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  Performance Criteria and the Design Process   

1. Design Approach and the Design Process 
 

2. Performance Measures and Criteria 
• Stability and phase margin 

• Steady-state accuracy 

• Max peak criteria 

• Speed of response/transient, sum of absolute error, sum of square error 

• Sensitivity and return difference 

• Sensor rating parameters 

• Accuracy versus Precision 

• Actuator nonlinearities 

• Bandwidth design 
 

3. Simulation of Closed-Loop Time Response 
• Simulation program structure 

• Control algorithm simulation 

• Modifications to simulate time delay 
\ 
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Elements of Feedback System Design I 
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r z 1 G z H z
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

Given G(z) design a suitable H(z)  

  

u(z) = H(z)  [r(z) – y(z)] 

  

Closed-loop transfer function 

•   Series Compensator Design Structure ("Classical") 

H(z) 
u(k) y(k) e(k) r(k) 

+ 

- 
G(z) ~ Loop gain =  G(z) H(z) 

Closed-loop  

  characteristic  

polynomial 

•   Alternate loop structures  

    -  Feedback compensator design 

H(z) 

u(k) y(k) r(k) 
+ 

- 

u(z) = r(z) – H(z) y(z)  
                 G(z)  

        1 + G(z) H(z) 
T(z) = 

G(z) ~ e(k) 

    -  Mixed series/feedback compensator design 

u(k) y(k) 

H2(z) 

r(k) + 

- 

+ 

- 
H1(z) 

Most general form, allows for FB using e and/or y. 

G(z) ~ 
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Elements of Feedback System Design II 

 
 
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T z  = 

1 + K zI Φ Γ





       rx k+1  = Φ ΓK x k  + K Γ r k



     
-1

p z  = zI Φ + ΓK    or   p z 1 K zI Φ Γ   

 

 
   

 -1 r

r

y z K N z
 = T z  = K C zI Φ + ΓK Γ = 

r z zI Φ + ΓK




•   State Variable Design Structure ("Modern")  

Given                x(k+1) = Φx(k) + Γu(k),  y(k) = Cx(k) 

  

design suitable K, Kr,   u(k) = Kr r(k) – Kx(k)  

Closed-loop:  

Alternate Formula:  

Derivation:  
                (1)  x(z) = (zI – Φ)-1 Γ u(z)  

                (2)  u(z) = Krr(z) – K(zI – Φ)-1 Γ u(z)  

                (3)  u(z) = [ 1 + K(zI – Φ)-1 Γ ]-1 Krr(z)  

                (4)  Substitute into y(z) = C(zI – Φ)-1 Γ u(z)  

=>  Closed-loop characteristic polynomial is  

•   Optimal Control Design ("Classy")  

    One method for obtaining K, Kr -- by optimizing some criterion.  

 G z
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Design Approaches to be Considered 



   
m m 1

0 1 m

m m 1

1 m

β z  + β z  +  + β
H z   m-th Order Compensator

z  + α z  +  + α








•   For series compensation design of H(z)  

    (1)  Discretization of a continuous design  

                                      H(s) →H(z)  

where H(s) is a series compensator designed for G(s)  

(will usually be OK when h is very small).  

(2)     Direct design methods for H(z) given G(z).  

•   For SVFB design of K, Kr 

  
(1)  Discretization of continuous design gains  

  

         where K, Kr were designed for  x = A x + Bu.  

  

(2)  Pole placement, direct design methods  

Select K so that | zI –Φ+ΓK  | has desired roots.  

(3)  Optimization methods  

 Find u(k) = Kr r(k) – Kx(k) to optimize some performance  

criterion ==> K*, Kr*.  

Kr → Kr  K → K;  

•   Methods for state estimation when x(k) is not directly measurable,  

{y(•)} → x(k). 
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The Design Process 

A)  Mathematical Model of System to be Controlled  

  

Defined by discrete equivalent G(z), or {Φ, Γ, C}  

MATH MODEL  
OF SYSTEM 

PERFORMANCE  
MEASURES 

DESIGN:  
SERIES COMP  

OR SVFB 

EVALUATION  
&  

SIMULATION 
OK? 

