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Design Approach and the Design Process

Performance Measures and Criteria
Stability and phase margin
Steady-state accuracy

Max peak criteria

o=

Sensitivity and return difference
Sensor rating parameters
Accuracy versus Precision
Actuator nonlinearities
Bandwidth design

3. Simulation of Closed-Loop Time Response
«  Simulation program structure
«  Control algorithm simulation
«  Moaodifications to simulate time delay
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Speed of response/transient, sum of absolute error, sum of square error

Performance Criteria and the Design Process
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(k) J?% H()

LU 5(2)

y(K)

Given G(z) design a suitable H(z)
u(z) = H(z) [r(z) - y(2)]

Closed-loop transfer function

y(@) -\ G(H(E)

« Alternate loop structures

T1:G(2)H(2) o

- Feedback compensator design

y(K)

r(k) :(fu(lﬂ G@)
H(z)

-

G(2)

u(2) =r(2) - H(2) y(2)
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T@ =178

Closed-loop
characteristic
polynomial

@J—' Elements of Feedback System Design I l

« Series Compensator Design Structure ("Classical™)

Loop gain =G(z) H(z)

)= g ne ™

r(k) o+

e(IQ_

H,(2)

- Mixed series/feedback compensator design

G(2)

y(K)

_:?_Qﬁu
H,(2)

!

Lk L L

Most general form, allows for FB using e and/or y.
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e J—| Elements of Feedback System Design Il l

« State Variable Design Structure ("Modern")
Given X(k+1) = @x(k) + Tu(k), y(k) = Cx(k)
design suitable K, K,,  u(k) = K, r(k) — Kx(K)
Closed-loop: D
o ~
k+l) = (&-TK)x(k) +K,I'r(k
2)
)
Alternate Formula: G(z)
—
_ KC(zl-@)'T
T(Z) - 1
1+K(zI-®)'T

FEF O DL L

X

—

K.N(z)
|zl - @ +TK|

<
—

=T(z) =K,C(zl -®+TK) T =

r

—~~

Derivation:
(1) x(z) = (2l - ©)* T u(z)
(2) u@@) =K r(2) - K@zl -o)1 T u(2)
B) u@)=[1+K(zl-D)1T ]!t Kr(z)
(4) Substitute into y(z) = C(zl — ®)1T u(z)

=> Closed-loop characteristic polynomial is
p(z) = |zl -®+TK| or p(z)=1+K(zI-®)'T

« Optimal Control Design ("Classy")
One method for obtaining K, K, -- by optimizing some criterion.

L L L L
[
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Yo J—| Design Approaches to be Consideredl

 For series compensation design of H(z)
H (Z) _ B;im++a[3;2nml_l++. .. .. .++aBm
1 m
(1) Discretization of a continuous design
H(s) —H(z)
where H(s) is a series compensator designed for G(s)
(will usually be OK when h is very small).

(2) Direct design methods for H(z) given G(z).

» For SVFB design of K, K,
(1) Discretization of continuous design gains

(m-th Order Compensator )

(2) Pole placement, direct design methods
Select K so that | zI -®+I'K | has desired roots.

(3) Optimization methods
Find u(k) = K, r(k) — Kx(k) to optimize some performance
criterion ==> K*, K *.

» Methods for state estimation when x(k) is not directly measurable,

{y(*)} = X(®).

K—K; K. —>K, where K, K, were designed for X = AXx + Bu.

L L L L
[
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V5 [ The Design Process l

MATH MODEL| @
OF SYSTEM L

Including sensors, DESIGN: EVALUATION YES
actuators and / _|-> SERIES COMP > SII\/ISLLATK)N .
. e OR SVFB
signal condltlonm PERFORMANCE
e MEASURES A NO

A) Mathematical Model of System to be Controlled
Defined by discrete equivalent G(z), or {®, I, C}
B) Performance Measures and Concerns
Mathematical criteria that are driven by customer's qualitative/quantittaive specifications
for behavior of the closed-loop system.
(1) Stability of the closed-loop system

