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Outline

 Why do we need decomposition methods for PD matrices? 

 Cholesky decomposition 

 LDLT decomposition 

 A special PD matrix : Toeplitz System of Equations

• Application to system identification 

• Levinson- Durbin algorithm 

• Generalized Levinson algorithm

 Conjugate gradient(CG) and pre-conditioned CG methods for sparse 

positive definite systems
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 In the last lecture, we discussed how a non-singular n ☓ n matrix A

can be decomposed into a product of unit lower ∆ matrix and an 

upper ∆ matrix.

• PA=LU  (P is a permutation matrix )

• solve

 An important special case is when A=AT and A is PD

⇒ λi(A) > 0 and xT A x > 0

 Fact: “ If A is symmetric PD, then there exist a lower ∆ matrix, S

with positive diagonal entries such that A=SST”

PAx Pb b  

LUx b  

Setting
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• A=SST is called CHOLESKY DECOMPOSITION (or) SQUARE 

ROOT DECOMPOSITION

• Note: since A is symmetric, need to store only the upper (or lower) ∆

portion only   
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Cholesky Decomposition
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 Why do we need such a decomposition ? 

1) To test positive definiteness of a symmetric matrix (this will become 

apparent from the decomposition algorithm)

2) Square root updates of covariance matrices in least squares estimation 

and Kalman filtering. 

• Recall update and propagate equations of Kalman Filtering.

• Measurement update: 

• Propagate:

• Update eqn. often results in (Pii)k|k<0 especially when ||Wd|| is small 

and / or ||R|| is small 
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Why do we need such decompositions?  
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• One solution: Joseph’s form, but requires double the computational 

load of ordinary update equation

• Second solution: recursive square-root update (Lecture 8)

propagate 

• Why does second solution work?

– Pk|k is PD if Sk is non-singular

–

– So,
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Square root decomposition & (P)
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• So, square root propagation reduces the condition number 

→ Can get greater precision with the same computer , or 

equivalently

→ Can get the same precision with a smaller word length computer 

… critical in applications with space and weight problems

3) Unconstrained and constrained minimization 

• x* is a relative local minimum of  f(x) ⇒ ∇2f(x)≥ 0

• x* is a strict relative local minimum of  f(x) ⇒ ∇2f(x)> 0

• Recall modified Newton’s method ∇2f(x) dk = - ∇f(x)
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Unconstrained Minimization - 1



Copyright ©2008 by K. Pattipati

• Cholesky’s method will provide a method for testing PD of ∇2f(x) 

and also to make it PD when it is not by adding εI to ∇2f(x)

4) Quasi-Newton methods
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Unconstrained Minimization - 2
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1

1

1

   a large class of Quasi-Newton methods. But, we restrict ourselves 

   to the so-called Broyden-Fletcher-Goldfard-Shanno (BFGS) class:
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Unconstrained Minimization - 3
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• Davidon-Fletcher-Powell (DFP) ⇒ ζk=0

• BFGS ⇒ ζk=1

• Propagate          to avoid round-off error problems. 

• Notice rank two (or three) corrections to go from Dk → Dk+1

 Example of Cholesky decomposition

• As with LU decomposition, we evaluate S one column at a time 

kD
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Example of  Cholesky Decomposition
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• Consider the situation at the kth column of S ( assume done up to 

column k-1)

− for i ≥ k, we have

− Rearranging this equation, we obtain

• Compute S one column at a time 

• Can also compute S one row at a time (see problem set #5)

• Overwrite aij with sij; i ≥ j (in place computation)
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 Algorithm Cholesky: Column Version
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Cholesky Decomposition Algorithm

• Computational load : n square roots plus
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• No pivoting is needed if A is PD

• Accumulate sums in DP

• Use of algorithm to test PD of A : 

If (-#)1/2 ⇒ A is not PD !!
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 Pivoting for positive semi-definite matrices:

• Pre- and post-multiply A by permutation matrix 

• Why? … because we need to preserve symmetry of A

• Also recall that the permutation matrix is Symmetric

⇒ permute S by permutation matrix     , where rk is the row with the 

biggest element in the previous step. 