NO B 

C 

YES 

A 

B)  Performance Measures and Concerns  

  
Mathematical criteria that are driven by customer's qualitative/quantittaive specifications 

 for behavior of the closed-loop system. 

    (1)  Stability of the closed-loop system  

-   A property of loop dynamics not of r(k)  

-   Without stability cannot discuss much else  

(2)  Steady-state accuracy  

-   Does y(k)→ r(k) as k →∞ 

-   If r(k) = 0 desire y(k) & x(k) → 0  for all x(0)  

(3)  Speed of response/transient, sum of absolute error (SAE), sum of squared error (SSE)  

  -   Transient response linked to CL pole locations  
 (4)  Sensitivity/robustness  

-   Ability of CL system to perform with ΔG(z), ΔGd (z)  bounds  on Loop gain 

-   Feedback desensitizes loop to variations in G(z), Gd (z)  
    (5) Sensor rating parameters 

-   Resonant peak, Bandwidth, cutoff (roll-off) rate 

6) Accuracy versus Precision 

7) Actuator nonlinearities  

8) Bandwidth design 

Including sensors,  

actuators and 

signal conditioning 



Copyright ©2012  by K. Pattipati  

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3
0 dB

-10 dB

-6 dB

-4 dB

-2 dB

10 dB

6 dB

4 dB

2 dB

Nyquist Diagram

Real Axis

Im
a
g
in

a
ry

 A
x
is

-400

-300

-200

-100

0

100

M
a
g
n
itu

d
e
 (

d
B

)

10
-2

10
-1

10
0

10
1

10
2

10
3

-270

-225

-180

-135

-90

P
h
a
s
e
 (

d
e
g
)

Bode Diagram

Gm = 39.1 dB (at 29 rad/sec) ,  Pm = 43.7 deg (at 1.26 rad/sec)

Frequency  (rad/sec)

7 

1 - Stability of the Closed-Loop System 

 iλ 1

m

   
 

-1

zI Φ + ΓK 0
:1 G z H z 0 or  

1 + K zI Φ Γ = 0

valid for SISO or MIMO
SISO

for SISO

  
  



•   Roots of closed-loop characteristic polynomial pCL(z) in unit circle  

•   Will need a simple test to determine if a polynomial p(z) has any roots with | λ | ≥1.  

    -  Recall Routh test for whether p(s) has roots in RHP…… Jury test    

•   Phase margin      used to give degree of stability.  "How much more negative phase shift  

    (phase lag) can you put in the FB loop before the system becomes unstable?"  ~  tolerance to  

    time-delay.   

    -  LGain = G(z) H(z) series compensation 
    -  LGain = K(zI – Φ)-1 Γ for SVFB 

To determine     ,use Bode (or Nyquist, or Nichols) plot of loop gain of SISO system:  m

Examine loop gain vs. ω with z = ejωh  
m c, ω

                               
                     A, B         Φ, Γ                         
  

N(z)  
D(z) 

  c2d                 ss2tf                   margin 

Re LG 

 m ain c= π + LG jω

roots 

eig 

cω       Crossover  
       Frequency 

m  Phase margin 

m

Im
 L

G
 

LG

| L
G

| i
n

 d
B
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Example 




The system  x(t) = 0.5 x(t) + 0.95 u(t), y(t) = x(t) is controlled digitally using the algorithm  

u(k) = Kr r(k) – x(k), with time step h = 0.2 sec. Determine the phase margin.   

