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Outline of Lecture 4

 Why do we need to solve Ax = b ?

 Concepts of forward elimination and backward substitution

 Basic decomposition methods: LU, QR, Cholesky, SVD

 LU decomposition

 Sensitivity of the solution to Ax = b

• Error and residual

• Condition number as an amplification factor for error

 Iterative improvement

 Estimation of condition number

 Solution when A is modified by a rank-one correction matrix
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Background

 Key problem

•

• Fact1: a solution exists only if b is a linear combination of the 

columns of A (EXISTENCE CONDITION)

• Fact 2: for an n x n matrix A, Ax = b has a unique solution if and 

only if N(A) is null  Ax = 0 has the only solution  x = 0

(UNIQUENESS CONDITION)

 Restricted problem: 

Assume A is n x n, Rank(A) = n  A is nonsingular

We want to solve Ax = b

1

Solution of   
n

ii

i

Ax b b x a


  

This is one of the most 

important problems in 

NUMERICAL ANALYSIS

Rank( )   dim( ( ))  is invertibleA n R A n A    

 ( )b R A 
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Why Solve A x = b ? - 1

 Why do we need to solve Ax = b ?

1) Data fitting via linear equations (occurs in a wide variety of 

applications including nonlinear programming, interpolation, 

regression, etc.)

• Suppose, we want to fit an nth order polynomial to the data

• That is , want 

 , ( ) : 0,1,2,...,
i i

x f x i n

2

0 1 2
( ) ... n

n
f x a a x a x a x    
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then, the problem of finding {ai: i = 0, 1, 2, …, n} is equivalent to solving:

 

 

 

2
0 0 0 0 0

2
1 1 1 1 1

2

1

1

1

transpose of Van der Monde matrix

n

n

n
n nn n n

x x x a f x

x x x a f x

a f xx x x

    
    

    
         







2)  s.s solution to ;     ;   x Ax Bu Ax b b Bu     

•

• approximate         such that the following first order condition is  

satisfied:

      * *T
k k kg x g x g x x x   

1kx 

          

        

*
1

1
1 1

0;   where 

  [ ]

T
k k k k k k

k k k k k k k k

g x g x J x x x J x g x

J x x x g x x x J x g x




 

     

      

3)  Solution of nonlinear equations via Newton’s method 

Why Solve A x = b ? - 2
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4) Minimization of a scalar function w.r.t. n variables x1, …, xn

• Approximate         by a quadratic function around the current 

minimum:

 f x

      

    

1 1

2
1 1               / 2

T
k k k k k

T

k k k k k

f x f x f x x x

x x f x x x

 

 

  

   

• Want          to be the optimum of Quadratic function1kx 

 

    

1

2
1

  0

  

k

k k k k

f x

f x x x f x





  

    

5)  In computing eAt, eAt via Pade approximation, we come across 

solutions of  a sequence of linear equations

,   1,2,i iAx b i  

Why Solve A x = b ? - 3
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Exploit  Key  Facts - 1

 Method of Attack: Break it up into simpler subproblems 

 Decomposition

• FACT1: DIAGONAL & TRIANGULAR SYSTEMS OF EQUATIONS 

ARE EASIER TO SOLVE

 Lower triangular system of equations can be solved via Forward 

Elimination

1 1 11

2 2 21 1 2211 1 1

21 22 2 2
1

1 2

1

/

( ) / ,  etc0 0

.0     

 = ( - ) /

n
n n nn n n

n n nj j nn

j

x b l

x b l x ll x b

l l x b

l l l x b
x b l x l







      
     

 
     
           







 FORWARD ELIMINATION requires O(n2/2) operations

 Similarly, upper triangular system of equations can be solved via 

backward substitution
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1 1 1, 1, 111 12 1 1 1

22 2 2 2

1 1 1 11

2

/

( ) / ,  etc

.0     

0
= ( ) /

n n nn

n n n n n n nn

n
n

nn n n
j j

j

x b u

x b u x uu u u x b

u u x b

u x b
x b u x u

    





      
     

 
     
           





 

 BACKWARD SUBSTITUTION requires O(n2/2) operations

• FACT2:  ORTHOGONAL MATRICES ARE EASY TO INVERT. 