• So, we actually find an SST factorization of PAP

• Good to pivot, since can find a reduced rank square-root matrix 

S = n ☓ r

1

2

1

  At step , find the biggest s ; ,...,
k

ll li

i

k a l k n




 

kr

k
P

That is, T T TA PSS P SS   

Pivoting

13



Copyright ©2008 by K. Pattipati

 Problem with Cholesky

• Need to compute square roots 

• Square roots are more expensive than multiplications and divisions 

(≈ a factor of 2).

 LDLT Factorization

• A= LDLT  is similar to Cholesky decomposition, but avoids square 

root evaluations.  di ≥ 0; lii =1
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 Comments:

• The term dm lkm is independent of i

• Overwrite aik with lik and akk with dk ⇒ no need for extra storage

• Requires O(n3/6) operations
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LDLT Decomposition - 2
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     For 1,2,...,  Do

          For 1,2,..., 1 Do 

                                    ...recall ,

                

          end Do( )

          If  0 then
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16

LDLT Algorithm
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 Application to System Identification: Toeplitz system of Equations

• What is the System Identification problem?

“ Given the input and output sequences, determine the transfer function 

relating the input and output.” 

• Restricted problem:

− Suppose that the input is a white noise sequence {w(k)} and output 

sequence {y(k)} is related to input via the autoregressive relation: 

− w(k)~ zero mean white noise process with unit variance 

−
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Toeplitz System of Equations



Copyright ©2008 by K. Pattipati

−

− So, want to minimize mean-squared error prediction of y(k) from 

its past data {y(k-n), y(k-n-1),…, y(k-1)} 

− This is a Parameter Identification (estimation)problem

• The necessary conditions of optimality yield:

−

−

• Expanding the necessary conditions of optimality, we obtain: 

due to stationarity which is due to linear time-invariance assumption of 

the stochastic system 
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• In matrix form, the necessary conditions are given by:

 The objective function is:
2
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Toeplitz System of Equations
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 These are called Yule-Walker equations

 Toeplitz matrix:

• Symmetric matrix specified by n elements (including RHS).

• RHS has a special form

• This enables us to solve this problem in O(n2) operations 

 Key properties of Toeplitz:

• Tn is persymmetric ⇒ Tn=E Tn E, E~ Exchange Matrix 

• Tn
-1 is also persymmetric

 Physical meaning: The statistical properties of a stationary time series 

are not modified by reversing time (time-reversibility property)
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Properties of Toeplitz Matrix
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 We will solve Tn x = b as a solution of two subproblems.

• Subproblem 1: solve Tn a = -(r1 r2 ….. rn)
T

(Levinson-Durbin’s Algorithm)

• Subproblem 2:  use the solution of 1 to solve Tn x =b (b is general) 

(Generalized Levinson’s algorithm)

 Subproblem 1: 

• Suppose have solved Tk a = -r ⇒ a = -Tk
-1 r

• Note that a is of dimension k

• What we are looking for is a recursive way of building up a from 

dimension 1 to n. 
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Solution of Toeplitz Equations - 1
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•

⇒ Can we get next a? 

• Recursion k → k+1

• Given a, we can solve this problem in O(k) flops. How?

•
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Solution of Toeplitz Equations - 2
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• In signal processing,

α is termed the reflection coefficient 

{ai}           = forward filter coefficients 

{ak+1-i}      =  backward filter coefficients

⇒ next forward filter coefficients = weighted sum of previous 

forward and backward filter coefficients 

• 1 1

1

1

1

  Next, z ( ) 

  ( ) / (1 )

  1 0

       1 0. This is true because  is  and 

T T T

k k k k

T T

k k

T

k

T

k

r r E r r E a r a

r r E a r a

r T r

r a T PD

 



 







      

    

  

 

1 1

0

0 0 0 1

 is   A is , if  is nonsingular

T

k kk k k

T T

k

T

k k

T E rI E a I E a T

r E II I r a

T PD A T PD A 

      
      

