
Copyright ©2008 by K. Pattipati

Fall 2008

September 24, 2008

Lecture 5: Decomposition Methods for

Positive Definite (PD) Matrices

Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering

University of Connecticut
Contact: krishna@engr.uconn.edu (860) 486-2890

ECE 6435
Adv Numerical Methods in Sci Comp

mailto:krishna@engr.uconn.edu

Copyright ©2008 by K. Pattipati

Outline

 Why do we need decomposition methods for PD matrices?

 Cholesky decomposition

 LDLT decomposition

 A special PD matrix : Toeplitz System of Equations

• Application to system identification

• Levinson- Durbin algorithm

• Generalized Levinson algorithm

 Conjugate gradient(CG) and pre-conditioned CG methods for sparse

positive definite systems

2

Copyright ©2008 by K. Pattipati

 In the last lecture, we discussed how a non-singular n ☓ n matrix A

can be decomposed into a product of unit lower ∆ matrix and an

upper ∆ matrix.

• PA=LU (P is a permutation matrix)

• solve

 An important special case is when A=AT and A is PD

⇒ λi(A) > 0 and xT A x > 0

 Fact: “ If A is symmetric PD, then there exist a lower ∆ matrix, S

with positive diagonal entries such that A=SST”

PAx Pb b

LUx b

Setting

3

Copyright ©2008 by K. Pattipati

• A=SST is called CHOLESKY DECOMPOSITION (or) SQUARE

ROOT DECOMPOSITION

• Note: since A is symmetric, need to store only the upper (or lower) ∆

portion only

11 11 21 1 1 11 12 1 1

21 22 21 22 2 12 22 2

1

1 2 1 2

0 0 .. 0 0

0

: .. : : .. : : .. :

.. .. 0

: .. : : : : :

..

k n k n

n n

k kk kk nk kk nk

n n nk nn nn n n

s s s s s a a a a

s s s s s a a a

s s s s s s

s s s s s a a

nn
a

0 is called CHOLESKY
ii

s S

4

Cholesky Decomposition

Copyright ©2008 by K. Pattipati

 Why do we need such a decomposition ?

1) To test positive definiteness of a symmetric matrix (this will become

apparent from the decomposition algorithm)

2) Square root updates of covariance matrices in least squares estimation

and Kalman filtering.

• Recall update and propagate equations of Kalman Filtering.

• Measurement update:

• Propagate:

• Update eqn. often results in (Pii)k|k<0 especially when ||Wd|| is small

and / or ||R|| is small

| | 1

1

| 1 | 1 | 1 | 1

[]

 ()

k k k k k

T T

k k k k k k k k

P I G H P

P P H R HP H HP

1| | 1

T T

k k k k d
P P EW E

5

Why do we need such decompositions?

Copyright ©2008 by K. Pattipati

• One solution: Joseph’s form, but requires double the computational

load of ordinary update equation

• Second solution: recursive square-root update (Lecture 8)

propagate

• Why does second solution work?

– Pk|k is PD if Sk is non-singular

–

– So,

| |
ST

k k k k k k
P P S

| | 1
() ()T T

k k k k k k k k
P I G H P I G H G RG

| 2 max | 2 max max |

2

2 | 2

|| || (); || || () ()

|| || || ||

T

k k k k k k k k k

k k k

P P S S S P

S P

max | max |

|

min | min |

6 3

|

() ()
() ; ()

() ()

() 10 () 10

k k k k

k k k

k k k k

k k k

P P
P S

P P

P S

6

Square root decomposition & (P)

Copyright ©2008 by K. Pattipati

• So, square root propagation reduces the condition number

→ Can get greater precision with the same computer , or

equivalently

→ Can get the same precision with a smaller word length computer

… critical in applications with space and weight problems

3) Unconstrained and constrained minimization

• x* is a relative local minimum of f(x) ⇒ ∇2f(x)≥ 0

• x* is a strict relative local minimum of f(x) ⇒ ∇2f(x)> 0

• Recall modified Newton’s method ∇2f(x) dk = - ∇f(x)