FEF O DL L

- A property of loop dynamics not of r(k) 6) Accuracy versus Precision
- Without stability cannot discuss much else 7) Actuator nonlinearities
(2) Steady-state accuracy 8) Bandwidth design

- Does y(k)— r(k) as k —

- If r(k) = 0 desire y(k) & x(k) — 0 for all x(0)
- Resonant peak, Bandwidth, cutoff (roll-off) rate

(3) Speed of response/transient, sum of absolute error (SAE), sum of squared error (SSE) 1'a
- Transient response linked to CL pole locations J'd
(4) Sensitivity/robustness 34
- Ability of CL system to perform with AG(z) AGd (z) = bounds on Loop gain . %
- Feedback desensitizes loop to variations in G(z), G, (2) r
(5) Sensor rating parameters »

ight ©2012 K. P
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1 - Stability of the Closed-Loop System

*_Roots of closed-loop characteristic polynomial p¢, (z) in unit circle (| <1)
roots |zI-® +T'K|=0valid for SISO or MIMO

oi SISO:1+G(z)H(z)=0o0r B
g 1+K(zl-®) I'=0 for SISO
« Will need a simple test to determine if a polynomial p(z) has any roots with | A | >1.
- Recall Routh test for whether p(s) has roots in RHP...... Jury test
« Phase margin ¢, used to give degree of stability. "How much more negative phase shift
(phase lag) can you put in the FB loop before the system becomes unstable?" ~ tolerance to
time-delay.
To determine ¢.,use Bode (or Nyquist, or Nichols) plot of loop gain of SISO system:
- LG, = G(z) H(z) series compensation
- LG, ,=K(zl - ®)1 T for SVFB

ca2d ss2tf margin
A B—» O T —>» N@Z) ¢, 0,

Examine loop gain vs. o with z = el*"

. Gm=39.1dB (at 29 rad/s?ji\,c Pnéd ey ety , Nyqu\s%Di aaaaa ,
ST , Frequenc

I—

FEF O DL L

ain
ain

T4

-200 (~

Magnitude (dB)

§0pen-|_oop EaliftL in ng

megnary s | T LG
o e
:
.

DR
| @, Phase margin

L L L L
[

Phase (deg)

(; i ‘2 é,- - : Open-LoopF‘hase(dz)LG

- : 1 2 J ~Re LG| Nyquist contour = unit circle
C ight ©2012 by K. Pattipatpise
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o O
d
d The system x(t) = 0.5 x(t) + 0.95 u(t), y(t) = x(t) is controlled digitally using the algorithm
- u(k) = K, r(k) — x(k), with time step h = 0.2 sec. Determine the phase margin.
: (Note that the open-loop G(s) is unstable.)
5 i) Discrete equivalent model ® =e*05h =11, T =(e*%5-1) (0.95/0.5) = +0.2
N i) Check stability of closed-loop (K =+1) = ® —-T'K =0.9 = stable
iii) Obtain ¢, via Bode plot of LG= K(zI -0){I5,0.2/(z - 1.1)
. Gm=-6.02 dB (at 0 rad/sec) , ngz 55.4 deg (at 0.827 rad/sec)
g ol Vo I ) e ,,
) =T ‘ﬁm r -4-%60 »31r5 _2;0 _22f5 -180 »1?25 -9r0 _4f5 -AOdBO
—180/ Open-Loop Phase (deg) o o
10” 10" 10° ) 10" 10° o = 55.49 «d
Analytic approach: find'o, where 0.2/]z—1.1|=1@ z = eloh o'=0.857 rad/sec 42
— ' e — — 2 N2 c - od
0.2 =] (cos och—1.1) +jsin wch | ==>0.04 = (cos och —1.1)* +sin‘och |, =6dB, 20.4dB 5
solving gives cos w,h = 0.986 ==> @, = (1/h) cos (0.986) = 0.827 rad/sec | — Stable for (0.5,10.5) -

