

n y

u u l

99 U

a ka n. . . u u

Copyright ©2008 by K. Pattipati

 \mathbf{I}

- Why do we need decomposition methods for *PD* matrices?
- Cholesky decomposition
- *LDL^T* decomposition
- □ A special *PD* matrix : Toeplitz System of Equations
	- Application to system identification
	- Levinson- Durbin algorithm
	- Generalized Levinson algorithm
- \Box Conjugate gradient (CG) and pre-conditioned CG methods for sparse positive definite systems

Copyright ©2008 by K. Pattipati 2

Setting

- In the last lecture, we discussed how a non-singular $n \times n$ matrix A can be decomposed into a product of unit lower ∆ matrix and an upper ∆ matrix.
	- *PA=LU* (*P* is a permutation matrix) $PAX = P\underline{b} = \underline{\tilde{b}}$
	- solve
		- $\Rightarrow LU_{\underline{x}} = \underline{\tilde{b}}$
- An important special case is when *A=A^T* and *A* is *PD*

 $\Rightarrow \lambda_i(A) > 0$ and $\underline{x}^T A \underline{x} > 0$

 Fact: " If *A* is symmetric *PD*, then there exist a lower ∆ matrix, *S* with <u>positive</u> diagonal entries such that $A = SS^T$ "

 $s_n > 0$ *S* is called CHOLESKY Δ

- *A=SS^T* is called CHOLESKY DECOMPOSITION (or) SQUARE ROOT DECOMPOSITION
- Note: since *A* is symmetric, need to store only the upper (or lower) ∆ portion only

Why do we need such decompositions?

- Why do we need such a decomposition ?
- 1) To test positive definiteness of a symmetric matrix (this will become apparent from the decomposition algorithm)
- 2) Square root updates of covariance matrices in least squares estimation and Kalman filtering.
	- Recall update and propagate equations of Kalman Filtering.
	- Measurement update:
 $P_{_{k|k}} = [I G_k H] P_k$

$$
P_{_{k|k}} = [I - G_{_k}H]P_{_{k|k-1}}
$$

= $P_{_{k|k-1}} - P_{_{k|k-1}}H^T(R + HP_{_{k|k-1}}H^T)^{-1}HP_{_{k|k-1}}$

• Propagate:

$$
P_{k+1|k} = \Phi P_{k|k-1} \Phi^T + E W_d E^T
$$

• Update eqn. often results in $(P_{ii})_{k/k}$ < 0 especially when $||W_d||$ is small and / or ||*R*|| is small

Square root decomposition & (*P***)**

• One solution: Joseph's form, but requires double the computational load of ordinary update equation

 $P_{\scriptscriptstyle{klk}} = (I - G_{\scriptscriptstyle{k}} H) P_{\scriptscriptstyle{k|k-1}} (I - G_{\scriptscriptstyle{k}} H)^{T} + G_{\scriptscriptstyle{k}} R G_{\scriptscriptstyle{k}}^{T}$

- Second solution: recursive square-root update (Lecture 8) propagate $\sum_{k|k} \implies P_{k|k} = S_{k}^{} S_{k}^T$
- Why does second solution work? $P_{k|k}$ is *PD* if S_k is non-singular - $P_{k|k}$ is *PD* if S_k is non-singular
 $= ||P_{k|k}||_2 = \lambda_{max}(P_{k|k})$; $||S_k||_2 = \sqrt{\lambda_{max}(S_k S_k^T)} = \sqrt{\lambda_{max}(P_{k|k})}$ $\| \n\begin{bmatrix} 2 \\ 2 \end{bmatrix} \| \n\begin{bmatrix} P_{k|k} \end{bmatrix} \|_2$ *k* is *PD* if S_k is non-singular
 $P_{k|k} ||_2 = \lambda_{\max} (P_{k|k})$; $|| S_k ||_2 = \sqrt{\lambda_{\max} (S_k S_k^T)} = \sqrt{\lambda_{\max} (P_{k|k})}$
 $|| S_k ||_2^2 = || P_{k|k} ||_2$ *S*_{*k*} $||_2 = \lambda_{\max}$ (
*S*_{*k*} $||_2^2 = || P_k$ PD if S_k is non-singular
= $\lambda_{\max}(P_{k|k})$; $||S_k||_2 = \sqrt{\lambda_{\max}(S_k S_k^T)} = \sqrt{\lambda_{\max}(P_{k|k})}$ $\|\,P_{_{k|k}}\,\|_{_2} = \lambda_{_{\rm max}}(P_{_{k|k}}); \ \implies \|\,S_{_{k}}\,\|_{_2}^2 = \parallel P_{_{k|k}}\,\|_{_2}$

$$
- So, \kappa(P_{_{k|k}}) = \frac{\lambda_{\max}(P_{_{k|k}})}{\lambda_{\min}(P_{_{k|k}})}; \kappa(S_{_{k}}) = \sqrt{\frac{\lambda_{\max}(P_{_{k|k}})}{\lambda_{\min}(P_{_{k|k}})}}
$$

$$
\kappa(P_{_{k|k}}) = 10^{6} \Rightarrow \kappa(S_{_{k}}) = 10^{3}
$$

Unconstrained Minimization - 1

- So, square root propagation reduces the condition number
- \rightarrow Can get greater precision with the same computer, or equivalently
- \rightarrow Can get the same precision with a smaller word length computer … critical in applications with space and weight problems
- 3) Unconstrained and constrained minimization
	- x^* is a relative local minimum of $f(x) \Rightarrow \nabla^2 f(x) \ge 0$
	- x^* is a strict relative local minimum of $f(x) \Rightarrow \nabla^2 f(x) > 0$
	- Recall modified Newton's method $\nabla^2 f(x) d_k = -\nabla f(x)$