7

Unconstrained Minimization - 1

Copyright ©2008 by K. Pattipati

• Cholesky’s method will provide a method for testing PD of ∇2f(x)

and also to make it PD when it is not by adding εI to ∇2f(x)

4) Quasi-Newton methods

1

2 1

2

 ; arg min[()]

 () 0

 () () ()

 () 0

 ()[()] () 0

 () must be

k k k k k k k

T

k k k k

T

k k k k k

T

k k

T

f k k k

k

x x d f x d

f x d d

f x d f x f x d

f x d

x f x f x

f x PD

1

(), where is

k k k k

k k k k

x x d

d D f x D PD

8

Unconstrained Minimization - 2

Copyright ©2008 by K. Pattipati

1

1

1

 a large class of Quasi-Newton methods. But, we restrict ourselves

 to the so-called Broyden-Fletcher-Goldfard-Shanno (BFGS) class:

 () ()

k kk

k kk

k

k k

p x x

q f x f x

p p
D D

1

 0 1

T T

k k k k k T

k k k kT T

k k k k k

k k kk
k

T

k k k

k T

k k

k

D q q D
v v

q p q D q

v p D q

q D q

p q

9

Unconstrained Minimization - 3

Copyright ©2008 by K. Pattipati

• Davidon-Fletcher-Powell (DFP) ⇒ ζk=0

• BFGS ⇒ ζk=1

• Propagate to avoid round-off error problems.

• Notice rank two (or three) corrections to go from Dk → Dk+1

 Example of Cholesky decomposition

• As with LU decomposition, we evaluate S one column at a time

kD

1/2

2 2 2 0
 ;

2 5 2 3

1 0 2 0
 Also note that we can write

1 1 0 3

 where

T

T T

A S A SS

S

A SS LDL S LD

10

Example of Cholesky Decomposition

Copyright ©2008 by K. Pattipati

• Consider the situation at the kth column of S (assume done up to

column k-1)

− for i ≥ k, we have

− Rearranging this equation, we obtain

• Compute S one column at a time

• Can also compute S one row at a time (see problem set #5)

• Overwrite aij with sij; i ≥ j (in place computation)

1

1 1

k k

ik im km im km kk ik

m m

a s s s s s s

1
21

2

1

1

1

() / ; for 1,...,

k

kk kk km

m

k

ik ik im km kk

m

s a s

s a s s s i k n

Cholesky : Set Up

11

Copyright ©2008 by K. Pattipati

 Algorithm Cholesky: Column Version

1

2 1/ 2

1

1

1

for 1,2,..., Do

 ()

 for 1,..., Do

 () /

 End Do()

End Do();

k

kk kk km

m

k

ik ik im km kk

m

k n

a a a

i k n

a a a a a

i

k

12

Cholesky Decomposition Algorithm

• Computational load : n square roots plus

1

2

3

2 2

1

 () multiplies

(1) (2 1)(1) (1)(1) 1
 = - (/6) of

2 6 6 2

 s s elements are bounded

n

k

k

kk km kk kk kk

m

k n k

n n n n n n n n
O n LU

a s a

• No pivoting is needed if A is PD

• Accumulate sums in DP

• Use of algorithm to test PD of A :

If (-#)1/2 ⇒ A is not PD !!

Copyright ©2008 by K. Pattipati

 Pivoting for positive semi-definite matrices:

• Pre- and post-multiply A by permutation matrix

• Why? … because we need to preserve symmetry of A

• Also recall that the permutation matrix is Symmetric

⇒ permute S by permutation matrix , where rk is the row with the

biggest element in the previous step.

• So, we actually find an SST factorization of PAP

• Good to pivot, since can find a reduced rank square-root matrix

S = n ☓ r

1

2

1

 At step , find the biggest s ; ,...,
k

ll li

i

k a l k n

kr

k
P

That is, T T TA PSS P SS

Pivoting

13

Copyright ©2008 by K. Pattipati

 Problem with Cholesky

• Need to compute square roots

• Square roots are more expensive than multiplications and divisions

(≈ a factor of 2).