STABLE NUMERICALLY  DO NOT “SCREW UP” THE 

ORIGINAL PROBLEM.

1

2 2
  ;   ;   , etc.T

F F
Q Q QAZ A Qx x   

Exploit  Key  Facts - 2
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 DECOMPOSITION METHODS BASED ON FACT1

A is an n × n matrix 

1) LU Decomposition (Doolittle decomposition) …. Lecture 4

− Writes  matrix A=LU or PA=LU

− P is a permutation matrix (permutes rows and columns)

− Can also write it as : PA=LDU

− Solution of 

− Once have L & U, can solve Axi=bi, i  1 in O(n2) operations

− One of the most widely used methods for solving linear systems

2) If A=AT and PD … Lecture 5

− One of the best methods for testing if A is a PD matrix. 

Decomposition Methods - 1

    ;  PAx Pb LUx Pb Ly Pb Ux y     

or (Cholesky decomposition)T TA LL A LDL 



9
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 DECOMPOSITION METHODS BASED ON FACTS 1 & 2 

• Useful for general  A, e.g., Least Squares Estimation… see Lectures 

6-8

1)

2)

-1;  orthogonal ,  upper triangular.......Lectures 6-7

 or 

upper triangular system of equations backward substitution

T

T

A QR Q Q Q R

Ax b QRx b Rx Q b b

  

    

 



Singular Value Decomposition (SVD)...Lecture12

;  ,  are orthogonal

  ;  ;

T

T T T T T

A U V U V

U V x b V x U b y U b y V x x Vy

 

          

10

Decomposition Methods - 2
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 LU Decomposition

• Belongs to the class of direct methods

• A=LU       want to determine n2+n entries from  n2 entries   

Can fix either L = unit lower ∆ or U= unit upper ∆





11 12 1

21 22 2

1 2

1 0 .. 0 ..

1 .. 0 0 ..
            

: : : : : :

.. 1 0 0 ..

n

n

n n nn

u u u

l u u
L U

l l u
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LU Decomposition
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Example:
1 1 1 0 1 1

2 7 2 1 0 5

                         A L U

     
     

     

11 12 1 11 12 1

21 22 2 21 22 2

1 2 1 2

1 0 .. 0 .. ..

1 .. 0 0 .. ..

: : : : : : : : :

.. 1 0 0 .. ..

n n

n n

n n nn n n nn

u u u a a a

l u u a a a
A LU

l l u a a a

     
     
       
     
     
     

, 1 ,

1 1,

,

0

.

1
;  ;  0 .. ..

.

n

T T

k k k k kk k k k n

k k k

n k

A l u l u u u u
l

l
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LU Decomposition as Dyadic Sum

:  has non-zero elements in

the lower ( 1)by ( 1)block only

T

k kNote l u

n k n k   
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• The decomposition is accomplished in n passes   

• On pass  k, we get 

a) ukk

b) column k of L

c) row k of U

• Initially, we start with the first column of A

• Also a1j=u1jl11  u1j= a1j

 first row of U =  first row of A

• Finished computing the first column of L and first row of U

• The sequence of computation is:

11 11 11 11 11 11 11 11 11 11

21 21 11 21 21 11

1 1 11 1 1 11

  /   1 /

  /

                  

  /
n n n n

a l u u a l a l a u

a l u l a u

a l u l a u

      

  

  



 11 1 1
( );   first column of ;   first row of remaining partTu Diag U l L u U  

13

Decomposition Process
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• Note: ai1 and a1j are used once and never again

 Can overwrite l1 and u1
T in the first column and row of A

Except for l11 , which we know is 1 any way   

Practical Issues

1 1 11

1 1

/ ,  2,...,

,  1,2,...,

i i

j j

l a a i n

u a j n

 

 

14

 Problem: What if a11=0 ?

Example: nonsingular , but a11=0 
0 1

1 6
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 Pivoting Idea

1)Compute li1 ,…, ln1 except for division li1u11 

2)Find the largest | li1 | relative to initial row i norm

− Assume that the maximum occurs in row r1

3) Swap row r1 and 1 in A and l1. Let IP(1) = r1.