(Note that the open-loop G(s) is unstable.)  

  i)  Discrete equivalent model  Φ = e+0.5h = 1.1,   Γ = (e+0.5h –1) (0.95/0.5) = +0.2  

 ii)  Check stability of closed-loop (K = +1)  Φ – ΓK = 0.9  stable  

m

Analytic approach:  find ωc where   0.2/| z – 1.1 | = 1 @ z = ejωch 

0.2 = | (cos ωch – 1.1) + j sin ωch | ==> 0.04 = (cos ωch – 1.1)2 + sin2ωch   

solving gives cos ωch = 0.986  ==> ωc = (1/h) cos-1 (0.986) = 0.827 rad/sec 

m = 55.40 

c=0.827 rad/sec 

m=-6dB, 20.4dB 

 Stable for (0.5,10.5) 

jωhz = e
iii)  Obtain     via Bode plot of LG=  K(zI –Φ)-1Γ= 0.2/(z – 1.1)  
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2a – Steady-State Accuracy to a Step Input 

   

 

1

r

1
1

r

T z C zI K

 K = C I + K

n

n

K





  

    
 

               1 1

1z 1k
z = 1

A
lim y k 1 z T z r z 1 z T z AT 1     T 1 1          

1 z
  


      



 
   

   
   

G 1 H 1
T 1 1     G 1 H 1       

1 G 1 H 1
    



     

   

-1 -1 1

r

-1 -1 1

r

T z K C zI Φ Γ[  + K zI Φ Γ]

  K  = [  + K I Φ Γ][C I Φ Γ]

m

m

I

I





  

  

   
 

   

1

1 1

N z
G z H z  = 

1 z D z



 

ss

p p

A A
Steady-state error, e

1 K K




or

 

 

 

 
ss

p

p ss

1 T 1 T 1A y1
Fractional error   =  =     K  =   usually large    

K y T 1 1 T 1
  








•   If r(k) is a step input (e.g., commanded change in setpoint) of value A,  

want y(k) → A in steady-state (s.s.)    

Final value theorem for yss  - provided CL system is stable:  

  -  For series compensation design only  

     =>  Need an integrator in either G (i.e., G) or H  

 -  For SVFB design achieve T(1) = I via proper choice of Kr (valid for MIMO also)  

Requires loop gain to have a pole at z = 1  

•   If T(1) ≠ 1 there will be a steady-state error, A-yss.  
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v
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K

h dz
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  
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2b – Steady-State Accuracy to a Ramp Input 

•   When r(k) is a ramp input, r(k) = Akh, we want to command a rate of       change in setpoint. 

yss →  βkh – α  

- need T(1) = 1 for β = A  

(otherwise ess → ∞) 

t 

r 

y 

ess 

Slope = A 

•   Relative "steady-state" error 

  

  -  in general,  

  

  -  can show 
 poles, zeros of T(z) 

•   For series compensation structure only 

 need at least one integrator in forward loop gain (GH) since sGH  →  Kv at low  

    frequency GH →Kv/s   as s → 0, i.e., Kv is the gain of the Low Frequency asymptote.  

  
-  provides criterion for selecting LF loop gain 
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2c – Steady-state Error to Sinusoidal Inputs 

jωhz = e
1

 
   

   
 

G z H z
y z r z

1 + G z H z


     
   

 
1

r z y z  = e z  = r z
1 + G z H z



     
 

   

d z
y z  = T z r z  + 

1 + G z H z

•   Series Compensation Design  

Error  

  =>  Want | G(z) H(z) | large over the frequency range of interest          where  z = ejωh  

Places lower bounds on ωc (where | GH |             )  

But want | G(z) H(z) | small at high frequencies, for noise rejection  

These provide criteria for selection of H(z).  