 LDLT Factorization

• A= LDLT is similar to Cholesky decomposition, but avoids square

root evaluations. di ≥ 0; lii =1

1 11 12 121 1

21 2 12 22 22

1 2 1 2

1 0 .. 0 0 .. 0 ..1 ..

1 .. 0 0 .. 0 ..0 1 ..

: : : : :: : ..

.. 1 0 00 0 .. 1

nn

nn

n n n n n nn

d a a al l

l d a a al

l l d a a a

LDLT Decomposition - 1

14

Copyright ©2008 by K. Pattipati

 Comments:

• The term dm lkm is independent of i

• Overwrite aik with lik and akk with dk ⇒ no need for extra storage

• Requires O(n3/6) operations

1

1 1

1

 For , we have

 since 1

 Therefore

 () /

k k

ik im m km k kk km m km kk

m m

k

ik ik im m km k

m

i k

a l d l d a l d l l

l a l d l d

15

LDLT Decomposition - 2

Copyright ©2008 by K. Pattipati

 For 1,2,..., Do

 For 1,2,..., 1 Do

 ...recall ,

 end Do()

 If 0 then

m mm km mm m km km

kk kk km m

kk

k n

m k

r a a a d a l

a a a r

m

a

1

1

 quit ... is not

 else

 for 1, 2,..., Do

 () / ...recall ; ; at the end.

k

ik ik im m kk kk k im im ik ik

m

A PD

i k k n

a a a r a a d a l a l

 End

 Endif

 End

 Algorithm for LDLT factorization

16

LDLT Algorithm

Copyright ©2008 by K. Pattipati

 Application to System Identification: Toeplitz system of Equations

• What is the System Identification problem?

“ Given the input and output sequences, determine the transfer function

relating the input and output.”

• Restricted problem:

− Suppose that the input is a white noise sequence {w(k)} and output

sequence {y(k)} is related to input via the autoregressive relation:

− w(k)~ zero mean white noise process with unit variance

−

1

() () ()
n

i

i

y k a y k i gw k

2

2

1

ˆ ˆ Problem :" Given { ()} sequence, find , 1,2,..., and

 such that { ()}

ˆ {[() ()] } is a minimum"

i

n

i

i

y k a i n g

J E e k

E y k a y k i

17

Toeplitz System of Equations

Copyright ©2008 by K. Pattipati

−

− So, want to minimize mean-squared error prediction of y(k) from

its past data {y(k-n), y(k-n-1),…, y(k-1)}

− This is a Parameter Identification (estimation)problem

• The necessary conditions of optimality yield:

−

−

• Expanding the necessary conditions of optimality, we obtain:

due to stationarity which is due to linear time-invariance assumption of

the stochastic system

ˆ () is called the prediction error, [() (/ 1)].e k y k y k k

1

ˆ =0 {[() ()] ()} 0; 1,...,
ˆ

n

i

i
j

J
E y k a y k i y k j j n

a

() is orthogonal to (-) 1,2,...,e k y k j j n
2ˆ[() ()]J E y k e k g

1

ˆ () (); 1,...,

where () { () ()} { () ()}

n

i y y

i

y

a j i j j n

j i E y k i y k j E y j y i

Minimization of Cost Function

18

Copyright ©2008 by K. Pattipati

• In matrix form, the necessary conditions are given by:

 The objective function is:
2

1

1

ˆ ˆ ˆ ˆ{ () ()} (0) () (0)

premultiply by Diag [(0)]

n

T

y i y y n

i

y

J E y k e k a i a a g

1

2

(0) (1) .. (1) (1)ˆ

(1) (0) .. (2) (2)ˆ
ˆ

: : : ::

(1) (2) .. (0) ()ˆ

y y y y

y y y y

n

y y y yn

n a

n a
a b

n n na

1 2 1 1 1

1 1 2 2 2

2 1 3

1 2

ˆ1 ..