What dose it mean ?

Concept of Pivoting - 1



1   
| |

i

ij

j

l
i

a
 



1

1
arg max   

| |

i

i

ij

j

l
r

a
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PERMUTATION MATRIX

Note: is a symmetric and orthogonal 

4) Divide throughout by (new) l11 ≠ 0 to get l21 ,…, ln1

5) u11 = l11 (new). In actuality, l11 replaces a11.

 So, really have found the first LU factor, l1 u1
T of                 and not of 

A!!

• Can we do it recursively? Is it useful? YES!! 

1

1

0 0 .. 1 0

0 1 .. .. 0

0 0 1 .. 0

1 0 .. .. 0

0 .. .. .. 0

r
P

 
 
 
 
 
 
  

1

1

r
P

1 11

1 1
( )

r r
P P 

1 6

0 1
U

 
 

 

1

1

r
P A A 
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Concept of Pivoting - 2

Multiply A by
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 Consider the situation at column k ≥ 2. Get column k of  L and row k

of U from column k and row k of         A

1 2 1

1

1 2 1

1

... other termsk k

k

r r r T T

k k i i k k

i

P P P A lu l u 



 



  

A

11 12 1 1

21 22 2 2

1 2

1 2

1 0 0 .. 0 0 .. ..

1 0 .. 0 0 0 .. ..

: : : : : : : : ..

.. 1 .. 0 0 0 .. ..

: : : : : : : ..

.. .. .. 1 0 0 .. 0 ..

k n

k n

i i kk kn

n n nn

u u u u

l u u u

l l u u

l l u

   
   
   
   
   
   
   
   
      

LU Decomposition of PA

17
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1

1 1

1

1

step 1: ;  ,...,

            ;  ,...,

           If , set  and DONE. ( )

step 2: Find relative max | |,  row (

k k

ik im mk ik kk ik im mk

m m

k

ik ik im mk

m

nn nn

ik k k
i

a l u l u a l u i k n

l a l u i k n

k n u l IP n n

l r r



 





    

  

  



 



 

 





1

)

step 3: swap row  and row  in lower right ( 1) subblock

           of  . columns ,...  lower  since 

step 4: If  0,  / ;  1,...,

           If  0,  then OK since

k

k k

kk ik ik kk

kk

k

k r n k

A l l r k

l l l l i k n

l



 

 

   





  



1

1

 0

step 5: Set  and 

           ;  1,..., ;  row of 

step 6: set 1 and go to step 1.

ik

kk kk

k

th

kj kj km mj

m

l

u l

u a l u j k n k U

k k
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Decomposition Steps
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 Comments

• Don’t need 3 matrices. All work can be done in place:

When done 

and vector IP that summarizes the permutation matrices    

•

• are symmetric and orthogonal so      

 1,...,

 ,...,

ik ik

kj kj

l a i k n

u a j k n

  

 

11 12 1

21 22 2

1 2

..

..

: : :

..

n

n

n n nn

u u u

l u u

l l u

 
 
 
 
 
 

, 1,2,...,kr

k
P k n

# Pivots

1

det det  .   det ( 1)  
n

ii

i

PA P A u


   
kr

k
P

1 2

1 2
... nrr r

n
A P P P LU

Practicalities & Insights - 1 

19
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•

• Number of operations 

• Relative round-off error

• Pivoting is essential. Otherwise, the method can be unstable 

• Accumulate all inner products in DOUBLE PRECISION 

|| ||  proportional to ( ) ( ) ,

where ( ) condition number of  and  machine accuracy

m

m

LU PA k A f n

k A A







 

11 1 1

1
...nr r

n
A U L P P  

1

2

1 1

3

( 1)(2 1)
2( 1)( 1) 2 ( ) ( 1)

3

( 1)( 1)
                                ( )

3 3

n n

k i

n n n
k n k i n i n n

n n n n
O
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Practicalities & Insights - 2 
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 Remaining step: solution of Ax=b

 Solve: 

•

•

1 1

1

1 1

1

...

swap  etc. can do it in place 

n nr r r

n n

r

PAx Pb b P P P b

b b

LUx b




  

 