ωc ~  Bandwidth of CL system  

•   SVFB Design  

Bandwidth determined by CL pole locations  

      Obtain  ωc via Bode plot of K(zI –Φ)-1 Γ  

  =>  implicit specification of ωc  

•   Output Disturbance Rejection 

H(z) 

d(z) 

y(z) 

r(z) 
+ 

- 

+ 

+ 
G(z) ~ 

ω 
ωc 

–20dB/decade 

1 

3 

4 2 

Bode plot of  

( ) ( )j h j hG e H e 

ss tracking 

Mid freq   

tracking 

Restrictions 

on BW, phase 

Margin, gain margin 

Noise attenuation,  

Control energy reduction, 

Robust stability 
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2d – Maximum Peak Criteria 

•   Compression-type piezoelectric accelerometer sensors 

     typically have peak in the frequency response with 

     resonant frequency (typically 20 kHz)   

−  useful frequency range = ¼ resonant frequency  

        typically up to 5 kHz  

− Flat gain curve (less than 1dB (12%) change over a decade) 
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•   Closd-loop T(ejh) measures: (values for 2nd order system shown) 

TM
3dB

BW

Roll-off rate 

2

2

2 4 2 1/2

1
  Resonant peak ( ) :  

2 1

  Resonant frequency ( ) : 1 2

  Bandwidth ( ) : [(1 2 ) 4 4 2]

  roll-off (cutoff) rate 

T

T n

BW n

M
 

  

    




 

    



T

12 
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3 – Speed of Response/Transient 

2πζ 1 ζ
100e    ζ 1

 


 1

5% n 1% n nTS 3/ζω ;  TS 4.7/ζω   ζω time constant  

 
2

n

2 2

n n

2

1,2 n n

ω
T s =    0 < ζ 1

s  + 2ζω + ω

  λ = ζω  ± jω 1 ζ



 

•   Related to the location of the closed loop (CL) poles and zeros.  

• Require some nominal input, i.e., speed of response to "what".  

  -  Most common test input is unit step, next ramp.  

• Examine step response of a 2nd order closed loop system:  

  -  Many systems are interconnections of 2nd order parts  

  -  Many systems have a dominant 2nd order pair  
          (roots with smallest Re[s], or largest | z | )  

  -  Consider T(s), then s→ z plane map to get T(z) poles 

(CL) 

θ 

ωn 
jω 

σ 
ζ = cos θ 

t 

yss = 1  

since T(0) = 1 

s.s. error band tr 

0 
0.1 

0.9 
1.0 

y(t) 

PO 

• Figures of merit:  

  -  PO = % overshoot =           As ζ→ 0 system response becomes more oscillatory  

  -  tr = 10% to 90% rise time ≈ 2.5/ωn   

  -  Settling time = time to get and stay within  ± x % of ss  

• "Think" in terms of nominal continuous (s-plane) pole locations given PO and TS specifications.   

• Use LHP ‘ unit circle (s → z) map diagram to obtain desired pole locations in z-plane. 

2v

3v
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Results for 2nd Order Continuous System 

(or Dominant Pair of Complex Roots) 
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2 2
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Results correspond to above loop structure:            

  

(b) Phase Margin 

    K  
s (s + a) 

- 

100 ζ 

ζ 

•   Relation to frequency domain measures 

0

|| ( ) || | ( ) |

1 (larger BW shorter rise time)

 & % OS  and vice versa

 peak freq (time) moves to left (right) 

     while peak moves to left and vanishes at 1/ 2  

j h

T

k

BW r

T

M T e g k TV
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  
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



Automobile weight = 1000 kg; per wheel: 250kg

Equivalent stiffness at each wheel = 60000 N/m

    What is damping constant,  to get 1%overshoot

0.83 2 6430 / /

b

b km N m s 







    



Copyright ©2012  by K. Pattipati  15 

4a - Sensitivity 

 y

x

% change in some y x Δy y x y
S

% change in x Δx x y x


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

 
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T z 1

G z

G z G z H z 1
S [1 ( )]

T z G z 1 G z H z 1 G z H z
L z 

 
    

    

mif RD 1 for all ω    60  

•   Series Compensation (SISO)    T(z) = G(z)H(z)  /  [ 1 + G(z)H(z)] 

Return difference  (RD)    1 + G(z) H(z) =  1 + L(z) 