      



23

Solution of Toeplitz Equations - 3
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 Check:

 Major Simplification:
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Simplification

( 1) ( 1)

1 1 1But,       ...recall equation for 

       

Tk k

k k k kr r E a   

    

 2

1 1(1 )k k k    



Copyright ©2008 by K. Pattipati

 Levinson-Durbin’s Problem (subproblem 1)

•

"
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Levisnon – Durbin Algorithm - 1
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• Total Flop count over n steps ≈ O(n2) operations

 Reference:

Durbin, “ The Fitting of time series models”, Rev. Inst. Int. Statistics, 

28, pp. 233-243, 1960 or any Standard book on statistical signal 

processing (e.g., L. Scharf, Addison – Wesley, 1991).  
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Levisnon – Durbin Algorithm - 2
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Example 1: Solve
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Example of Toeplitz Equations 
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 Another way of looking at Levinson- Durbin problem:
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Forward – Backward Filter Interpretation - 1
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Forward – Backward Filter Interpretation - 2
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Forward – Backward Filter Interpretation - 3
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Forward – Backward Filter Interpretation - 4
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 Generalized Levinson-Durbin’s Problem (subproblem 2):
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Toeplitz with General RHS
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   (  ) / (1 )

k k k k k k

T T T

k k k k

T E r b T b E r x E a a T r

r E b b r E x r a

    

  

 

 

        

     

   need to solve  using Levinson-Durbin's algorithm 

  If you know  and , computing  and  requires (2 ) operations 

Note: kT a r

x a O k 
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 Key Idea : to solve Tnx = b

( ) ( ) 2

1 2

2

  solve  (   ... )  ( )

  solve                                 ( )

1)

2)

k k T

k k

k

T x b b b b O n

T a r O n

 

 

Can be done 

in parallel

Flop count O(2n2)
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Generalized Levinson – Durbin

0 1 0 | |

1 1

1 1

1

2

  " iven , ,..., ,  1, [ ] such that | | 1 

    and  is , solve ."

       

       

       1

       

       for 1,2,...., 1 Do

            (1 )

           (

n i j i
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1

1

1 1

1

1

1

       ; 1, 2,..,

       

       if -1 then 

          ( ) /

          ;  1, 2,....,

            1, 2,....,

          

      End if
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End Do( )k
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 Sparse matrix methods for Symmetric Positive Definite Systems

• Store only non-zero elements (row, column, element value)

• Two classes of methods:

– Sparse Cholesky or LDLT decomposition (intelligent data 

structures and strategies to minimize fill-in)

Ref: 

1. I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods 

for Sparse Matrices, Oxford Univ. Press, 1986.

2. J. A. George and J. W. Liu, Computer Solution of Large 

Sparse Positive Definite Systems, Prentice-Hall, 1981.

– Iterative methods

 Gauss-Seidel method with successive overrelaxation:   

Convergence critically depends on several parameters 

that are hard to choose

 Conjugate Gradient (CG) method: Widely used method 

for sparse PD systems

Sparse Matrix and Iterative Methods
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 Conjugate Gradient method

• Consider the problem of minimizing a quadratic function

f(x)=½ xTAx-bTx

where A is an n  n symmetric and PD matrix

• The unique solution to this problem is the solution of

• An efficient (especially when A is sparse such as in a large-scale 

linear programming problem) way of solving the linear equation 

is the conjugate gradient or the conjugate direction method.

 Definition: A set of vectors            are A-orthogonal or mutually 

conjugate with respect to A, if di
TA dj=0ij, i=1, 2, …, k

 Basic idea of conjugate direction method:

• Given a collection of n mutually A-conjugate directions, 

conjugate direction method generates the solution of Ax=b via:

x=1d1+ 2d2+…+ ndn                                                    (1)

Conjugare Gradient Method - 1

( ) 0f x Ax b   

1{ }k

i id 

1{ }n

i id 
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• Key: {i} are very easy to obtain :

• Multiply (1) by di
TAx to obtain:

di
TAx= i di

TAdi recalling: di
TAdj=0  ij

 Q : Is there a simple and iterative (i.e., sequential) way of generating{di}?Yes!!