Unconstrained Minimization - 2

- \Rightarrow $\lim_{x_{k+1} = x_k + \alpha_k \underline{d}_k; \alpha_k = \arg \min_{\alpha} [f(x_k + \alpha \underline{d}_k)]$
- $\underline{x}_{k+1} = \underline{x}_k + \alpha_k \underline{d}_k$; $\alpha_k = 0$
 $\nabla \underline{f}^T (\underline{x}_k + \alpha_k \underline{d}_k) \underline{d}_k = 0$ $\begin{aligned} \gamma_{t+1}^T = \underline{x}_k + \alpha_k \underline{d}_k \, ; \alpha \\ \underline{f}^T \left(\underline{x}_k + \alpha_k \underline{d}_k \right) \underline{d}_k \end{aligned}$ α \Rightarrow $\underline{x}_{k+1} = \underline{x}_k + \alpha_k \underline{d}_k; \alpha_k = \arg \max_{\alpha_k}$
 $\Rightarrow \nabla \underline{f}^T (\underline{x}_k + \alpha_k \underline{d}_k) \underline{d}_k = 0$
- $\nabla \underline{f}' (\underline{x}_k + \alpha_k \underline{d}_k) \underline{d}_k = 0$
 $f (\underline{x}_k + \alpha \underline{d}_k) \approx f (\underline{x}_k) + \alpha \nabla \underline{f}' (\underline{x}_k)$ $\Rightarrow \nabla \underline{f}^I(\underline{x}_k + \alpha_k \underline{d}_k) \underline{d}_k = 0$
 $\Rightarrow f(\underline{x}_k + \alpha \underline{d}_k) \approx f(\underline{x}_k) + \alpha \nabla \underline{f}^T(\underline{x}_k) \underline{d}_k$ $\Rightarrow f(\underline{x}_k + \alpha \underline{d}_k) \approx f(\underline{x}_k)$
 $\Rightarrow \nabla \underline{f}^T(\underline{x}_k) \underline{d}_k < 0$
- $f(\underline{x}_k + \alpha \underline{d}_k) \approx f$
 $\nabla \underline{f}^T(\underline{x}_k) \underline{d}_k < 0$ $\underline{x}_k + \alpha \underline{d}_k$)
 $\underline{f}^T(\underline{x}_k) \underline{d}_k$
- $2 f(x)$ ⁻¹ $\nabla \underline{f}^I(\underline{x}_k) \underline{d}_k < 0$
 $-\nabla_f^T(\underline{x}_k) [\nabla^2 f(\underline{x}_k)]^{-1} \nabla f(\underline{x}_k) < 0$ $\int_{f}^{T} (\underline{x}_{k}) \underline{d}_{k} < 0$
 *T*_f (\underline{x}_{k})[$\nabla^{2} f (\underline{x}_{k})$]⁻¹ $\nabla f (\underline{x}_{k})$ $\overline{}$ $\Rightarrow \nabla \underline{f}^T(\underline{x}_k) \underline{d}_k < 0$
 $\Rightarrow -\nabla^T_f(\underline{x}_k) [\nabla^2 f(\underline{x}_k)]^{-1} \nabla f(\underline{x}_k) < 0$ $\Rightarrow -\nabla_f^T(\underline{x}_k)$
 $\Rightarrow \nabla^2 f(\underline{x}_k)$

2 $-\nabla_f^T(\underline{x}_k)[\nabla^2 f(\underline{x}_k)]^{-1}$
 $\nabla^2 f(\underline{x}_k)$ must be *PD*

- Cholesky's method will provide a method for testing PD of $\nabla^2 f(\underline{x})$ and also to make it *PD* when it is not by adding εI to $\nabla^2 f(\underline{x})$
- 4) Quasi-Newton methods

Quasi-Newton methods
\n
$$
\underline{x}_{k+1} = \underline{x}_k + \alpha_k \underline{d}_k
$$
\n
$$
\underline{d}_k = -D_k \nabla \underline{f}(\underline{x}_k), \text{ where } D_k \text{ is } PD
$$

Unconstrained Minimization - 3

 \bullet \exists a large class of Quasi-Newton methods. But, we restrict ourselves • ∃ a large class of Quasi-Newton methods. But, we restrict ourselv
to the so-called Broyden-Fletcher-Goldfard-Shanno (BFGS) class:
 $\frac{p_k}{k} = \frac{x_{k+1} - x_k}{q_k} = \nabla \underline{f}(\underline{x}_{k+1}) - \nabla \underline{f}(\underline{x}_k)$ ge class of Quasi-l
so-called Broyden-
= $\underline{x}_{k+1} - \underline{x}_k$

to the so-called Broyden-Fletcher-Goldfard-Shann
\n
$$
\underline{p}_k = \underline{x}_{k+1} - \underline{x}_k
$$
\n
$$
\underline{q}_k = \nabla \underline{f}(\underline{x}_{k+1}) - \nabla \underline{f}(\underline{x}_k)
$$
\n
$$
D_{k+1} = D_k + \frac{\underline{p}_k \underline{p}_k^T}{\underline{q}_k^T \underline{p}_k} - \frac{D_k \underline{q}_k \underline{q}_k^T D_k}{\underline{q}_k^T D_k \underline{q}_k} + \zeta_k \tau_k \underline{v}_k \underline{v}_k^T
$$
\n
$$
\underline{v}_k = \underline{p}_k - \frac{1}{\tau_k} D_k \underline{q}_k
$$
\n
$$
\tau_k = \frac{\underline{q}_k^T D_k \underline{q}_k}{\underline{p}_k^T \underline{q}_k}
$$
\n
$$
0 \le \zeta_k \le 1
$$