•   SVFB   
            Return difference matrix  = Im + K(zI –Φ)-1 Γ                              

Criteria:  Keep | RD |  >>  1 over frequency range of interest               => large loop gain  

m•   Relation to     : 

• Best to examine root locus of CL system poles with respect to individual parameter variations  

about their nominal values [ai, bi in G(s); aij, bi in A, B; etc.] 
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5 -  Choosing a Sensor 

• Environmental Factors 

− Temperature Range 

−Humidity Effects 

−Corrosion 

− Size 

−Over Range Protection 

− Susceptibility to EM 

Interference 

−Ruggedness 

− Power Consumption 

− Self-test Capability 

• Economic Factors 

−Cost 

−Availability 

−Mean-time-to-Failure 

• Sensor Rating Parameters 

− Sensitivity 

−Dynamic Range 

−Resolution, Accuracy and Precision 

− Linearity 

− Zero Drift and Full-scale Drift 

−Useful Frequency Range and Bandwidth 

− Input and Output Impedance 

16 
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5 – Sensor Rating Parameters - 1 

•   Sensitivity 

− Incremental output/ Incremental input = dy/dx 

− Example:  Piezoelectric accelerometer sensitivities are measured in terms of 

picocoulombs (pC)/unit acceleration (g) or mv/g 

• Dynamic range in dB 

− Lower limit = resolution of sensor 

− Dynamic range = range of operation/resolution 

• Resolution : smallest change that can be detected/measured 

− Example: Required resolution for robot motion = 0.1 cm 

− Drive wheel of the robot directly driving a rotary potentiometer(pot) has diameter = 20cm 

− Assume diameter of pot = 10cm; Resistance, R = 5; Resistivity of wire,  = 4cm 

− Required resolution of the potentiometer, r = 0.1/20 = 0.0016  

− Number of turns, N = 1/0.0016 = 625 

− Wire diameter from circumference: . 10=625 d  

        d = 0.05cm =0.5mm 

− Diameter of the core of the coil, D from 

 

 

                               

                              D = 1.25cm 

 16

10

Sensor with a 16 bit ADC:

Dynamic range =20log 2 1 96.3dB 

 
2( / 2)

N D
R

d

 



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5 – Sensor Rating Parameters - 2 

•   Linearity 

− How close output versus input curve is to a straight line under steady-state conditions 

− Linearity = (max deviation from the static calibration curve/Full scale value)*100%  

  

− Zero Drift and Full-scale Drift 

− Causes of drift: sensor parameter changes (aging, wear and tear, nonlinearities, amplifier 

gain), ambient changes (temperature, pressure, humidity, vibration level), changes in 

power supply (ac line voltage, dc reference voltage) 

− Zero/Full-scale drift: changes in/stability of  null (full-scale) reading  

 

• Useful Frequency Range and Bandwidth 

− Typically ¼ the resonant frequency where gain is flat and phase is zero 

− Measure of sensor bandwidth 

 

• Input and output impedance 

− Ratio of rated voltage/ current at the input port with output port open (no load) 

− Ratio of rated voltage/current at the input port when output port is shorted 

− Need isolation amplifiers when the output impedance is low 
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6- Accuracy versus Precision 

Neither Precise 

Nor Accurate (bias and variance) 

Precise, but not  

Accurate (bias, small variance) 

Not Precise, but reasonably 

Accurate (no bias, some variance) 

Precise and 

Accurate (low bias and low variance) 
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7- Actuator Nonlinearities 

Saturation 

Hysteresis in Magnetic Materials Gear Backlash 

Dead Zone  Relay Control (with Hysteresis) 
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8 – Bandwidth Design 

• Step 1:  Decide on max frequency of operation 0 for the system based on response 

time requirements  (BW) 