8 Copyright ©2012 by K. Pattipati I. ‘ ‘ ‘ ‘ . ‘
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 If r(k) is a step input (e.g., commanded change in setpoint) of value A,
want y(k) — A in steady-state (s.S.)
Final value theorem for y., - provided CL system is stable:

my(k)=(1—z—1)T(z)r(z)z_l:(1_2-1)T(z)1_AZ_1Zzl:AT(l) - T(1)=1
- For series compensation design only T(1)=1=lfé1(ll;|:1()l) = G(1)H(1)=w

Requires loop gain to have apole atz =1 = G(z)H(z) =

=> Need an integrator in either G (i.e., G) or H
- For SVFB design achieve T(1) = | via proper choice of K, (valid for MIMO also)
T(z)=C(zl, -®+TK) TK, T(2)=K,C(2I-®) Tl +K(zI-®) " TT*
o = k =p, +K(1-0)' rCc(1-@) ' IT*

-1

= K,=|C(1,~®+TK) T |

« If T(1) # 1 there will be a steady-state error, A-y...

Fractional error = 1 = A_yss = 1_T(1) — Kp — T(l) usually large
Kp yss T (1) 1 - T (1)
A A
Steady-state error, e, = ~
1+K, K

p

4\
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« When r(k) is a ramp input, r(k) = Akh, we want to command a rate of change in setpoint.

r

fSIope =A y Y — Pkh—a

-need T(1)=1forB=A
(otherwise e, — )

 Relative "steady-state" error in seconds

-1
- in general, K, :—%{dT(Z)}
=1

—h{Z é

1-p, J poles, zeros of T(z)

 [For series compensation structure only

K, = (1—hz )é(Z)H(Z)zlzr:\ID—((]f) = Isi_r)TgSé(eSh)H(eSh)

= need at least one integrator in forward loop gain (GH) since sGH — K at low

frequency =GH —K /s ass — 0, i.e., K, is the gain of the Low Frequency asymptote.

- provides criterion for selecting LF loop gain

Lk L L

[
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« SVFB Design

 Series Compensation Design
Error  r(z)-y(z) =e(z) =

1

v enE)
=> Want | G(z) H(z) | large over the frequency range of interest where z = eieh

Places lower bounds on w, (where | GH |, _ .. =1)
But want | G(z) H(z) | small at high frequencies, for noise rejection

y(2)= G(z)H(2) (2)

1+ G(2)H(2)

« Output Disturbance Rejection

These provide criteria for selection of H(z).

o.~ Bandwidth of CL system Mid freq
tracking*@

77

—20dB/dec

(D)ss tracking
~ Bode plot of

G(e"")H("")

®

2¢ — Steady-state Error to Sinusoidal Inputs

Noise attenuation,

Control energy reduction,

Robust stability

Bandwidth determined by CL pole locations
Obtain o, via Bode plot of K(zI —-®)* T
=> implicit specification of o,

+ + d(z)

—>| G(2)

r(z)-ﬁ?-» H(z)

=0

y(2)

11 Copyright ©2012 by K. Pattipati
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Restrictions
on BW, phase
Margin, gain margin
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« Closd-loop T(el“") measures: (values for 2" order system shown

Bode Diagram

20 = T FFFFF

FEF O DL L

. T
e Resonant peak (M;): ——— _a4B oM
2 S rd
2c+\[1-¢ € 2ol Wy
o Resonant frequency (e, ) : @, \/1- 2¢* 5 Rolk-ait rate -—=
e Bandwidth (a)BW):a)n[(1—2g2)+\/4g4—4g2+2]1’2 b Ll e L
e roll-off (cutoff) rate x
« Compression-type piezoelectric accelerometer sensors \J
typically have peak in the frequency response with e e e W

Frequency (rad/sec)

resonant frequency (typically 20 kHz)

— useful frequency range = ¥4 resonant frequency
= typically up to 5 kHz
— Flat gain curve (less than 1dB (=12%) change over a decade)

[

ight ©2012 K. Pattipati
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» Related to the location of the closed loop (CL) poles and zeros. |eTotal variation (TV) :i|vi|

* Require some nominal input, i.e., speed of response to "what".