 





;  via FORWARD ELIMINATION andLy b 

 ; via BACKWARD SUBSTITUTION       Ux y

1 1

21 2 2

1 2

1 2

1 0 0 .. 0 0

1 0

: .. 0 : :

.. 1 0 : :

: .. 0 : :

.. .. .. 1

i i

n n n n

y b

l y b

l l

l l y b

    
    
    
    

     
    
    
    

          







1 21

2 2 21 1

1

1

       

  

       ; 1,2,..,
k

k k kj j

j

y b

y b l y

y b l y k n
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Solution of Ax = b - 1
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•

•

•

•

2( ) / 2  opsO n n

Can overwrite on  with   
k k

b y

11 12 1 1 1 1

22 2 2 2

.. ..

0

: : .. : : :

0 0 .. : :

: : .. : : :

0 0 .. .. ..

k n

n

kk kn

nn n n

u u u u x y

u u x y

u u

u x y

     
     
     
     

     
     
     
     
          

1 1,

1

1, 1

1

       /

  

       ( ) /

n n nn

n n n n

n

n n

n

k k ki i kk

i k

x y u

y u x
x

u

x y l x u

 



 

 




 

 

2( / 2)  opsO n n
2 3 2Total ops ( )  Total = ( / 3) ( )O n O n O n 

22

Solution of Ax = b - 2

 Error bounds 

• For Doolittle with DP accumulation of products

• Pessimistic estimate. Generally 

1( );  || || || || ;  2 ,n

n m n
LU P A E E ng A g 

 
    

min(8, )
n

g n
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 Sensitive of linear systems 

Example :

•

1 2 1 2

1 2 1 2

8 5 3                                0.66 3.34 4

4 10 14                            1.99 10.01 12 

x x x x

x x x x

   

   

0.375

(1,1)

3.50.6

1
nearly parallel

Suppose   whereb b b 

Sensitivity of Linear Systems

1
x

23

2.96 || ||
 0.0043

13.94 || ||

0.993 || ||
0.007 0.7% change

0.997 || ||

 well-conditioned

|| || || ||
  : / 1.63

|| || || ||

new

x

b

b
b b

b

x
x

x

x b
Bode Sensitivity S

x b






 









 

 

 
    

 

 
    
 



  

3.96 || ||
 0.005

11.94 || ||

6 || ||
5 500% change

0 || ||

 ill-conditioned

|| || || ||
Bode Sensitivity = / 1000

|| || || ||

new

b
b b

b

x
x

x

x b

x b
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*ˆLet  be the computed solution to the linear system and let  be the true 

ˆsolution.  There are two measures of the discrepancy in : 

x Ax b x

x



*

*

ˆ- error : 

ˆ ˆ- residual : ( )

e x x

r b Ax A x x Ae

 

    

Error Analysis - 1

24

 Key results: (valid for any norm. we will use ∞-norm here)

• LU decomposition with partial pivoting is guaranteed to produce        

small residuals, i.e., small ||r||. 

• However, error depends on the condition number of A, i.e., how 

close A is to being “near singular”.  

• Larger              error is larger or more sensitive to changes in

and b.  (Note: can be defined  w.r.t. any norm)       

 Consider changes in b only: 

• Suppose that LU is exact, but the data vector b is “noisy”.

• Q:  How “sensitive” is the solution?  

ˆ|| || || || || ||
n m

r ng A x 
  


1ˆ|| || ( ) || || ;  ( ) || || || ||
n m

e ng A x A A A   

   
 

( )A  A

( )A
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 Consider changes in A only:

• The computed solution      is the true solution to                      

where 

• So,          

* *

1

*

1

*

ˆ     ( )

    || || || |||| ||

     since,  1/ || || || || / || ||,  we have 

|| || || |||| |||| || || ||
    ( )

|| || || || || ||

A x x b b Ax b

A x b

x A b

x A b

x A A b b
A

x b b

  

 

 

  






    

 





 

x̂ ˆ( ) ,A E x b 

    || || || ||

ˆ ˆ

n m
E ng A

r b Ax Ex


 


   

ˆ ˆ ˆ|| || || || || || || || || || || ||

|| ||
size of residuals is small 

ˆ|| || || ||

n m

n m

r Ex E x ng A x

r
ng

A x
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Error Analysis - 2

* *

*

1 1
|| || || || || |||| ||

|| || | |||| ||
Ax b A x

b A x
   

( ) is like Bode SensitivityA
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• What about error,

• So, condition A, κ(A) is an amplification factor. 

