A +F) T HIF e I <OEFI/QHIF D e |

« Since ||F|<1/2 = |lg,lI€7]lg || where | F||/(1-||F|) <1

= linear convergence

« If = 0.1, pick up at least one digitaccuracy with each iteration.

Copyright ©2008 by K. Pattipati
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Ve (I Balancing I

O Balancing
 Can we transform A— A> x(A) < x(A) and solve Ax =b using A.
Yes, in some cases, but not by a scalar.
* Need Diagonal scaling
A=D"AD;D =diag(d, d, ....d )
= diag(2" 2% .... 2")
Ax=b = D'ADD'x =D"h = Ay =b = solve for y and x = Dy

A=[ad /d]; b=b/d;

= Try to pick d, such that k" row of A and k" column of A

have ~ same norm. Thatis, Y |aq| ~ > |ax]|
j i

:>Z|ad /d, |= Zlad /d |

= Balancmg Is useful.

Copyright ©2008 by K. Pattipati
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(I Estimation of a{A) - 1 I

O Estimation of x(A): Method 1
Assume b =0
lell.<ng.x(A) | X]], &,
From the 1" step of iterative process, obtain e and X .

Estimate k(A) =[1/ ¢, ng Illl ell. /|| X II.]
Do this on 15t step only. Use g, ~I.

Generally, the estimate is not very accurate !

O Estimation of x(A): Method 2 (provides a good estimate)
« Consider «(A) = ||All. IA ],

Can easily obtain ||A||.,

The problem is to get [|[AY]].. .

Consider Ay=d

= IVl < IAH]1ldl],,

A= IYll.. 7 11d]]., 1

« Choose d, from (-1,1). can do it if A is upper triangular. a0

. . < 'd

Idea: choose d 5|| y||. s as large as possible ! n

Copyright ©2008 by K. Pattipati ‘ . . . ‘ :
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(I Estimation of x(A) - 2 I

d Read: A.K. Cline, C.B. Moler, G.W. Stewart and J.H. Wilkinson, “ An
estimate for the condition number of a matrix,” SIAM J. of Numerical
Analysis, vol. 16, 1979, pp. 368-375.

O Suppose A is upper triangular

(a, a, . a, . a. | y| [d
0 a, a, ||Y.| |4,
: . — : = yk:(dk_pk)/a'kk

O O a'kk a'kn
0 0 . . .oa |y |d]

. o o

where p, = > a,V, D

j=k+1 d'Jd

o

L

Copyright ©2008 by K. Pattipati ‘ . . ‘ ‘ ‘
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(I Estimation of x(A) - 3 I

O Computation of p;° :
Initally letp. =0 1=1,2,...,n
Fork =n,....,1 DO
Y. =(d,—p)/a,
p=p+ay.;i=2..,k-1
End DO

d  Q: Can we pick d, such that ||y||,, Is large =||y||., >> [|d||.,
A: select d, from (-1,1) according to whether (1-p,) / a,, or —(1+p,)/ a,,
Is large, I.e., y,=(-sIgn(p)-Py)/ a

d Since ||d||, =1= || «||l..=l|All.. lIYll.: || = ||, = condition number of
A using co - norm.

Copyright ©2008 by K. Pattipati
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&

(I Estimation of x(A) - 4 I

O A more complicated estimator:
 Encourage growth iny, and running sums of p,,..., Py.1
 Algorithm:

Letw,w,,...,w be a set of weights (w. «c1/|a, |)
p=0 1=12..,n
Fork=n,...,1

y, =A=-p)/a,

y. =—@l+p)/a,

k-1
s =y, [+> W |p +a,y, |
i=1

kL

s =y [+ wlp+a,y|

Copyright ©2008 by K. Pattipati
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(I Estimation of a{A) - 5 I

If s">s then
Ye =Y,
else
Yo =Y
end if

pi = pi +aikyk; I :1’2""’k_1
end
 Requires O(5n4/2) flops.
= can devise a lower A version easily.
O For general A: know LU of PA

 Recall that IAY]

.|| Ax X :
||A‘1||:1/m|n|| X1l - max Il = max ! e
< xdll o ITAXINE Iyl D
where y=AX. J
o
Copyright ©2008 by K. Pattipati CLLLL :
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(I Estimation of x(A) - 6 I

« |dea: pick y carefully, solve Az =y using LU factors and
use || A= [1zll. /1Yl -
« How to pick y:

— Suppose A is ill-conditioned = U is ill-conditioned, L is generally
OK.

— Recall that A" =VX'U" where V and U are orthogonal (note: U is
not an LU factor here !!) = vector y tends to be rich in the
direction of left singular vector associated with ¢,,;,(A).

— One way of getting such a y is to solve : ATP y=d, where d is a
vector with £+ 1 elements, which are chosen to maximize ||y||.,

 So,togety:

1) Solve U™w= d using a lower A version of the algorithm. ..
2) Solve L'[Py] =w =y =P(LY)T(U1)d = (A1)'d or solves Aly =d au

Copyright ©2008 by K. Pattipati



(I Estimation of x(A) - 7 I
Togetz:

3) Solve Lr=Py
4) Solve U z=r =z =UL1Py = Aly or solves Az=y

lzIl.. <l A2l Y1
|| (A 1o = 1Al - 1zl 7 1Y

[ N N N NS .

L Example: consider the following 2 X2 matrix and its factors

{0.66 3.34}
A_

1.99 10.01
0 1 1 0 ||1.99 10.01
=PLU =
1 0||-0.3317 10.01|f 0 0.0201
: 1 _ 0.5025
« Usingd = , Step 1 gives: w=
-1 —300.0075
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« Sstep 3 gives. r =

- step 4 gives: z =

Copyright ©2008 by K. Pattipati
40 pyrig y p

- step 2 gives: Py =

(I Estimation of x(A) - 8 I
—99.0100

{—300.0075}

[ —99.0100 }

| -332.8491

[ 83248 |

16560 |

* | =(A) ll..= Al . lz|
« Actual condition number of A using co—norm = 4005
* The estimate i1s within 16.854% of actual value.

O Rank-one updates
* Suppose have solved Ax=Db. But, now want to solve a slightly
modified problem: AX=b where A= A+uv’ a2

1[Iyl = 12* 83248/300.0075 = 3329.8

« Know from Sherman-Morrison-Woodbury formula that: D
(A+HMT)71:A71_ AHMA o 'd
(1-v'A'u) :

ITTLILL
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(I Rank One Updates l

AR =[A+uv']x=h:

So, to solve

(@) solve Ax=b=x=A"D
(b) solve Ay=u—=y=A"uU
(c)solve A'z=v=z=[A"]V
(d) obtain ¢ =1/(1-Vv'y)
(e) obtain f=2"b
(f) obtain X = x +aBy
« For LU updates with rank-one corrections to a matrix, see:
“P.E. Gill, G.H. Golub, W. Murray, and M.A. Saunders, “ Methods for

modifying matrix factorizations ,” Mathematics of Computation, 44
Vol. 28, pp. 311-350, 1974 . ey
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(I Summary |

Why do we need to solve Ax=Db ?

Concepts of forward elimination and backward substitution
Basic decomposition methods: LU, QR, Cholesky, SVD

LU decomposition

Sensitivity of the solutionto Ax =b

 Error and residual

« Condition number as an amplification factor for error

O Iterative improvement
O Estimation of condition number -
O Solution when A is modified by a rank-one correction matrix ‘:
J
a
a
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