ˆ1 ..
()

1 .. : : ; correlation coefficient
(0)

: : : : :

ˆ.. .. 1

n

n

y

n i

y

n n n n

r r r a r

r r r a r
i

r r r r

r r a r

19

Toeplitz System of Equations

Copyright ©2008 by K. Pattipati

 These are called Yule-Walker equations

 Toeplitz matrix:

• Symmetric matrix specified by n elements (including RHS).

• RHS has a special form

• This enables us to solve this problem in O(n2) operations

 Key properties of Toeplitz:

• Tn is persymmetric ⇒ Tn=E Tn E, E~ Exchange Matrix

• Tn
-1 is also persymmetric

 Physical meaning: The statistical properties of a stationary time series

are not modified by reversing time (time-reversibility property)

ˆ
nT a r

1 2

0 0 1

; ; = 0 1 0

1 0 0

E E E I E

20

Properties of Toeplitz Matrix

Copyright ©2008 by K. Pattipati

 We will solve Tn x = b as a solution of two subproblems.

• Subproblem 1: solve Tn a = -(r1 r2 ….. rn)
T

(Levinson-Durbin’s Algorithm)

• Subproblem 2: use the solution of 1 to solve Tn x =b (b is general)

(Generalized Levinson’s algorithm)

 Subproblem 1:

• Suppose have solved Tk a = -r ⇒ a = -Tk
-1 r

• Note that a is of dimension k

• What we are looking for is a recursive way of building up a from

dimension 1 to n.

0 1 2 1 1 1

1 0 1 2 2 2

2 1 0 3 0

1 2 0

..

..

.. : : ; 1

: : : : :

.. ..

k

k

k

k k k k

r r r r a r

r r r r a r

r r r r r

r r r a r

21

Solution of Toeplitz Equations - 1

Copyright ©2008 by K. Pattipati

•

⇒ Can we get next a?

• Recursion k → k+1

• Given a, we can solve this problem in O(k) flops. How?

•

1

1

Can we solve using ?k

k

rz
T a

r

1

1

where ~ by exchange matrix

k k

T

k k

k

T E r rz

r E r

E k k

1 1

 z +

z

k k

k k k

T E r r

T r T E r

1 1

1

Toeplitz is per symmetric

z () z

k k k k

k k i i k i

T E E T

a E a I E a a a

22

Solution of Toeplitz Equations - 2

Copyright ©2008 by K. Pattipati

• In signal processing,

α is termed the reflection coefficient

{ai} = forward filter coefficients

{ak+1-i} = backward filter coefficients

⇒ next forward filter coefficients = weighted sum of previous

forward and backward filter coefficients

• 1 1

1

1

1

 Next, z ()

 () / (1)

 1 0

 1 0. This is true because is and

T T T

k k k k

T T

k k

T

k

T

k

r r E r r E a r a

r r E a r a

r T r

r a T PD

1 1

0

0 0 0 1

 is A is , if is nonsingular

T

k kk k k

T T

k

T

k k

T E rI E a I E a T

r E II I r a

T PD A T PD A

23

Solution of Toeplitz Equations - 3

Copyright ©2008 by K. Pattipati

 Check:

 Major Simplification:

1

0

1 1 10 1 0 1

0
 =

1 0 1

since 0 (recall and persymmetry of)

T

k k k kk k

T T T T T

k k k k k

k k k k k

T T T T

k k k

k k k k k

I T E r T E rI E a I E a

a E r E a E T r E r a

T T E a E r T

a E T r E r a r a

T E a E r a T r T

(1) (1)

() () (1) 1 1

1

(1) (1) (1) (1) (1) (1)

1 1 1 1 1 1

(1) 1

 1 []

T T

T T T

k k

k k k k k

k k

k

k k k k k k

k k k k k k k k

a E a
r a r r

r a r E a r r E a r

24

Simplification

(1) (1)

1 1 1But, ...recall equation for

Tk k

k k k kr r E a

 2

1 1(1)k k k

Copyright ©2008 by K. Pattipati

 Levinson-Durbin’s Problem (subproblem 1)

•

"

0 1 0 | |

1 2

1 1

1

2

" iven , 1, [] such that | | 1

 and is , solve (.....)