Example of Cholesky Decomposition

- Davidon-Fletcher-Powell (DFP) $\Rightarrow \zeta_k = 0$
- BFGS $\Rightarrow \zeta_k=1$
- Propagate $\sqrt{D_k}$ to avoid round-off error problems.
- Notice rank two (or three) corrections to go from $D_k \to D_{k+1}$
-

\n- ■ Example of Cholesky decomposition\n
$$
A = \begin{bmatrix} 2 & -2 \\ -2 & 5 \end{bmatrix}; \quad S = \begin{bmatrix} \sqrt{2} & 0 \\ -\sqrt{2} & \sqrt{3} \end{bmatrix} \Rightarrow A = SS^T
$$
\n
\n- ■ Also note that we can write\n
$$
S = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 \\ 0 & 0 \end{bmatrix}
$$
\n
\n

 $\begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{3} \end{bmatrix}$ *S* $A = SS^T = LDL^T$ where $S = LD$ $\begin{bmatrix} \sqrt{3} \end{bmatrix}$
= $\begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{3} \end{bmatrix}$ • Also note that we can write $S = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$
 $\Rightarrow A = SS^T = LDL^T$ where $S = LD^{1/2}$

 \Rightarrow $A = SS^T = LDL^T$ where $S = LD^{1/2}$

• As with *LU* decomposition, we evaluate *S* one column at a time

- Consider the situation at the k^{th} column of S (assume done up to column *k*-1)
	- − for *i* ≥ k, we have

or
$$
i \ge k
$$
, we have

$$
a_{ik} = \sum_{m=1}^{k} s_{im} s_{km} = \sum_{m=1}^{k-1} s_{im} s_{km} + s_{kk} s_{ik}
$$

- Rearranging this equation, we obtain
\n
$$
S_{kk} = \left(a_{kk} - \sum_{m=1}^{k-1} S_{km}^2 \right)^{\frac{1}{2}}
$$
\n
$$
S_{ik} = \left(a_{ik} - \sum_{m=1}^{k-1} S_{im} S_{km} \right) / S_{kk}; \text{ for } i = k+1, ..., n
$$

- Compute *S* one column at a time
- Can also compute *S* one row at a time (see problem set #5)
- Overwrite a_{ij} with s_{ij} ; $i \geq j$ (in place computation)

Cholesky Decomposition Algorithm

Algorithm Cholesky: Column Version

 $\frac{1}{2}$ $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$ Do

$$
a_{_{kk}}=(a_{_{kk}}-\sum_{_{m=1}}^{_{k-1}}a_{_{km}}^2)^{^{1/2}}
$$

$$
\text{for } i = k+1, ..., n \text{ Do}
$$
\n
$$
a_{ik} = (a_{ik} - \sum_{m=1}^{k-1} a_{im} a_{km}) / a_{kk}
$$

 $m=1$

• No pivoting is needed if *A* is *PD*

- **Accumulate sums in** *DP*
- Use of algorithm to test *PD* of *A* : If $(-\#)^{1/2} \Rightarrow A$ is not *PD* !!

 $End Do(i)$

 $\lim_{k \to \infty} \text{Do}(k)$;

• Computational load : *n* square roots plus 1 2 3 $\frac{2}{2} \leq \sum_{k=1}^{k} s^2$ 1 End Do(*k*);

Computational load :
 $\sum_{k=1}^{n} k(n-k)$ multiplies $\sum_{k=1}^{n} k(n-k)$ multiplies
= $\frac{n^2(n+1)}{2} - \frac{n(2n+1)(n+1)}{6} = \frac{n(n+1)(n-1)}{6} \approx O(n^3/6) \approx \frac{1}{2}$ of $\frac{(n-k)}{2} - \frac{n(2n+1)(n+1)}{6} = \frac{n(n+1)(n-1)}{6} \approx O(n^3/6) \approx \frac{1}{2}$ = $\frac{n^2(n+1)}{2} - \frac{n(2n+1)(n+1)}{6} = \frac{n(n+1)(n-1)}{6} \approx O(n^3)$
 $s_{kk}^2 \le \sum_{m=1}^k s_{km}^2 \le a_{kk} \Rightarrow s_{kk} < a_{kk} \Rightarrow$ elements are bounded *n k* • $S_{ik}^2 \le \sum_{m=1}^k S_{km}^2 \le a_{ik} \implies S_{ik} < a_{ik}$ $\text{p}_{\text{in}}(k)$
 $k(n-k)$ $\sum_{k=1}^{n} k(n-k)$ multiplies
 $\frac{n^2(n+1)}{2} - \frac{n(2n+1)(n+1)}{6} = \frac{n(n+1)(n-1)}{6} \approx O(n^3/6) \approx \frac{1}{2}$ of *LU* $a_{ik} \Rightarrow s_{ik} < a$ $=$ $\sum k(n -)$ *n*-*k*) multiplies
+1) $n(2n+1)(n+1) = \frac{n(n+1)(n-1)}{2} \approx O(n^3/10)$ $=\frac{n(n+1)(n-1)}{6} \approx O(n^3/6) \approx \frac{1}{2}$ of LU $\frac{n^2(n+1)}{2} - \frac{n(2n+1)(n+1)}{6} = \frac{n(n+1)(n+1)}{6}$
≤ $\sum_{m=1}^{k} s_{km}^2 \le a_{kk} \implies s_{kk} < a_{kk} \implies$ elements