- Most common test input is unit step, next ramp. =21y -y() = 2 1 9(k)]

FEF O DL L

« Examine step response of a 2" order closed loop system: e Sum absolute error (SAE)
- Many systems are interconnections of 2" order parts SAE = 3 Je(k) |
- Many systems have a dominant 2" order pair k=0
(roots with smallest Re[s], or largest | z | ) * Sum squared error (SSE)
- Consider T(s), then s— z plane map to get T(z) poles SSE :iez(k)
0)2 o) = =1
CL T(s)= n 0< <] x J y(t)A e S — : y_ss
( ) ( ) s? + 2L, + coﬁ . On {=cos 0 PC%/ Ev !smce T0)=1
0 10 BV anN
Xl 2=~ C(’On :l:j(Dn 1- CZ — © O 9| u_-j_\@ T
’ '1‘ i s.s. error band
x 0. L >t

» Figures of merit:
- PO = % overshoot = 100e ™/ V-< £<1 As({— 0 system response becomes more oscillatory
- 1, = 10% to 90% rise time = 2.5/,

- Settling time = time to get and stay within + x % of ss <4
TS, =3/lw,; TS,, ~4.7/w, (C(Dn = time constant_l) 4

< 'd

« "Think" in terms of nominal continuous (s-plane) pole locations given PO and TS specificationsy iy
* Use LHP ° unit circle (s — z) map diagram to obtain desired pole locations in z-plane. o
J

ight ©2012 K. Pattipati
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Results for 2" Order Continuous System

4 R oY . 3
1 or Dominant Pair of Complex Roots
4 2
4 T(s)=—— . .
o o 100 s? + 2{o, + o’  Relation to frequency domain measures
‘ D-‘ o0
W 8 _ o M, =||T(™)|.< k) |=TV
- < 15 (a) % Overshoot to step input ATEI Z;' 9(k)|
g o0 100e(_n€/ =2) * g, <1/t (larger BW = shorter rise time)
g S0 - cd=>M; T &% 0S7T and vice versa
(&)
o ¢ T= peak freq (time) moves to left (right)
25 . .
while peak moves to left and vanishes at ¢ =1/ J2
0 N — e Automobile weight = 1000 kg; per wheel: 250kg
0.25 05 _ 0.75 1.0 e Equivalent stiffness at each wheel = 60000 N/m
Damping Ratio . .
75 100 e What is damping constant, b to get 1%overshoot
_g'f (b) Phase Margin c e c=0.83=b=2c/km=6430N/m/s
=) K
= 50 *? s (s+a) =
> -
QO
4 Results correspond to above loop structure:
g 1 Y, 41
2
b = 90—57.3tan{—(1/4 ¢ -2) } a2
2 ah
0 Tt T—T T T+t T T T+t T 7T 1 = ol ol
0.25 05 075 1.0 ¥
Damping Ratio -
14 Copyright ©2012 by K. Pattipati I] ‘ ‘ ‘ ‘ . ‘



(l 4a - Sensitivity l

% change in some y(Xx) _Ayly x0y

S =
i % change in X Ax/x yOx

~

-3 2 [ oame) ),
°® T(z) 0G(z)|1+G(z)H(z) | 1+G(z)H(z2)

Return difference (RD)2 1+ G(z) H(z) = 1 + L(2)
SVFB

FEF O DL L

=+ L@

Return difference matrix =1+ K(zl -®)1 T
Criteria: Keep |RD | >> 1 over frequency range of interest =>
Relation to ¢, Im LG
if RD|>1forallo = ¢, >60°

ain

-

’

-
~

/
1

\
locus of points

|1+L|=1 /

Best to examine root locus of CL system poles
about their nominal values [a;, b; in G(s); a;;

15 Copyright ©2012 by K. Pattipati
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Series Compensation (SISO) T(z) =G(z)H(z) / [1+ é(z)H(z]

Example:y = f (X, X,,... X)
of
Sy = Zla—xax
']5_y:Z”: o % OX%
y i=1 aXi y XI
S
0y i OX
9Y _Ngf 94
y |Z=: i X;

large loop gain

Re LG,
® «d
& _locus of L (2) |z _ gjor 43
= 43
with respect to individual parameter variations jj<4 4
b, in A, B; etc.] :