 1

 For 1,2,...., 1 Do

 (1)

 (

n i j i

T

n

k

G r r r r T r r i

T PD Ta r r r

a r

r

k n

r

 1 1

1

1

) /

 For 1,2,...., Do

 (Note: can't set here because

 of the exchange matrix)

k

k i i

i

i i k i

r a

i k

z a a a a

E

25

Levisnon – Durbin Algorithm - 1

Copyright ©2008 by K. Pattipati

• Total Flop count over n steps ≈ O(n2) operations

 Reference:

Durbin, “ The Fitting of time series models”, Rev. Inst. Int. Statistics,

28, pp. 233-243, 1960 or any Standard book on statistical signal

processing (e.g., L. Scharf, Addison – Wesley, 1991).

1

2

2

 End Do()

 1, 2,....,

End Do()

(1)

ˆ(0)

i i

k

y

i

a z i k

a

k

J g

26

Levisnon – Durbin Algorithm - 2

Copyright ©2008 by K. Pattipati

Example 1: Solve

1

2

1

1 1 1

2

1 0.5 0.5 1 0.5 0.5 8 /154

0.5 1 0.2 0.5 1 0.2 1/153

0.5, 1, 0.5

1 0.75, (0.2 0.25)(4 / 3) 0.067 1/15

0.5(1 0.067) 8 /15

1/15

solu

a
a

a

a

k

z a a

a

1 2

1 1 2 2

2

ˆ 8 /15 56
ˆ ˆ ˆ ˆtion ; 1

ˆ 1/15 75

a
a J a r a r g

a

27

Example of Toeplitz Equations

Copyright ©2008 by K. Pattipati

 Another way of looking at Levinson- Durbin problem:

1

2

 Recall

:

(0)

 So,

(0) (1) .. ()

(1) (0) .. (1) 1 1 0(0)

: : : :

() (1) .. (0) 0

 Initially, let

n

n

T

y

y y y

T

y y y y

n

y y y

y

a

a J

n J

n

a a

n n

J

 (0) zeroth order prediction (0)k

28

Forward – Backward Filter Interpretation - 1

Copyright ©2008 by K. Pattipati

()

1

1

(1)

1

 At step, suppose have (,...,) and have .

 If , we are done.

 Want to find:

(0) (1) .. (1)

(0)(1) (0) .. () 1

: : :

(1) () .. (0)

th k

k k

y y y

T

yy y y k

k

k

y y y

k a a a J

k n

k

k

a

k k

1

(1)

1

1 1 ()

1

1

1 0

:

0

 Instead, consider two alternative versions of the equations:

1 0

0
(0)

0 :

k

k

k

k

k k k

T

yk

k

J

a

J

a

29

Forward – Backward Filter Interpretation - 2

1

()1

11

()

1

1

0 0
(0)

0

1 :

where [(1) (1)]

k

T

y kk

kk

k

k
k

k y y i

i

Ea

J

k k i a

1 2

Copyright ©2008 by K. Pattipati

() ()

1(1)

1 1 1

1

(1)

11

1 1

1 1

1 0
1

 +

0 1

(0) 01 0

: :

0

 So,

 Pick / .. called refl

 Ke :

ec

y k k

kk

k k k k
T

y k

k

kk

k k k

k k k

a Ea
a

J J

a

J

J

2

1 1

tion coefficient

[1] ~ of Durbin's Algorithm k k kJ J

30

Forward – Backward Filter Interpretation - 3

()

1

ˆ ˆEstimates are roots of (1+) are inside the unit

circle, if the reflection coefficients | | 1 for 1,2,..., .