− A good rule of thumb:  Cross-over frequency of loop gain is a good measure of 

BW 

− Another good rule of thumb:  Rise time = 2.2/ 0 

• Step 2:  Design/ select relevant system components that have the capacity to operate 

at 0  

• Step 3:  Select feedback sensors with flat frequency response (operating frequency 

range) > 4 0 

• Step 4:  Make sure that digital control computation can see at least 2 sensor samples 

per cycle  … two-rate sampling (control sampling interval, h  and sensor sampling 

interval, h/2) 

• Step 5:  Select signal conditioning and actuator system with flat frequency spectrum 

> 0 

• Step 6: Integrate and test system performance.  If performance specs are not met, 

make design changes and repeat again                                                         
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C – Evaluation and Simulation 

m

•   Most time and effort is involved here!  

  -  To what extent have design specs been met  
  -  Actual 
  -  Closed-loop pole locations  
  -  Effect of different sample times, h  
  -  Computational lag  
  -  Root locus with respect to design parameters  

•   Time response of CL system to representative command inputs r(t)  and initial conditions  

  -  Via computer simulations  
  -  Must consider response of y(t), x(t) not only at the sample points, t = kh, but 
     in between samples too! 

(a pathological, but   not far-fetched case) 

y(t) 

t 
0 h 2h 3h 

•   "What if" questions  

    -  Sensitivity of performance to changes in system parameters,        controller parameters  
  -  Failure modes  
  -  Control saturation  
  -  Noise:  measurement and/or process  
  -  Unmodelled dynamics, time-delays, ...  
  -  Quantization and other nonlinearities  . . . 
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Simulation of Closed-loop Time Response 



   
•   Tool to examine time response  

  -  Input (u), output (y), any state (x)  
  -  Obtain response between sample points of the continuous-time   variables y(t), x(t)  
  -  u(t) is assumed piecewise constant over intervals of length h  
  -  Simulate with arbitrary initial conditions (user input)  
  -  Examine response to representative r(t)  

•   Need a flexible computer program  

  -  Ability to input system dynamics in G(s) or in x = Ax + Bu,  y = Cx + (Du) format   

  =>  program will work with a state-space model or TFM.    

      If G(s) format given, get  

      (i)  SOF or SCF  for SISO systems 

      (ii) SCF for SIMO systems 

      (iii) SOF for MISO systems 

      (iv) Balanced minimal realization 

  -  Ability to simulate different control algorithms  
            OPT = 0:            Open-loop response u(kh) = Kr r(kh)  
            OPT = 1:            State variable feedback control  
            OPT = 2±:          Series compensation via H(z)   (including different implementations)  

            OPT = i, j, ...   :  Reserve for future control options  

  -  Ability to easily change the control interval, h 
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Simulation Structure 

•   Basic Flow  


   

x = Ax + Bu  
y = Cx + Du 

y(t), {x(t)} 
may not always be necessary  (or measurable) 

A/D 
r(t) 

ALGORITHM D/A 

u(t) 

pw constant, h 

  1.  Obtain r(t) at time t  
  2.  Sample r(t), y(t), x(t) at t = kh  
         -  Supply r(kh), y(kh), x(kh) to control algorithm  
  3.  Obtain u(kh) from control algorithm  
         -  u(t) = u(kh) for kh < t ≤  (k+1)h  
  4.  Print out info at time t: x, y, u, r  
  5.  Compute system response x(t), y(t) over (kh, (k+1)h]  
         -  e.g., at t = (k+1)h:  x [(k+1)h] = Φ(h) x(kh) + Γ(h) u(kh)  

•   How to compute x(t) and y(t) at more points in [kh, (k+1)h]  

  -  Pick NS ≥ 1 and let h1 = h/NS  
  -  The control algorithm is active every h sec  (u is piecewise constant over intervals of length h)  
  -  Can compute x(t) at times that are multiples of h1, while changing  u every NS-th multiple of h1  
  -  Dual-time scale simulation (NS = 2 → 5 usually)  

[ Remember!!  -  even though we simulate the system response using a (small) time step h1,  

the control algorithm must have been designed for the actual sample time h. ] 
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Flow Diagram for Simulation Program 

   

N 

Y 

t >  
tend? 