4\



NI & (l 5 = Choosing a Sensor l

o

o

o

a9 ° Environmental Factors « Economic Factors

: — Temperature Range — Cost

. — Humidity Effects — Availability
— Corrosion — Mean-time-to-Failure
- Size  Sensor Rating Parameters
— Over Range Protection — Sensitivity
— Susceptibility to EM — Dynamic Range

Interference

— Resolution, Accuracy and Precision
— Ruggedness S

— Linearity
— Power Consumption

— Zero Drift and Full-scale Drift

— Self-test Capabilit
P d — Useful Frequency Range and Bandwidth

L L L L
[

— Input and Output Impedance

ight ©2012 K. Pattipati
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192 - (5 — Sensor Rating Parameters - 1
4
:  Sensitivity
- — Incremental output/ Incremental input = dy/dx
N — Example: Piezoelectric accelerometer sensitivities are measured in terms of
N picocoulombs (pC)/unit acceleration (g) or mv/g
"8 . Dynamicrange in dB Sensor with a 16 bit ADC:
— Lower limit = resolution of sensor : _ 6 4\
— Dynamic range = range of operation/resolution Dynamic range =20log,, (2 _1) ~96.3dB
* Resolution : smallest change that can be detected/measured
— Example: Required resolution for robot motion = 0.1 cm
— Drive wheel of the robot directly driving a rotary potentiometer(pot) has diameter = 20cm
— Assume diameter of pot = 10cm; Resistance, R = 5Q; Resistivity of wire, p = 4puQcm
— Required resolution of the potentiometer, r = 0.1/20n = 0.0016
— Number of turns, N = 1/0.0016 = 625 WL, Resisive
— Wire diameter from circumference: . 10=625 d o %%;I;/mm
= d = 0.05cm =0.5mm $ E
— Diameter of the core of the coil, D from fowe N 2
pN (zD) - ?"f g
R=—+~ 7~ ‘.8 \ od o
2(d 12)? %};;ﬁ totd | f a3
R T d
%Wdfpﬂ_ . ‘ﬁﬁh J J
= D =1.25cm l % 4 2
' Sugply o
' L
17 Copyright ©2012 by K. Pattipati ‘l‘ ‘ ‘ ‘ . ‘



N (5 — Sensor Rating Parameters - 2

 Linearity
— How close output versus input curve is to a straight line under steady-state conditions
— Linearity = (max deviation from the static calibration curve/Full scale value)*100%

FEF O DL L

— Zero Drift and Full-scale Drift

— Causes of drift: sensor parameter changes (aging, wear and tear, nonlinearities, amplifier
gain), ambient changes (temperature, pressure, humidity, vibration level), changes in
power supply (ac line voltage, dc reference voltage)

— Zero/Full-scale drift: changes in/stability of null (full-scale) reading

» Useful Frequency Range and Bandwidth
— Typically ¥4 the resonant frequency where gain is flat and phase is zero

— Measure of sensor bandwidth

* Input and output impedance

— Ratio of rated voltage/ current at the input port with output port open (no load)
— Ratio of rated voltage/current at the input port when output port is shorted
— Need isolation amplifiers when the output impedance is low

L L L L
[

ight ©2012 K. Pattipati
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@

! (l 6- Accuracy versus Precision I

Neither Precise Precise, but not
Nor Accurate (bias and variance) Accurate (bias, small variance)

FFF oL L

Not Precise, but reasonably Precise and
Accurate (no bias, some variance) Accurate (low bias and low variance)

GD . |l||i||l|
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m (driven gear)
L

-u / ; U (driving gear)

//2//m

Gear Backlash

20 Copyright ©2012 by K. Pattipati
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M U

Saturation Relay Control (with Hysteresis)

Hysteresis in Magnetic Materials

, (l 7- Actuator Nonlinearities l

m

+U

Dead Zone
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\’