Pivoting

- Pivoting for positive semi-definite matrices:
	- 1 2 Pivoting for positive semi-definite matrices:
At step k, find the biggest $a_{u} - \sum_{i=1}^{k-1} s_{u}^{2}$; $l = k,...,$ for positive semi-definite matrices:
 k, find the biggest $a_{\mu} - \sum_{i=1}^{k-1} s_{\mu}^2$; $l = k,...,n$ -Pivoting for positive semi-definite matrices:
• At step k, find the biggest $a_n - \sum_{i=1}^{k-1} s_i^2$; $l = k,...,n$
	- Pre- and post-multiply *A* by permutation matrix
	- Why? … because we need to preserve symmetry of *A*
	- Also recall that the permutation matrix is **Symmetric**
	- \Rightarrow permute *S* by permutation matrix P_k^n , where r_k is the row with the biggest element in the previous step.

That is, $A = PSS^T P^T = \tilde{S}\tilde{S}^T$

- So, we actually find an *SS^T* factorization of *PAP*
- Good to pivot, since can find a reduced rank square-root matrix $S = n \times r$

LDL^T Decomposition - 1

Problem with Cholesky

- Need to compute square roots
- Square roots are more expensive than multiplications and divisions $(z \text{ a factor of } 2).$

LDL^T Factorization

• *A*= *LDL^T* is similar to Cholesky decomposition, but <u>avoids</u> square root evaluations. $d_i \geq 0$; $l_{ii} = 1$ *A*=*LDL*⁻ is similar to Cholesky decomposition, but <u>avoids</u> square
root evaluations. $d_i \ge 0$; $l_{ii} = 1$
 $\begin{bmatrix} 1 & 0 & ... & 0 \end{bmatrix} \begin{bmatrix} d_1 & 0 & ... & 0 \end{bmatrix} \begin{bmatrix} 1 & l_{21} & ... & l_{n1} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & ... & a_{1n} \end{bmatrix}$

root evaluations.
$$
d_i \ge 0
$$
; $l_{ii} = 1$
\n
$$
\begin{bmatrix}\n1 & 0 & \dots & 0 \\
l_{21} & 1 & \dots & 0 \\
\vdots & & \vdots \\
l_{n1} & l_{n2} & \dots & 1\n\end{bmatrix}\n\begin{bmatrix}\nd_1 & 0 & \dots & 0 \\
0 & d_2 & \dots & 0 \\
\vdots & & \vdots & \vdots \\
0 & 0 & \dots & d_n\n\end{bmatrix}\n\begin{bmatrix}\n1 & l_{21} & \dots & l_{n1} \\
0 & 1 & \dots & l_{n2} \\
\vdots & \vdots & & \vdots \\
0 & 0 & \dots & 1\n\end{bmatrix}\n=\n\begin{bmatrix}\na_{11} & a_{12} & \dots & a_{1n} \\
a_{12} & a_{22} & \dots & a_{n2} \\
\vdots & & \vdots & & \vdots \\
a_{1n} & a_{n2} & \dots & a_{nn}\n\end{bmatrix}
$$

For $i \ge k$, we have $i \geq k$ • For $i \geq$

• For
$$
i \ge k
$$
, we have
\n
$$
a_{ik} = \sum_{m=1}^{k} l_{im} d_{m} l_{km} \Rightarrow d_{k} = a_{kk} - \sum_{m=1}^{k-1} l_{km} d_{m} l_{km}
$$
 since $l_{kk} = 1$

• Therefore

• Therefore

$$
l_{ik} = (a_{ik} - \sum_{m=1}^{k} l_{im} d_m l_{km}) / d_k
$$

Comments:

- The term $d_m l_{km}$ is independent of *i*
- Overwrite a_{ik} with l_{ik} and a_{kk} with $d_k \Rightarrow$ no need for extra storage
- Requires $O(n^3/6)$ operations

LDL^T Algorithm

Algorithm for LDLT factorization

Algorithm for LD
For $k = 1,2,...,n$ Do
For $m = 1,2, ...$ Algorithm for LDL^T fact
For $k = 1, 2, ..., n$ Do
For $m = 1, 2, ..., k - 1$ Do $r_{m} = a_{mm} a_{km}$... recall $a_{mm} = d_{m}$, For $m = 1, 2$
 $r_m = a_{mm}$
 $a_{kk} \leftarrow a$

end Do(*m*)

If $a \le 0$ then If $a_{ik} \leq 0$ then *m* = 1, 2, ..., *n* Do
 m = 1, 2, ..., *k* -1 Do
 *r*_{*m*} = $a_{nm}a_{km}$... *recall* $a_{nm} = d_m$, $a_{km} = l_{km}$ *k* = 1, 2, ..., *n* DO
 m = 1, 2, ..., *k* - 1
 $r_m = a_{mn} a_{km}$
 $a_{kk} \leftarrow a_{kk} - a_{km} r_m$
 $DQ(m)$ gorithm for
 $k = 1, 2, ..., n$
For $m = 1, 2$ *i*thm for LDL^T factorizat
 $n = 1, 2, ..., n$ Do
 $m = 1, 2, ..., k - 1$ Do *m* For $k = 1, 2, ..., n$ Do 2,..., *n* Do