Q: What if I start at a point xi0? No problem… only the equations for {i } 

will change.

 In order to solve Ax=b, this is what we would like to do

• Start with  x1

• Compute residual r1=b-Ax1=-f(x)

Negative gradient of quadratic function f(x) is the residual

• Let d1=r1 x2=x1+1d1

• Compute new residual r2=b-Ax2

• Get d2=r2+1d1d2 is A-orthogonal to d1 , etc.

 Since our directions are based on residuals (=negative gradients), the method is 

called Conjugate gradient (CG) method.

T

i
i T

i i

d b

d Ad
 

Conjugare Gradient Method - 2
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 In general, at the ith step of CG method, we compute

residual ri=b-Axi

new direction di = ri+i-1di-1

new point xi+1=xi+idi

 Note: residual ri can be computed from previous residual ri-1

ri=b-A xi=b-A(xi-1+i-1di-1)

ri= ri-1- i-1 A di-1

 Key: we will see later that Adi-1 comes for free because it is used in 

computing i

 So, need expression for i and i

•Suppose we are at xi and know the direction di. What is i?

•The best =i must minimize f(x) along di starting from xi

•To get i, consider f(xi+di)

 

1

2( ) ( ) ( ) ( )

( )
Optimal | 0

( ) | 0

i

i

T T

i i i i i i i i

i

T T

i i i i

f x d x d A x d b x d

f x d

d Ad d Ax b

 

 

   












     

 
 



   

Conjugare Gradient Method - 3
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or,

The residual at the current point, the current direction and, of 

course, the A matrix are all that are needed in computing i. 

 Consider the derivative of f(x+ di) at = i. This is:

The current direction di is orthogonal to the next residual ri+1

Note, however, that the direction di is a linear combination of ri

and di-1 (we will formally show this below).

 ri+1 is orthogonal to ri and di-1 as well

 So, we have the important CG relations

1
( ) 0T T

i i i i i
f x d d r d


    

T

i i

i T

i i

d r

d Ad
 

1

1

1 1

0

0

0

T

i i

T

i i

T

i i

r d

r r

r d





 







Conjugare Gradient Method - 4
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 Key: The residuals in a conjugate gradient method are mutually

orthogonal. We will see later (in lecture 11) that they are parallel to the so 

called Lanczos vectors

• To further simplify the equation for i, let us consider

di=ri+i-1di-1

• Taking the inner product with ri, we get

ri
T di=ri

T ri+i-1ri
Tdi-1=ri

T ri

• So, we have our final equation for i:

 Proof of direction update equation: di = ri+i-1di-1

At step i, we have xi and ri. What we want to do is this. We seek xi+1 such 

that it is a minimum point not merely in the negative gradient direction ri, 

but in a plane passing through xi and spanned by ri and di-1. (It turns out that 

we are effectively minimizing in a subspace spanned by ri and           as 

well)

T

i i

i T

i i

r r

d Ad
 

0

1

1
{ }i

j j
d 



Conjugare Gradient Method - 5
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• Want to find i-1  di
TAdi-1=0

• Using the A- orthogonality condition

• Using the fact that

and that ri
Tri-1=0, we have

• So, we have the final equation for i-1as

1

1

1 1

T

i i

i T

i i

r Ad

d Ad
 



 




1 1

1

1
( )

i i i

i

Ad r r


 




 

xi+1

di-1

xi-1

xi

ri

di

f(xi)

1

1 1 1 1 1

 
( )

(from the  equation) 

T T

i i i i

i T T

i i i i i

i

r r r r

d Ad r r








    

 

1

1 1
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 All residuals ri are orthogonal  ri
Trj=0 ij