1& (l 8 — Bandwidth Design l

Step 1: Decide on max frequency of operation w, for the system based on response
time requirements (BW)
— A good rule of thumb: Cross-over frequency of loop gain is a good measure of
BW
— Another good rule of thumb: Rise time = 2.2/ o,

Step 2. Design/ select relevant system components that have the capacity to operate
at g

Step 3. Select feedback sensors with flat frequency response (operating frequency
range) > 4 o,

Step 4. Make sure that digital control computation can see at least 2 sensor samples
per cycle ... two-rate sampling (control sampling interval, h and sensor sampling
interval, h/2)

Step 5. Select signal conditioning and actuator system with flat frequency spectrum
>%

Step 6: Integrate and test system performance. If performance specs are not met,
make design changes and repeat again

L L L L
[

ight ©2012 K. Pattipati
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& (C — Evaluation and Simulation

e Most time and effort is involved here!

- To what extent have design specs been met
Actual ¢,

Closed-loop pole locations

Effect of different sample times, h
Computational lag

Root locus with respect to design parameters

« Time response of CL system to representative command inputs r(t) and initial conditions

- Via computer simulations
- Must consider response of y(t), x(t) not only at the sample points, t = kh, but
in between samples too!

y(t)

(a pathological, but not far-fetched case)

>t

0 h 2h 3h

« "What if" questions

- Sensitivity of performance to changes in system parameters, controller parameters
Failure modes
Control saturation
Noise: measurement and/or process
Unmodelled dynamics, time-delays, ...
Quantization and other nonlinearities

L L L L
[

ight ©2012 K. Pattipati
22 Copyright ©2012 by attipati ‘l‘ L LRLL
. LA R LR



Simulation of Closed-loop Time Response

4 R oY
d
4 « Tool to examine time response
o - Input (u), output (y), any state (x)
o - Obtain response between sample points of the continuous-time variables y(t), x(t)
o - u(t) is assumed piecewise constant over intervals of length h
W - Simulate with arbitrary initial conditions (user input)
Ca - Examine response to representative r(t)
» Need a flexible computer program
- Ability to input system dynamics in G(s) or in X = Ax + Bu, Y = Cx + (Du) format
=> program will work with a state-space model or TFM.
If G(s) format given, get
(i) SOF or SCF for SISO systems
(if) SCF for SIMO systems
(iii) SOF for MISO systems
(iv) Balanced minimal realization
- Ability to simulate different control algorithms
OPT =0: Open-loop response u(kh) = K, r(kh)
OPT =1. State variable feedback control _ _ _ _
OPT = 2+: Series compensation via H(z) (including different implementations) {4 'a
OPT =1,},... : Reserve for future control options d '
J
- Ability to easily change the control interval, h J
o
W
23 Copyright ©2012 by K. Pattipati ‘l‘ ‘ ‘ ‘ . ‘



P pw constant, h

X = Ax + Bu
y=Cx+Du

A/D | { ALGORITHM [ D/A|—"]

FEF O DL L
-
P
N/
[
~
N

t), 1X(t
. Basic Flow y(® {_(k may not always be necessary(or measurable)

1. Obtain r(t) at time t
2. Sample r(t), y(t), x(t) at t = kh
- Supply r(kh), y(kh), x(kh) to control algorithm
3. Obtain u(kh) from control algorithm
- u(t) = u(kh) for kh <t< (k+1)h
4. Printoutinfoattimet: x,y, u, r
5. Compute system response x(t), y(t) over (kh, (k+1)h]
- e.g.,,att=(k+1)h: x[(k+1)h] = ®(h) x(kh) + I'(h) u(kh)
« How to compute x(t) and y(t) at more points in [kh, (k+1)h]
- Pick NS> 1 and let h; = h/NS
- The control algorithm is active every h sec(u is piecewise constant over intervals of length h) |
- Can compute x(t) at times that are multiples of hy, while changing u every NS-th multiple of h; i

- Dual-time scale simulation (NS = 2 — 5 usually) a0

[ Remember!! - even though we simulate the system response using a (small) time step h,, <

the control algorithm must have been designed for the actual sample time h. ] :