= 1, 2,..., *k* - 1 Do

= $a_{nm} a_{km}$... recall $a_{mn} = d_m$, $a_{km} = l_{km}$ For $m = 1, 2, ..., k - 1$ Do
 $r_m = a_{mn} a_{km}$ 1 else

for $i = k + 1, k + 2, ..., n$ Do
 $a_{ik} \leftarrow (a_{ik} - \sum_{m=1}^{k-1} a_{im} r_m) / a_{ik}$... recall $a_{ik} = d_k$; $a_{im} = l_{im}$; $a_{ik} = l_{ik}$ at the end. $a_{kk} \leftarrow a_{kk} - a_{km}r_m$

end Do(*m*)
If $a_{kk} \le 0$ then

quit ... A is not

also else for 1, 2,..., Do *i k k n i* = *k* + 1, *k* + 2, ..., *n* Do
 $a_{ik} \leftarrow (a_{ik} - \sum_{m=1}^{k-1} a_{im} r_m) / a_{ik}$... recall $a_{ik} = d_k$; $a_{im} = l_{im}$; $a_{ik} = l_{ik}$ *A* is not *PD* $k+1, k+2, ..., n$ Do
 $\leftarrow (a_{ik} - \sum_{m=1}^{k-1} a_{im} r_m) / a_{ik}$... recall $a_{ik} = d_k$; $a_{im} = l_{im}$; $a_{ik} = l_{ik}$ at the end End Endif End

- Application to System Identification: Toeplitz system of Equations
- What is the System Identification problem?
- " Given the input and output sequences, determine the transfer function relating the input and output."
- Restricted problem:
	- − Suppose that the input is a white noise sequence {*w*(*k*)} and output sequence $\{y(k)\}\$ is related to input via the autoregressive relation:

$$
y(k) + \sum_{i=1}^{n} a_i y(k - i) = gw(k)
$$

− *w*(*k*)~ zero mean white noise process with unit variance − $y(k) + \sum_{i=1}^{\infty} a_i y(k - i) = g w(k)$
 $w(k)$ \sim zero mean white noise process with unit variance

Problem : " Given { $y(k)$ } sequence, find \hat{a}_i , $i = 1, 2, ..., n$ and \hat{g} $w(k)$ ~ zero mean white
Problem : " Given {*y*(*k*
such that *J* = $E{e^{2}(k)}$ *i* $k - i$ = $gw(k)$

ite noise process with unit variance
 $y(k)$ } sequence, find \hat{a}_i , $i = 1, 2, ..., n$ and \hat{g} o mean wh

^{*T*} Given {*J*
 J = $E\{e^2(k)$ $=$

 $= E\{e^2$

such that
$$
J = E\{e^{2}(k)\}\
$$

= $E\{[y(k) + \sum_{i=1}^{n} \hat{a}_{i} y(k-i)]^{2}\}\$ is a minimum

Minimization of Cost Function

- $-e(k)$ is called the <u>prediction error</u>, $[y(k) \hat{y}(k/k 1)].$
- − So, want to minimize mean-squared error prediction of *y(k)* from its past data {*y*(*k-n*), *y*(*k-n-*1),…, *y*(*k-*1)}
-
- The necessary conditions of optimality yield:

\n- − This is a Parameter Identification (estimation) problem
\n- The necessary conditions of optimality yield:
\n- $$
\frac{\partial J}{\partial \hat{a}_j} = 0 \implies E\{ [y(k) + \sum_{i=1}^n \hat{a}_i y(k-i)] y(k-j) \} = 0; j = 1, \ldots, n
$$
\n
$$
- e(k) \text{ is orthogonal to } y(k-j) \ \forall \ j = 1, 2, \ldots, n
$$
\n
$$
I - E[x(k), e(k)] = \hat{a}^2
$$

−

$$
- J = E[y(k)e(k)] = \hat{g}^2
$$

• Expanding the necessary conditions of optimality, we obtain:

anding the necessary conditions of optir
\n
$$
\sum_{i=1}^{n} \hat{a}_i \phi_y(j-i) = -\phi_y(j); j = 1,...,n
$$

 $\sum_{i=1} \hat{a}_i \phi_y(j-i) = -\phi_y(j); j = 1, ..., n$
where $\phi_y(j-i) = E\{y(k-i)y(k-j)\} = E\{y(j)y(i)\}$ ϕ $\phi_y(j-i) = -\phi_y(j); j = 1,...,n$
 $-i) = E\{y(k-i)y(k-j)\} = E\{y(j)$

due to stationarity which is due to linear time-invariance assumption of the stochastic system

a u
a u
a c

Toeplitz System of Equations

• In matrix form, the necessary conditions are given by:

matrix form, the necessary conditions are given by:
\n
$$
\begin{bmatrix}\n\phi_y(0) & \phi_y(1) & \cdots & \phi_y(n-1) \\
\phi_y(1) & \phi_y(0) & \cdots & \phi_y(n-2) \\
\vdots & \vdots & & \vdots \\
\phi_y(n-1) & \phi_y(n-2) & \cdots & \phi_y(0)\n\end{bmatrix}\n\begin{bmatrix}\n\hat{a}_1 \\
\hat{a}_2 \\
\vdots \\
\hat{a}_n\n\end{bmatrix} = -\n\begin{bmatrix}\n\phi_y(1) \\
\phi_y(2) \\
\vdots \\
\phi_y(n)\n\end{bmatrix} \Rightarrow \Phi_n \hat{a} = -\underline{b}
$$