 All directions di are A-orthogonal  di
TAdj=0 ij

 CG Algorithm:
“Given a PD matrix A, b and a tolerance parameter, , and maximum number of iterations 

imax, the following algorithm solves Ax=b.”

i=1 

x=x1                                                                     … initial point

r=b-Ax … initial residual

=||r||2
2                                                             … square of norm of residual

c=||b||2
2                                                             … norm of b

d=r

DO while 

w=Ad

=/dTw … step length

x=x+d … new point

r=r- w … new residual 

=||r||2
2 /

d=r+ d …new direction

= ||r||2
2 … square of norm of residual

i=i+1

end DO

CG Algorithm

max
 or c i i   

See Luenberger

(1984)
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 Each iteration requires a matrix-vector multiplication +10n operations

• Exploit sparsity in computing w=A d

 Need just four vectors for x, r, d, and w

 Convergence is faster if k(A) is small … see Luenberger (1984)

k(A)1  convergence is faster.

Q :  can we make k(A)1  pre-conditioned conjugate gradient method.

 Pre-conditioned conjugate gradient (PCG) method

• Consider

Ax=b

• Instead of solving Ax=b, we solve

L-1Ax=L-1b

where L is an approximation to the square-root of A.

L-1A(L-1)TLTx=L-1b

or

Pre-conditioned CG - 1

2

0 0

( ) 1
( ) ( ) 4( ) ( )

( ) 1

k

T T

k k

k A
x x Q x x x x Q x x

k A

 
        

Ax b  
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where

• So, if L is close to the square-root S of A, then

 Fast convergence

 Q1: How to obtain L without actually doing complete Cholesky 

decomposition? … Incomplete Cholesky decomposition

 Q2: How to solve the modified system of equations?

 We will take up equation 2 first. It turns out that the preconditioner has 

“local” effect in the sense that it always appears as M-1=(L-1)TL-1 in 

computing inner products related to the computation of  and 

• See Golub and Van Loan, 1989

1 1

1

( )T

T

A L AL

x L x

b L b

 















1 1( ) ( ) 1T TA L SS L I k A     

Pre-conditioned CG - 2
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 Preconditioned CG algorithm:

• “Given a PD matrix A, b, a pre-conditioner L, a tolerance parameter 

eand maximum no. of iterations, imax, the following algorithm 

solves Ax=b.”

i=1

Solve L y=b

Solve LT x=y

rnew=b-Ax … initial residual

=||rnew||2
c=||b||2
DO while >c or iimax

solve Ly=rnew

solve LTznew=y

new=zT
new rnew

If i=1

d=znew

else

Computes initial point. If L LTA, we

have a good starting solution

PCG Algorithm - 1
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=new/old

d=znew+ d

end if

y=Ad

=new/dTy

x=x+ d

old= new

zold=znew

rold=rnew

rnew=rnew- y

i=i+1

end DO

 Incomplete Cholesky decomposition to obtain L
• Fact: even if A is sparse, its “true” Cholesky factor S need not be!! This is 

called “fill-in”

• So, what incomplete Cholesky decomposition does is to set:

lij = 0 if aij = 0

• We can do this with a slightly altered version of Cholesky, where L

overwrites A.

PCG Algorithm - 2
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 Algorithm Incomplete Cholesky
For k=1, 2, …, n, DO

For i=k+1, …, n DO

If aik0

aik=aik/akk

end if

end

For j=k+1, …, n DO

For i=j, …, n DO

If aij0

aij=aij – aik ajk

end if

end DO (i)

end DO (j)

end DO (k)

 Preconditioning has dramatic effect on convergence of the solution to  

Ax=b using the conjugate gradient method.

Incomplete Cholesky Algorithm

kk kk
a a
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Summary

 Why do we need decomposition methods for PD matrices? 

 Cholesky decomposition 

 LDLT decomposition 

 A special PD matrix : Toeplitz System of Equations

• Application to system identification 

• Levinson- Durbin algorithm 

• Generalized Levinson algorithm

 Conjugate gradient(CG) and pre-conditioned CG methods for sparse 

positive definite systems

47