24 Copyright ©2012 by K. Pattipati ‘l‘ ‘ ‘ ‘ . ‘



Input n, h, NS, t_, Initialization Compute: h (Use c2d
A, B, C, D, x(0) x = x(0), h; = h/NS O=e, T= joleA“dcsB function)

_ _ y=Cx,t=0,k=0
(If inputting G(s)
setupA,B,C,D)

FEF O DL L

| Call Command (t, r) Etettilﬂrrlgstr(t)

Returns

N Call Cntrl (OPT, t, I, X, ¥, U) | u = constant
over (t, t+h]

Update response >

t> k =k+1 5 X«—DX+1Iu N : .

tong? t =kh, C y=Cx+Du € Printoutt, X, v, U, r .

Y Update time Computes x(t+h,), j :
y(t+hy) from x(t), u(*)

Stop :

ight ©2012 K. Pattipati
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(" Time History of Simulated

4 S Ve 2 —
J Sequences (Example, NS=4)
g *© AN understanding facilitates subsequent simulations that will include time-delay
L] u
| u(k
L
. |
0 2 416 8 10 12 14 16 18
= > = > > >k
T x
: @..'@ !
@.ﬂw x(ktl) ~*@eee
: ) .,
o® — X(k)
@: L e e S S S SN B e m a s a e a e e P k

0 2 4 6 8 10 12 14 16 18

This computation is done at every k.
X [(k+1)h,] \(Dx(khl) + T'u(kh,)

y [(k+1)hy] = Cx [(k+1)h,] + Du(kh,)

26 Copyright ©2012 by K. Pattipati

1.  New control computed only at times k =0, 4, 8, 12, ... using the corresponding value of
x (or y) at this time. The value of u is not changed at other than these points.

2. Next x(k+1) is computed at time k, k =0, 1, ... using x(K) --- the previous x and current u.

L L L L
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Ne 2 (Control Algorithm Simulation

d
d
: « Command (t, r) and Cntrl (OPT, t_r, X, y, U) are user-oriented.
my © Command (t, r) returns r(t), e.g., r; = 1, r; = A, * t, etc.
W W . Cntrl must distinguish among various options:
: OPT = 0O for open-loop response, u = K, r
OPT =1 for SVFB, u = K, r — Kx
u=Kr-> k*x;k; =coliof K
i=1
where the gain values K, {k;} are read in as input or else set via an input statement.
OPT = 2 for "standard" series compensation (g-th order). Read coefficients of TFM H(z)
u(z)=H(2)e(z)=>u,(2) = Zp: h; (2)e;(2); 1=1,2,...,m.Scale each row of H (z) so that it has the same
j=1
PG |
o ZZﬂmz_ e;(2)
least common denominator of order g, = u;(2) = > h; (2)e; (z) = =~ i=12,..,m
. . : = 1+ oz
- Corresponding discrete algorithm: I
p PG 0
u (k) = D B (k) + DD Bie(k=1) +D aqu(k=1);i=12,..m 43
j=1 j=1 1=1 1=1 ) d ' Jd
SE, sU; 4 d
- To implement u(k) via H(z) will need (m.p.(q+1)) storage (each g=maxq;) 'l
for the last g values of each e and u: paste, pastu. L
27 Copyright ©2012 by K. Pattipati ‘l‘ ‘ ‘ ‘ . :



( Algorithm Flow for Implementing
H(z) Compensator

FEF O DL L

0-
1-

2 -
3-

4 -

5-

6 -

7 - return

enter with t, r, y
if t =0, set pastu(k,i) =0, k=1,2,..,q; i=1,2,..,m; paste(k,j) = 0 for j=1,2,...,p;k=1,2,...,q
SE(i) =0, SU(i) = 0, S(i) = 0 for i=1,2,...m
e(j) = r() —y(@) forj=1,2,..,p
fori=1,m
u(i) = S(i)
for j=1,p
u(i)=u(i)+Bje() (This is the new value of u(i) we are computing)
end

end
(pushdown pastu, paste, if @ > 1)

fori=1,m& fork=1,g-1 pastu(q+1-Kk,i)=pastu (q—k,i) endiand end k

This implementation of
H(z) is not the best from
a numerical accuracy
viewpoint, especially
for g>2. Use partial