The objective function is:

$$
\begin{aligned}\n[\varphi_y(n-1) & \varphi_y(n-2) & \dots & \varphi_y(0) & \lbrack a_n \rbrack - \lbrack \varphi_y(n) \rbrack\n\end{aligned}
$$
\nThe objective function is:

\n
$$
J = E\{y(k)e(k)\} = \varphi_y(0) + \sum_{i=1}^n \hat{a}_i \varphi_y(i) = \varphi_y(0) - \hat{a}^T \Phi_n \hat{a} = \hat{g}^2
$$
\npremultiply by Diag $[\varphi_y(0)]^{-1}$

1

$$
J = E\{y(k)e(k)\} = \varphi_y(0) + \sum_{i=1} a_i \varphi_y(i) = \varphi_y(0) - \underline{a} \cdot \Phi_n \underline{a} = g
$$

premultiply by Diag $[\varphi_y(0)]^{-1}$

$$
\begin{bmatrix} 1 & r_1 & r_2 & \cdots & r_{n-1} \\ r_1 & 1 & r_1 & \cdots & r_{n-2} \\ r_2 & r_1 & 1 & \cdots & r_{n-3} \\ \vdots & \vdots & \vdots & \vdots \\ r_{n-1} & r_{n-2} & \cdots & \cdots & 1 \end{bmatrix} \begin{bmatrix} \hat{a}_1 \\ \hat{a}_2 \\ \vdots \\ \hat{a}_n \end{bmatrix} = - \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix}; r_i = \frac{\varphi_y(i)}{\varphi_y(0)} \text{ correlation coefficient}
$$

Properties of Toeplitz Matrix

$$
T_n \hat{\underline{\alpha}} = -\underline{r}
$$

- These are called **Yule-Walker** equations
- Toeplitz matrix:
	- Symmetric matrix specified by *n* elements (including *RHS*).
	- *RHS* has a special form
	- This enables us to solve this problem in $O(n^2)$ operations
- Key properties of Toeplitz:
	- *T_n* is persymmetric \Rightarrow *T_n*=*E T_n E*, *E*~ *Exchange Matrix*

$$
E^{-1} = E; E^2 = I; E = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}
$$

- T_n^{-1} is also persymmetric
- Physical meaning: The statistical properties of a stationary time series are not modified by reversing time (time-reversibility property)

Solution of Toeplitz Equations - 1

We will solve $T_n \underline{x} = \underline{b}$ as a solution of two subproblems.

- Subproblem 1: solve $T_n \underline{a} = -(r_1 \, r_2 \, \dots \, r_n)^T$ (Levinson-Durbin's Algorithm)
- Subproblem 2: use the solution of 1 to solve $T_n \underline{x} = \underline{b}$ (\underline{b} is general) (Generalized Levinson's algorithm)
- Subproblem 1:
	- Suppose have solved $T_k \underline{a} = -\underline{r} \Rightarrow \underline{a} = -T_k^{-1} \underline{r}$
	- Note that *a* is of dimension *k*
	- What we are looking for is a recursive way of building up <u>a</u> from

dimension 1 to *n*.
\n
$$
\begin{bmatrix}\nr_0 & r_1 & r_2 & \cdots & r_{k-1} \\
r_1 & r_0 & r_1 & \cdots & r_{k-2} \\
r_2 & r_1 & r_0 & \cdots & r_{k-3} \\
\vdots & \vdots & & \vdots \\
r_{k-1} & r_{k-2} & \cdots & \cdots & r_0\n\end{bmatrix}\n\begin{bmatrix}\na_1 \\
a_2 \\
\vdots \\
a_k\n\end{bmatrix} = - \begin{bmatrix}\nr_1 \\
r_2 \\
\vdots \\
r_k\n\end{bmatrix}; r_0 = 1
$$

- ⇒ Can we get next *a*?
- Recursion $k \rightarrow k+1$

$$
\begin{bmatrix} T_k & E_k \underline{r} \\ \underline{r}^T E_k & 1 \end{bmatrix} \begin{bmatrix} z \\ \alpha \end{bmatrix} = - \begin{bmatrix} r \\ r_{k+1} \end{bmatrix}
$$

 $\lfloor \underline{r} \ \underline{F}_k \ \text{if} \ \underline{F}_k \ \text{where} \ E_k \sim k \text{ by } k \text{ exchange matrix}$

• Given \underline{a} , we can solve this problem in $O(k)$ flops. How? $1 r - \alpha T^{-1}$ $T_k \underline{z} + E_k \underline{r} \alpha = -\underline{r}$ $\Rightarrow \underline{z} = -T_k^{-1}\underline{r} - \alpha T_k^{-1}E_k\underline{r}$

Solution of Toeplitz Equations - 2

• Toeplitz is per symmetric $\Rightarrow T_k^{-1}E_k = E_k T_k^{-1}$ Toeplitz is per symmetric $\Rightarrow T_k^{-1} E_k = E_k T_k^{-1}$
 $\Rightarrow \boxed{\underline{z} = \underline{a} + \alpha E_k \underline{a} = (I + \alpha E_k) \underline{a} \Rightarrow \underline{z}_i = a_i + \alpha a_{k+1-i}}$ $T_k^{-1}E_k = E_k T_k$ $^{-1}E_{r} = E_{r}T^{-1}$ $E_k \underline{r}$
 $\Rightarrow T_k^{-1} E_k = E_k T_k^{-1}$