Stop 

N 

Y Update time Computes x(t+h1),  
y(t+h1) from x(t), u(•) 

Returns   
u = constant  
over (t, t+h] 

Returns r(t)   
at time t 

(Use c2d  
function) 

(If inputting G(s) 
set up A, B,C, D ) 

Input n, h, NS, tend  
A, B, C, D, x(0) 

Initialization  
x = x(0), h1 = h/NS  
y = Cx, t = 0, k = 0 

1
1

h
Ah Aσ

0
e ,   e dσB    

   Compute:      

Call Command (t, r) 

Call Cntrl (OPT, t, r, x, y, u) 

Print out t, x, y, u, r 

Update response  
x ←Φx + Γu  
y = Cx + Du 

k = k+1  
t = kh1 

Is  
(k)     NS  

= 0? 
MOD 
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Time History of Simulated  

Sequences (Example, NS=4) 

   
•   An understanding facilitates subsequent simulations that will include time-delay  

1. New control computed only at times k = 0, 4, 8, 12, ... using the corresponding value of  

         x (or y) at this time.  The value of u is not changed at other than these points. 

2. Next x(k+1) is computed at time k, k = 0, 1, ... using x(k) --- the previous x and current u.   

         This computation is done at every k.  
 x [(k+1)h1] = Φx(kh1) + Γu(kh1) 

y [(k+1)h1] = Cx [(k+1)h1] + Du(kh1) 

0 2 4 8 6 10 12 14 16 18 

u(k) 

u 

k 

 x(k) 

x(k+1) 

0 2 4 8 6 10 12 14 16 18 
k 

x 
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Control Algorithm Simulation 

n

i ir i

i=1

u = K r k *x ;k col i of K 
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1 0
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     ( ); 1,2,..,
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SUSE

u k e k e k l u k l i m  
   

       

•   Command (t, r) and Cntrl (OPT, t, r, x, y, u) are user-oriented.  

•   Cntrl must distinguish among various options:  

OPT = 1 for SVFB, u = Kr r – Kx  

OPT = 0 for open-loop response, u = Kr r 

•   Command (t, r) returns r(t), e.g., ri = 1, ri = Ai * t, etc. 

    where the gain values Kr, {ki} are read in as input or else set via an input statement. 

OPT = 2 for "standard" series compensation (q-th order).  Read coefficients of TFM H(z) 

 

- Corresponding discrete algorithm:  

  -  To implement u(k) via H(z) will need (m.p.(q+1)) storage  (each                ) 

   for the last q values of each e and u:  paste, pastu.  
There will be other options to cover different implementations.   

max i
i

q q
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Algorithm Flow for Implementing  

H(z) Compensator 

Setup for next time through. 

0 -  enter with t, r, y  

1 -  if t = 0, set pastu(k,i) = 0, k=1,2,..,q; i=1,2,..,m; paste(k,j) = 0 for j=1,2,…,p;k=1,2,..,q  

             SE(i) = 0, SU(i) = 0, S(i) = 0 for i=1,2,..,m  

2 -  e(j) = r(j) – y(j) for j=1,2,..,p  

3 -  for i=1,m   

         u(i) = S(i)       

         for j=1,p 

                 u(i)=u(i)+ij0e(j) (This is the new value of u(i) we are computing)  

         end  

       end 
4 -  (pushdown pastu, paste, if q  > 1)  

       for i = 1, m &  for k=1,q-1   pastu (q + 1 – k,i) = pastu (q – k,i) end i and end k 

       for j = 1, p &  for k=1,q-1    paste (q + 1 – k,j) = paste (q – k,j) end j and end k   

                         
5 -  for i=1,m  pastu (1,i) = u(i)     (Store latest u)   

  for j=1,p paste (1,j) = e(j)      (Store latest e)  

6 - 

  S (i) = SE (i) – SU (i)  

7 -  return 

•   Special case when q = 1 

     and SISO: 

u = β0e + S  

S = β1e – α1u  

•   Try to program Cntrl in much the same way for as would be done in the real-time  implementation.   