• κ(A) ≥ 1 is a measure of how close A is to singularity.

• Larger κ(A)      more difficult to solve Ax=b

 Changes in both A and b

• It is easy to show that (e.g., by linearity and neglecting second order 

term E e) that  

* ˆ ?e x x 
1

1 1

1 1

ˆ|| || || || || || || || || || || ||

|| || || ||
|| || || || || || || || ( )

ˆ|| || || ||
n m n m

e A r

e A r A E x

e E
A A ng A A ng A

x A
  



 

     

  

   

 



 

  



|| || || ||
[ ] ( )

ˆ|| || || ||
n m

e b
ng A

x b
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Error Analysis - 3
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 Some difficult test matrices:

• Hilbert aij =1/(i+j-1); κ(A) =10n; n=size of matrix 

• Poisson aij = ai-1,j + ai,j+1 ; κ(A) =10n; n=size of matrix 

• Others from books on test matrices  

1 1/ 2 1/ 3 1/ 4

1/ 2 1/ 3 1/ 4 1/ 5

1/ 3 1/ 4 1/ 5 1/ 6

1/ 4 1/ 5 1/ 6 1/ 7

 
 
 
 
 
 

1 1 1 1

1 2 3 4

1 3 6 10

1 4 10 20

 
 
 
 
 
 

Test Matrices

27
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 What can we do about errors?

• Iterative improvement (method of residual correction)

• Balancing the A matrix 

 Iterative improvement 

• Suppose Ax=b has been solved via PA=LU

• Suppose            is the solution 

• Can I improve the solution  x0 knowing the residual 

• LU  O(n3/3); x0 in O(n2)

• So, solve for e via                  using decomposition obtained already !

• Feasible to do, since requires only O(n2) operations.

0
x̂ x

0 0
?  r b Ax 

0
rLUe P

*

0

*

0

0 0

Consider true  

0; 0;

 (residual)

x x e

Ax b Ax b Ae

Ae b Ax r

 

     

   

How to Reduce Errors?

28

YES !! 
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• Then x1 = x0 + e is the improved solution. We can repeat the process. 

• But, critical that we accumulate r0 = b - Ax0 in double precision. 

Otherwise, e obtained will be worthless.

• Geometrically, 

0

1

n

oi i ij j

j

r b a x


 

e
1

x

0
x 0

r

b

0
Ax

29

Iterative Improvement - 1

( )TR A
( )R A
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 Heuristic: If k∞(A) = ||A||∞ ||A
-1||∞ = 2q then after “ l ” iterations 

through the loop, x will have approximately min(t, l(t-q)) bits of 

accuracy 

 Note: need original A stored somewhere to compute residual 

 Stopping criteria 

• If  (1)  ||r||∞/ ||x||∞ < ε

(2)  l > lmax

(3) ||el||/ ||xl|| > ||el-1||/ ||xl-1|| … guards against oscillations,

when approaching 

0

1

ˆ

0

Solve  for 

l l

l ll

ll l

x x

l

r b Ax

LUe Pr e

x x e






 



 

rapid convergence, but still up 

against finite word length 

 do 2-3 iterations

m

l=l+1

30

Iterative Improvement - 2
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 When does this process work ?   i.e., will xl →x*

1

1

1

  Solution  =  satisfies       

    ( )  with || || ( ) || ||; ( )  for -norm

  ( ) ;   and || || ( ) ( )

  Assume || || 1/ 2;  so ( )  exists and 

             (

l l l

ll m n

ll m

e x x

A E e r E f n A f n ng

A I F e r F A E F k A f n

F I F

I F













    

   

 








1 2 3

1 2 3

1 * *

1

*

1

) ...

            || ( ) || 1 || || || || || ||  ... 1/ (1 || ||)

             ( )