Fraction expansion.

forj=1,p & fork=1,g-1 paste (q+1-—Kk,j)=paste (q—k,j) endjandend k
Setup for next time through.
for i=1,m pastu (1,i) =u(i) (Store latest u)

for j=1,p paste (1,j) =e(j)  (Store latest g)
SE() = Y. D", paste(. ]

=1 1=1

SU(i) = iai, pastu(l,i)

» Special case whenq =1
and SISO:

e=r-y
U=pRe+3S
S=pe—oyU

S (i) = SE (i) — SU (i)

« Try to program Cntrl in much the same way for as would be done in the real-time implementation.
(Note, u can be output at step 3.)

e Suchanim

lementation permits timing of code, investi

28 Copyright ©2012 by K. Pattipati

ation of round-off effects, testing, etc.
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Ne 5 (Simulation of Time Delay, t

d
d
4 « Lump all delay in the control (input lag)
: >_‘<:A>_<+Z:1:t_)juj(t—rj);9j: column j of B
o X:C>_<+igjuj(t—rj);gj: column j of D
: « Write delay as multiple of simulation step, h,
T, =N;h, t¢&;, 0<g;<h,
- Discrete simulation model
X[(k +1)h]=®>_<[kh]+Z[zljuj[(k —1=-Nph]+y,ul(k=Njh]
yl(k+Dh]=Cx[(k +1)hl]+ig,-uj[(k—N,-)fh]
: = x(Khy)
Single Input X [(k+1)h,] O = ™
illustration e,
U [(k-N-Dh] - 7=, "edob,
“N-1)h,] ~ ~oi
T \ u [(k-N)hy] 74 ZJ . .eAGdabj
- € h—¢, e
! | _ pAh=g;) [2 A0
(k=L)h, kh, (k+D)h, =€ J e*dob,
« Will need an (N; +2)-vector pushdown stack to store past values of uj, uold(i,j), i =1, ..., N;+1, 4 4
j=1,2,..m and latest value uold(N;+2,j). Uy4(i,j) = u(k—N—2+i,j) Initialize uy,(i,j)=0att=0. j :
 Control algorithm design is based on delay model, Eq. (2.34), associated with time step h. 4 :
W
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[ Required Modifications to

4 N S 3 3 3
a Simulation Flow Diagram
| * Initialization:
: compute N; = Int [t/h,]
81. = T: — . 1
u set Ugyyg (i,Jj) =0 fori= 1, ..., Nj+2;)=1,2,..,m
: compute yy;, vy5 j=1,2,..,m
(Note, yp; =0ife;=h;~,y; =0ifg;=0)
« New Response Update Module ‘[‘
Uy (N;+2,]) = u()); j=1,2,..,m
Propagate X,y
X P 2 Ly 2 T 7 Ui ] Computes x(t+h,), y(t+h,)
y=Cx+>du i
Pushdown u,4 (i,j)
(only if 7; >0)
Ugig (1.J) = Ugg (1 +1,)) _—
fori=1,2,...,N+1 . N
i a3
- U4 Stack will be piecewise constant values that change every NS point. 4 :
- Correctly simulates small delay (when N; =0, i.e., 7; < h,). n
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: (l Summary l

Design Approach and the Design Process

o=

Performance Measures and Criteria

«  Stability and phase margin

«  Steady-state accuracy

Max peak criteria

«  Speed of response/transient, sum of absolute error, sum of square error
«  Sensitivity and return difference

«  Sensor rating parameters

«  Actuator nonlinearities

«  Bandwidth design

FFF oL L

3. Simulation of Closed-Loop Time Response
«  Simulation program structure
«  Control algorithm simulation
«  Moaodifications to simulate time delay

[

ight ©2012 K. Pattipati
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