Guranteed if Toeplitz matrix is PD.

n
n i

i i i

i

k

a a a z

k n

Copyright ©2008 by K. Pattipati

()

1

() (1) 1 1

1

1

() 1 (Forward Filter)

Moving-average whitening filter Interp

() () (Backward Filter)

can show (loo

retation of Levins

k a

on-Durbin algori

t

thm

k
k i

k i

i

k
k k i

k k i k

i

i

A z a z

B z z a z z A z

z a

1 of Levinson -Durbin)i k ia

31

Forward – Backward Filter Interpretation - 4

1

1 1

1

1 1

() () ()

() () ()

k k k k

k k k k

A z A z z B z

B z z B z A z

0() 1A z
1()A z

0() 1B z 1()B z 1z

1z
1

1

1()nA z ()nA z

1()nB z ()nB z1z

n

n

ˆMoving Average Lattice Filter: (){ ()} { ()}nA z y k g w k

Copyright ©2008 by K. Pattipati

 Generalized Levinson-Durbin’s Problem (subproblem 2):

() ()

1 2

1

1 1

 What if the is arbitrary

 Suppose have solved (...)

 For simplicity, write

 Want to solve
1

k k T

k k

k

k k

k T

k k k

RHS b

T x b b b b

T x b

b T E r b
T

b r E b

1 2 (...) as beforeT

kr r r r

32

Toeplitz with General RHS

1 1

1 1

 [] ;

 () / (1)

k k k k k k

T T T

k k k k

T E r b T b E r x E a a T r

r E b b r E x r a

 need to solve using Levinson-Durbin's algorithm

 If you know and , computing and requires (2) operations

Note: kT a r

x a O k

Copyright ©2008 by K. Pattipati

 Key Idea : to solve Tnx = b

() () 2

1 2

2

 solve (...) ()

 solve ()

1)

2)

k k T

k k

k

T x b b b b O n

T a r O n

Can be done

in parallel

Flop count O(2n2)

33

Generalized Levinson – Durbin

0 1 0 | |

1 1

1 1

1

2

 " iven , ,..., , 1, [] such that | | 1

 and is , solve ."

 1

 for 1,2,...., 1 Do

 (1)

 (

n i j i

n

G r r r r T r r i

T PD T x b

a r

x b

r

k n

1 1

1

) /
k

k i k i

i

b r x

1

1

1 1

1

1

1

 ; 1, 2,..,

 if -1 then

 () /

 ; 1, 2,....,

 1, 2,....,

 End if

i i k i

k

k

k i k i

i

i i k i

i i

k

x x a i k

x

k n

r ra

z a a i k

a z i k

a

End Do()k

Copyright ©2008 by K. Pattipati25

 Sparse matrix methods for Symmetric Positive Definite Systems

• Store only non-zero elements (row, column, element value)

• Two classes of methods:

– Sparse Cholesky or LDLT decomposition (intelligent data

structures and strategies to minimize fill-in)

Ref:

1. I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods

for Sparse Matrices, Oxford Univ. Press, 1986.

2. J. A. George and J. W. Liu, Computer Solution of Large

Sparse Positive Definite Systems, Prentice-Hall, 1981.

– Iterative methods

 Gauss-Seidel method with successive overrelaxation:

Convergence critically depends on several parameters

that are hard to choose

 Conjugate Gradient (CG) method: Widely used method

for sparse PD systems

Sparse Matrix and Iterative Methods

Copyright ©2008 by K. Pattipati26

 Conjugate Gradient method

• Consider the problem of minimizing a quadratic function

f(x)=½ xTAx-bTx

where A is an n n symmetric and PD matrix

• The unique solution to this problem is the solution of

• An efficient (especially when A is sparse such as in a large-scale

linear programming problem) way of solving the linear equation

is the conjugate gradient or the conjugate direction method.

 Definition: A set of vectors are A-orthogonal or mutually

conjugate with respect to A, if di
TA dj=0ij, i=1, 2, …, k

 Basic idea of conjugate direction method:

• Given a collection of n mutually A-conjugate directions,

conjugate direction method generates the solution of Ax=b via:

x=1d1+ 2d2+…+ ndn (1)

Conjugare Gradient Method - 1

() 0f x Ax b

1{ }k

i id

1{ }n

i id

Copyright ©2008 by K. Pattipati27

• Key: {i} are very easy to obtain :

• Multiply (1) by di
TAx to obtain:

di
TAx= i di

TAdi recalling: di
TAdj=0 ij

 Q : Is there a simple and iterative (i.e., sequential) way of generating{di}?Yes!!