            ( ) ( ) ( )(  ) ( )

            ( ) (

ll l

l l l l l l

l l

I F F F

I F F F F F

A I F e r b Ax

I F e A b x x x I F x x x x

I F x F x x I











    

      

   

         

     * *

1

* 1 *

1

1

1

1

)( ) ( )

            ( ) ( ) ( )

|| || || ( ) || || |||| || [|| || /(1-|| ||)] || ||

  Since || || 1/ 2  || || || ||  where || || /(1-|| ||) 1

 linear convergence 

• If 

l l

l l

l l l

l l

F x x F x x

x x I F F x x

e I F F e F F e

F e e F F 













  

   

  

    





  0.1,  pick up at least one digitaccuracy with each iteration. 

31

Convergence Analysis



Copyright ©2008 by K. Pattipati 

 Balancing

• Can we transform                                                                            

Yes, in some cases, but not by a scalar. 

• Need Diagonal scaling 

( ) ( ) and solve  using .A A A A Ax b A   

1 2

1

1 2

1 1 1

; diag(   .... )

                       diag(2  2  .... 2 )

 solve for  and 

[ / ];  / ;

 Try to pick  such that  row of  and  column o

n

n

ii i

ij j i i i i

th th

k

A D AD D d d d

Ax b D ADD x D b Ay b y x Dy

A a d d b b d

d k A k



  

 



      

 

 f 

      have  same norm. That is, | |   | |

| / | | / |

kj ik

j i

kj j k jk k j

j j

A

a a

a d d a d d

 

 

 

 

32

Balancing

⇒ Balancing is useful. 

⇒ Note that similarity transformation has no effect on k(A) of a symmetric matrix. 

⇒ Usually standard controllable form and standard observable form have worst κ(A)
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 Estimation of κ(A): Method 1

Assume δb = 0 

Do this on 1st step only. Use gn ≈1.

Generally, the estimate is not very accurate !             

ˆ|| || ( ) || ||
n m

e ng A x 
 


1̂
From the 1  step of iterative process, obtain  and .st e x

1̂
Estimate ( ) [1/ ][|| || / || || ]

m n
k A ng e x
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Estimation of (A) - 1

 Estimation of κ(A): Method 2 (provides a good estimate)

• Consider κ(A) = ||A||∞ ||A
-1||∞ 

• Can easily obtain ||A||∞  

• The problem is to get ||A-1||∞ .

• Consider Ay=d

⇒ ||y||∞   ≤ ||A-1||∞ ||d||∞

||A-1||∞ ≥ ||y||∞  / ||d||∞ 

• Choose dk from (-1,1). can do it if A is upper triangular.

 choose || ||  is as large as poIdea ssible !: d y
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Estimation of (A) - 2

 Read: A.K. Cline, C.B. Moler, G.W. Stewart and J.H. Wilkinson, “ An 

estimate for the condition number of a matrix,” SIAM J. of Numerical 

Analysis, vol. 16, 1979, pp. 368-375.

 Suppose A is upper triangular

11 12 1 1 1 1

22 2 2 2

.. ..

0

: .. : : :

0 0 .. : :

: .. : : :

0 0 .. .. ..

k n

n

kk kn

nn n n

a a a a y d

a a y d

a a

a y d

     
     
     
     

     
     
     
     
          

  ( ) /
k k k kk

y d p a  

1

where  
n

k kj j

j k

p a y
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 Computation of pi
s :

 Q: Can we pick dk such that ||y||∞  is large ⇒||y||∞  >>  ||d||∞ 

A: select dk from (-1,1) according to whether (1-pk) / akk or –(1+pk)/ akk

is large, i.e., yk=(-sign(pk)-pk)/ akk

 Since ||d||∞ = 1 ⇒ || κ ||∞ = ||A||∞ ||y||∞ , || κ ||∞ = condition number of 

A using ∞ - norm. 