     (Note, u can be output at step 3.)  

•    Such an implementation permits timing of code, investigation of round-off effects, testing, etc. 

This implementation of 

H(z) is not the best from 

a numerical accuracy 

viewpoint, especially 

for q>2. Use partial 

Fraction expansion. 

e = r – y 

1 1

1

( ) ( , )

( ) ( , )

i

i
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ijl

j l

q

il

l

SE i paste l j

SU i pastu l i




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




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
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Simulation of Time Delay, τ 

1 1 1j 1τ N h  + ε ,     0 ε hj j j  

   

•   Lump all delay in the control (input lag)  

•   Write delay as multiple of simulation step, h1  

•   Discrete simulation model  

ε1 h1–ε1 

(k–1)h1 kh1 (k+1)h1 

x(kh1) 
x [(k+1)h1] 

u [(k–N)h1] 

u [(k–N–1)h1] 

•   Will need an (Nj +2)-vector pushdown stack to store past values of uj, uold(i,j), i = 1, ... , Nj+1,  

    j=1,2,..,m and latest value uold(Nj+2,j). Uold(i,j) ≡ u(k–Nj–2+i,j)  Initialize uold(i,j) = 0 at t = 0.  

•   Control algorithm design is based on delay model, Eq. (2.34), associated with time step h.  

1Ah
 = e

1 1jh ε

0 0

A

jj
e d b 



 
1

1 1

1
1 1

1

( )

0

j

j

h
A

jj h

A h A

j

e d b

e e d b





 

 















1

1

( );  column  of 

( );  column  of 

m

j jj j

j

m

j jj j

j

x Ax b u t b j B

y Cx d u t d j D









   

   





Single Input 

illustration 

1 1 1 11 0
1

1 1 1

1

[( 1) ] [ ] [ [( 1 ) ] [( ) ]

[( 1) ] [( 1) ] [( ) ]

m

j j j jj j
j

m

j j j

j

x k h x kh u k N h u k N h

y k h Cx k h d u k N h

 




       

    







Copyright ©2012  by K. Pattipati  30 

Required Modifications to  

Simulation Flow Diagram 
•   Initialization:  

                        compute Nj = Int [τj/h1]  
                                      ε1j = τj – Nj h1  
                        set   uold (i,j) = 0 for i = 1, ... , Nj+2; j=1,2,..,m  
                        compute γ0j, γ1j; j=1,2,..,m 

                  (Note, γ0j   = 0 if ε1j = h1
– , γ1j  = 0 if ε1j = 0)  

•   New Response Update Module 

uold (Nj+2,j) = u(j); j=1,2,..,m 

Computes  x(t+h1),  y(t+h1) 

Pushdown uold (i,j)  
(only if  τj  > 0)  

uold (i,j) = uold (i +1,j)  
for i = 1, 2, ... , N +1  

Propagate  x, y  

  -  uold stack will be piecewise constant values that change every NSth point.  

  -  Correctly simulates small delay (when Nj = 0, i.e., τj <  h1).  

1 0
1

1

[ [2, ] [1, ]

(2, )

m

j j
j

m

j

j

x x u j u j

y Cx d u j

 

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 
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
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  Summary   

1. Design Approach and the Design Process 
 

2. Performance Measures and Criteria 
• Stability and phase margin 

• Steady-state accuracy 

• Max peak criteria 

• Speed of response/transient, sum of absolute error, sum of square error 

• Sensitivity and return difference 

• Sensor rating parameters 

• Actuator nonlinearities 

• Bandwidth design 
 

3. Simulation of Closed-Loop Time Response 
• Simulation program structure 

• Control algorithm simulation 

• Modifications to simulate time delay 
\ 

 