Q: What if I start at a point xi0? No problem… only the equations for {i }

will change.

 In order to solve Ax=b, this is what we would like to do

• Start with x1

• Compute residual r1=b-Ax1=-f(x)

Negative gradient of quadratic function f(x) is the residual

• Let d1=r1 x2=x1+1d1

• Compute new residual r2=b-Ax2

• Get d2=r2+1d1d2 is A-orthogonal to d1 , etc.

 Since our directions are based on residuals (=negative gradients), the method is

called Conjugate gradient (CG) method.

T

i
i T

i i

d b

d Ad

Conjugare Gradient Method - 2

Copyright ©2008 by K. Pattipati28

 In general, at the ith step of CG method, we compute

residual ri=b-Axi

new direction di = ri+i-1di-1

new point xi+1=xi+idi

 Note: residual ri can be computed from previous residual ri-1

ri=b-A xi=b-A(xi-1+i-1di-1)

ri= ri-1- i-1 A di-1

 Key: we will see later that Adi-1 comes for free because it is used in

computing i

 So, need expression for i and i

•Suppose we are at xi and know the direction di. What is i?

•The best =i must minimize f(x) along di starting from xi

•To get i, consider f(xi+di)

1

2() () () ()

()
Optimal | 0

() | 0

i

i

T T

i i i i i i i i

i

T T

i i i i

f x d x d A x d b x d

f x d

d Ad d Ax b

Conjugare Gradient Method - 3

Copyright ©2008 by K. Pattipati29

or,

The residual at the current point, the current direction and, of

course, the A matrix are all that are needed in computing i.

 Consider the derivative of f(x+ di) at = i. This is:

The current direction di is orthogonal to the next residual ri+1

Note, however, that the direction di is a linear combination of ri

and di-1 (we will formally show this below).

 ri+1 is orthogonal to ri and di-1 as well

 So, we have the important CG relations

1
() 0T T

i i i i i
f x d d r d

T

i i

i T

i i

d r

d Ad

1

1

1 1

0

0

0

T

i i

T

i i

T

i i

r d

r r

r d

Conjugare Gradient Method - 4

Copyright ©2008 by K. Pattipati30

 Key: The residuals in a conjugate gradient method are mutually

orthogonal. We will see later (in lecture 11) that they are parallel to the so

called Lanczos vectors

• To further simplify the equation for i, let us consider

di=ri+i-1di-1

• Taking the inner product with ri, we get

ri
T di=ri

T ri+i-1ri
Tdi-1=ri

T ri

• So, we have our final equation for i:

 Proof of direction update equation: di = ri+i-1di-1

At step i, we have xi and ri. What we want to do is this. We seek xi+1 such

that it is a minimum point not merely in the negative gradient direction ri,

but in a plane passing through xi and spanned by ri and di-1. (It turns out that

we are effectively minimizing in a subspace spanned by ri and as

well)

T

i i

i T

i i

r r

d Ad

0

1

1
{ }i

j j
d

Conjugare Gradient Method - 5

Copyright ©2008 by K. Pattipati31

• Want to find i-1 di
TAdi-1=0

• Using the A- orthogonality condition

• Using the fact that

and that ri
Tri-1=0, we have

• So, we have the final equation for i-1as

1

1

1 1

T

i i

i T

i i

r Ad

d Ad

1 1

1

1
()

i i i

i

Ad r r

xi+1

di-1

xi-1

xi

ri

di

f(xi)

1

1 1 1 1 1

()

(from the equation)

T T

i i i i

i T T

i i i i i

i

r r r r

d Ad r r

1

1 1

T

i i

i T

i i

r r

r r

Conjugare Gradient Method - 6

Copyright ©2008 by K. Pattipati32

 All residuals ri are orthogonal ri
Trj=0 ij

 All directions di are A-orthogonal di
TAdj=0 ij

 CG Algorithm:
“Given a PD matrix A, b and a tolerance parameter, , and maximum number of iterations

imax, the following algorithm solves Ax=b.”