Solution of Toeplitz Equations - 3

- In signal processing, *α* is termed the reflection coefficient
	- ${a_i}$ = forward filter coefficients
	- ${a_{k+1-i}}$ = backward filter coefficients
- \Rightarrow next forward filter coefficients = weighted sum of previous forward and backward filter coefficients \Rightarrow next forward filter coefficients = weighted sum
forward and backward filter coefficients
• Next, $\alpha = -r_{k+1} - \underline{r}^T E_k \underline{z} = -(r_{k+1} + \underline{r}^T E_k \underline{a} + \alpha \underline{r}^T \underline{a})$ Example 11 *T* F_r $Z = -(r_r + r^T E_r a + \alpha r^T)$ *k* and the coefficients = weighted sumd backward filter coefficients
 $r_{k+1} - \underline{r}^T E_k \underline{z} = -(r_{k+1} + \underline{r}^T E_k \underline{a} + \alpha \underline{r}^T \underline{a})$ t forward filter coefficients = weighted sum of
ward and backward filter coefficients
 $\alpha = -r_{k+1} - \underline{r}^T E_k \underline{z} = -(r_{k+1} + \underline{r}^T E_k \underline{a} + \alpha \underline{r}^T \underline{a})$
-
- 1 ext, $\alpha = -r_{k+1} - \underline{r}^T E_k \underline{z} = -(r_{k+1} - \alpha)$
 $\alpha = -(r_{k+1} + \underline{r}^T E_k \underline{a}) / (1 + \underline{r}^T \underline{a})$ $\alpha = -(r_{k+1} + r^2)$
1- $r^T T_k^{-1} r > 0$ $\frac{r}{r} E_k Z = -(r_k)^T E_k$
 $\frac{r}{r} E_r a$ / $(1 + r^T)^T$ $\dot{E}_{k+1} + \underline{r}^T E_k$ $= -(r_{k+1})$
 $r^T T_k^{-1} r$ *r*_{$k+1$} - <u>*r*^{*r*} E_k **z**</u> = -(r_{k+1}
 r_{k+1} + <u>r</u>^{*T*} E_k <u>*a*</u>) / (1 + <u>r^{^{*T*} a </u>} $\alpha = -r_{k+1}$ Next, $\alpha = -r_{k+1} - \underline{r}^T E_k \underline{z} = -(r_{k+1} + \underline{r})$
 $\Rightarrow \alpha = -(r_{k+1} + \underline{r}^T E_k \underline{a})/(1 + \underline{r}^T \underline{a})$ $\Rightarrow \alpha = -(r_{k+1} + r^T E_k \underline{a})$
 $\Rightarrow 1 - r^T T_k^{-1} r > 0$
- 1 *T* \overline{a}

 $\Rightarrow 1 - \underline{r}^T T_k^{-1} \underline{r} > 0$
 $1 + \underline{r}^T \underline{a} > 0$. This is true because T_{k+1} is *PD* and *T* $-r^T T_k^{-1} \underline{r} > 0$
+ $r^T \underline{a} > 0$. This is true because T_{k+1} is *PD*

$$
1 + \underline{r}^T \underline{a} > 0.
$$
 This is true because T_{k+1} is *PD* and
\n
$$
\begin{bmatrix} I & E_k \underline{a} \\ 0 & I \end{bmatrix}^T \begin{bmatrix} T_k & E_k \underline{r} \\ \underline{r}^T E_k & I \end{bmatrix} \begin{bmatrix} I & E_k \underline{a} \\ 0 & I \end{bmatrix} = \begin{bmatrix} T_k & 0 \\ 0 & 1 + \underline{r}^T \underline{a} \end{bmatrix}
$$
\n
$$
T_{k+1}
$$
 is *PD* \Rightarrow $A^T T_{k+1}$ A is *PD*, if A is nonsingular

Simplification

Check:

1 Check:
\n
$$
\begin{bmatrix} I & 0 \ a^T E_k & 1 \end{bmatrix}^T \begin{bmatrix} T_k & E_k \underline{r} \\ \underline{r}^T E_k & 1 \end{bmatrix}^T \begin{bmatrix} I & E_k \underline{a} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} T_k & E_k \underline{r} \\ \underline{a}^T E_k T_k + \underline{r}^T E_k & 1 + \underline{r}^T \underline{a} \end{bmatrix}^T \begin{bmatrix} I & E_k \underline{a} \\ 0 & 1 \end{bmatrix}
$$
\n
$$
= \begin{bmatrix} T_k & T_k E_k \underline{a} + E_k \underline{r} \\ \underline{a}^T E_k T_k + \underline{r}^T E_k & 1 + \underline{r}^T \underline{a} \end{bmatrix} = \begin{bmatrix} T_k & 0 \\ 0 & 1 + \underline{r}^T \underline{a} \end{bmatrix}
$$
\nsince $T_k E_k \underline{a} + E_k \underline{r} = 0$ (recall $\underline{a} = T_k^{-1} \underline{r}$ and persymmetry of T_k)

since $T_k E_k a + E_k r = 0$ (recall $a = T_k^{-1} r$ and persymmetry of T_k)