Initally let 0   1,2,...,

         For ,....,1 DO

               ( ) /

               ;  1,2,..., 1

        End DO

i

k k k kk

i i ik k

p i n

k n

y d p a

p p a y i k
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 A more complicated estimator:

• Encourage growth in yk and running sums of p1 ,…, pk-1 

• Algorithm:

1 2

1

1

1

1

Let , ,...,  be a set of weights ( 1/ | |)

0    1,2,...,

For ,...,1

       (1 ) /

       (1 ) /

       | | | |

       | | | |

n i ii

i

k k kk

k k kk

k

k i i ik k

i

k

k i i ik k

i

w w w w a

p i n

k n

y p a

y p a

s y w p a y

s y w p a y
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• Requires O(5n2/2) flops.

⇒ can devise a lower ∆ version easily.

 For general A: know LU of PA

• Recall that

where y=Ax. 

      if   then 

               

      else 

                

      end if

               ;  1,2,..., 1

end

k k

k k

i i ik k

s s

y y

y y

p p a y i k

 











   

1

1
|| |||| || || ||

|| || 1/ min = max max
|| || || || || ||x x y

A yAx x
A

x Ax y



  

37

Estimation of (A) - 5
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• Idea: pick y carefully, solve Az = y using LU factors and 

use || A-1||∞ = ||z||∞ /||y||∞ .

• How to pick y:

− Suppose A is ill-conditioned ⇒ U is ill-conditioned, L is generally 

OK.

− Recall that                   where V and U are orthogonal (note: U is 

not an LU factor here !!) ⇒ vector y tends to be rich in the 

direction of left singular vector associated with ζmin(A).

− One way of getting such a y is to solve : ATP y=d, where d is a 

vector with ± 1 elements, which are chosen to maximize ||y||∞ 

• So, to get y :

1) Solve UTw= d using a lower ∆ version of the algorithm.

2) Solve LT[Py] = w ⇒ y = P(L-1)T(U-1)Td = (A-1)Td or solves ATy = d

† † TA V U 
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To get z :

3) Solve L r=P y 

4) Solve U z = r ⇒ z = U-1L-1Py = A-1y or solves Az=y

||z||∞ ≤|| A-1||∞ ||y||∞

|| κ(A) ||∞ ≈ ||A||∞ • ||z||∞ / ||y||∞

 Example: consider the following 2☓2 matrix and its factors 

0.66 3.34

1.99 10.01

0 1 1 0 1.99 10.01
  

1 0 0.3317 10.01 0 0.0201

1 0.5025
   Using ,  step 1 gives: 

1 300.0075

A

PLU

d w
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• || κ(A) ||∞ ≈ ||A||∞ • ||z||∞ / ||y||∞ = 12* 83248/300.0075  =  3329.8

• Actual condition number of A using ∞–norm = 4005

• The estimate is within 16.854% of actual value. 

 Rank-one updates 

• Suppose have solved Ax=b. But, now want to solve a slightly 

modified problem:

• Know from Sherman-Morrison-Woodbury formula that:

99.0100
 step 2 gives: 

300.0075

99.0100
 step 3 gives: 

332.8491

83248
 step 4 gives: 

16560

Py

r

z

 
  

 

 
  

 

 
  

 







 where TAx b A A uv   

1 1

1 1

1
( )

(1 )

T

T

T

A u v A
A uv A

v A u
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• So, to solve

• For LU updates with rank-one corrections to a matrix, see: 

“P.E. Gill, G.H. Golub, W. Murray, and M.A. Saunders, “ Methods for 

modifying matrix factorizations ,” Mathematics of Computation, 

Vol. 28, pp. 311-350, 1974 .

[ ] :TAx A uv x b   

1

1

1

(a) solve 

(b) solve 

(c) solve [ ]

(d) obtain 1/ (1 )

(e) obtain 

(f ) obtain 

T T

T

T

Ax b x A b

Ay u y A u

A z v z A v

v y

z b

x x y













  

  

  

 



 

Rank One Updates

41



Copyright ©2008 by K. Pattipati 
42

Summary

 Why do we need to solve Ax = b ?

 Concepts of forward elimination and backward substitution

 Basic decomposition methods: LU, QR, Cholesky, SVD

 LU decomposition

 Sensitivity of the solution to Ax = b

• Error and residual

• Condition number as an amplification factor for error

 Iterative improvement

 Estimation of condition number

 Solution when A is modified by a rank-one correction matrix