i=1

x=x1 … initial point

r=b-Ax … initial residual

=||r||2
2 … square of norm of residual

c=||b||2
2 … norm of b

d=r

DO while

w=Ad

=/dTw … step length

x=x+d … new point

r=r- w … new residual

=||r||2
2 /

d=r+ d …new direction

= ||r||2
2 … square of norm of residual

i=i+1

end DO

CG Algorithm

max
 or c i i

See Luenberger

(1984)

Copyright ©2008 by K. Pattipati33

 Each iteration requires a matrix-vector multiplication +10n operations

• Exploit sparsity in computing w=A d

 Need just four vectors for x, r, d, and w

 Convergence is faster if k(A) is small … see Luenberger (1984)

k(A)1 convergence is faster.

Q : can we make k(A)1 pre-conditioned conjugate gradient method.

 Pre-conditioned conjugate gradient (PCG) method

• Consider

Ax=b

• Instead of solving Ax=b, we solve

L-1Ax=L-1b

where L is an approximation to the square-root of A.

L-1A(L-1)TLTx=L-1b

or

Pre-conditioned CG - 1

2

0 0

() 1
() () 4() ()

() 1

k

T T

k k

k A
x x Q x x x x Q x x

k A

Ax b

Copyright ©2008 by K. Pattipati34

where

• So, if L is close to the square-root S of A, then

 Fast convergence

 Q1: How to obtain L without actually doing complete Cholesky

decomposition? … Incomplete Cholesky decomposition

 Q2: How to solve the modified system of equations?

 We will take up equation 2 first. It turns out that the preconditioner has

“local” effect in the sense that it always appears as M-1=(L-1)TL-1 in

computing inner products related to the computation of and

• See Golub and Van Loan, 1989

1 1

1

()T

T

A L AL

x L x

b L b

1 1() () 1T TA L SS L I k A

Pre-conditioned CG - 2

Copyright ©2008 by K. Pattipati35

 Preconditioned CG algorithm:

• “Given a PD matrix A, b, a pre-conditioner L, a tolerance parameter

eand maximum no. of iterations, imax, the following algorithm

solves Ax=b.”

i=1

Solve L y=b

Solve LT x=y

rnew=b-Ax … initial residual

=||rnew||2
c=||b||2
DO while >c or iimax

solve Ly=rnew

solve LTznew=y

new=zT
new rnew

If i=1

d=znew

else

Computes initial point. If L LTA, we

have a good starting solution

PCG Algorithm - 1

Copyright ©2008 by K. Pattipati36

=new/old

d=znew+ d

end if

y=Ad

=new/dTy

x=x+ d

old= new

zold=znew

rold=rnew

rnew=rnew- y

i=i+1

end DO

 Incomplete Cholesky decomposition to obtain L
• Fact: even if A is sparse, its “true” Cholesky factor S need not be!! This is

called “fill-in”

• So, what incomplete Cholesky decomposition does is to set:

lij = 0 if aij = 0

• We can do this with a slightly altered version of Cholesky, where L

overwrites A.

PCG Algorithm - 2

Copyright ©2008 by K. Pattipati37

 Algorithm Incomplete Cholesky
For k=1, 2, …, n, DO

For i=k+1, …, n DO

If aik0

aik=aik/akk

end if

end

For j=k+1, …, n DO

For i=j, …, n DO

If aij0

aij=aij – aik ajk

end if

end DO (i)

end DO (j)

end DO (k)

 Preconditioning has dramatic effect on convergence of the solution to

Ax=b using the conjugate gradient method.

Incomplete Cholesky Algorithm

kk kk
a a

Copyright ©2008 by K. Pattipati

Summary

 Why do we need decomposition methods for PD matrices?

 Cholesky decomposition

 LDLT decomposition

 A special PD matrix : Toeplitz System of Equations

• Application to system identification

• Levinson- Durbin algorithm

• Generalized Levinson algorithm

 Conjugate gradient(CG) and pre-conditioned CG methods for sparse

positive definite systems

47