Q Major Simplification:

since
$$
I_k E_k \underline{a} + E_k \underline{r} = 0
$$
 (recall $\underline{a} = I_k \underline{r}$ and persymmetry of I_k)
\n
$$
\Box
$$
 Major Simplification:
\n
$$
\beta_k = (1 + {\underline{r}}^{(k)^T} {\underline{a}}^{(k)}) = 1 + \Big[{\underline{r}}^{(k-1)^T} \ r_k \Big] \Big[{\underline{a}}^{(k-1)} + \alpha_{k-1} E_{k-1} {\underline{a}}^{(k-1)} \Big] \qquad \alpha_{k-1}
$$
\n
$$
= 1 + {\underline{r}}^{(k-1)^T} {\underline{a}}^{(k-1)} + \alpha_{k-1} {\underline{r}}^{(k-1)^T} E_{k-1} {\underline{a}}^{(k-1)} + \alpha_{k-1} r_k = \beta_{k-1} + \alpha_{k-1} [{\underline{r}}^{(k-1)^T} E_{k-1} {\underline{a}}^{(k-1)} + r_k]
$$
\nBut, $\beta_{k-1} \alpha_{k-1} = -r_k - {\underline{r}}^{(k-1)^T} E_{k-1} {\underline{a}}^{(k-1)}$...recall equation for α
\n
$$
\Rightarrow \boxed{\beta_k = (1 - \alpha_{k-1}^2) \beta_{k-1}}
$$

Levisnon – Durbin Algorithm - 2

 $a_{k+1} = \alpha$ 2 $J = \beta \phi_y(0) = \hat{g}^2$ $End Do(i)$ $a_i \leftarrow z_i \quad i = 1, 2, ..., k$ $\text{End } \overline{\text{Do}(k)}$ $\beta \leftarrow \beta (1 - \alpha^2)$

• Total Flop count over *n* steps $\approx O(n^2)$ operations

Reference:

Durbin, " The Fitting of time series models", Rev. Inst. Int. Statistics, 28, pp. 233-243, 1960 or any Standard book on statistical signal processing (e.g., L. Scharf, Addison – Wesley, 1991).

Example 1: Solve

ample 1: Solve
\n
$$
\begin{bmatrix}\n1 & 0.5 \\
0.5 & 1\n\end{bmatrix}\n\begin{bmatrix}\na_1 \\
a_2\n\end{bmatrix} =\n\begin{bmatrix}\n-0.5 \\
-0.2\n\end{bmatrix} \Rightarrow \underline{a} = \frac{4}{3}\n\begin{bmatrix}\n1 & -0.5 \\
-0.5 & 1\n\end{bmatrix}\n\begin{bmatrix}\n-0.5 \\
-0.2\n\end{bmatrix} =\n\begin{bmatrix}\n-8/15 \\
1/15\n\end{bmatrix}
$$
\n
$$
a_1 = -0.5, \ \beta = 1, \ \alpha = -0.5
$$
\n
$$
k = 1 \Rightarrow \beta = 0.75, \ \alpha = -(0.2 - 0.25)(4/3) = 0.067 = 1/15
$$
\n
$$
z_1 = a_1 + \alpha a_1 = -0.5(1 + 0.067) = -8/15
$$
\n
$$
a_2 = \alpha = 1/15
$$
\n
$$
\Rightarrow \text{solution } \hat{a} = \begin{bmatrix}\n\hat{a}_1 \\
\hat{a}_2\n\end{bmatrix} =\n\begin{bmatrix}\n-8/15 \\
1/15\n\end{bmatrix}; J = 1 + \hat{a}_1 r_1 + \hat{a}_2 r_2 = \frac{56}{75} = \hat{g}^2
$$

Copyright ©2008 by K. Pattipati 27

Forward – Backward Filter Interpretation - 1

- Another way of looking at Levinson- Durbin problem:
	- Recall

• Recall
\n
$$
\Phi_n \underline{a} = -\begin{bmatrix} \phi_1 \\ \phi_2 \\ \vdots \\ \phi_n \end{bmatrix} = -\underline{\phi}
$$
\n
$$
\phi_y(0) + \underline{\phi}^T \underline{a} = J
$$

 \bullet So,

$$
\begin{aligned}\n\phi_y(0) &+ \underline{\psi} \underline{a} = 0 \\
\bullet \text{ So,} \\
\phi_y(1) &+ \phi_y(1) \\
\vdots & \vdots \\
\phi_y(n) &+ \phi_y(n-1) \end{aligned} \quad \dots \quad\n\begin{aligned}\n\phi_y(n) &+ \phi_y(n) \\
\vdots &+ \phi_y(n-1) \\
\vdots &+ \phi_y(0)\n\end{aligned}\n\bigg[\left[\frac{1}{\underline{a}}\right] = \left[\begin{aligned}\n\phi_y(0) &+ \underline{\phi}^T \\
\vdots &+ \underline{\phi}^T \\
\vdots &+ \phi_y(0)\n\end{aligned}\right]\n\bigg[\left[\frac{1}{\underline{a}}\right] = \left[\begin{aligned}\n\phi_y(0) &+ \underline{\phi}^T \\
\vdots &+ \underline{\phi}^T\n\end{aligned}\right]\n\bigg[\left[\frac{1}{\underline{a}}\right] = \left[\begin{aligned}\n0 \\
0\n\end{aligned}\right]\n\bigg].
$$
\nInitially, let $J = \phi_y(0) \Rightarrow$ zeroth order prediction ($k = 0$)

Initially, let $J = \phi_y$

Forward – Backward Filter Interpretation - 2

- $\overline{a}^{(k)} = (a_1)$ **Forward – Backward Filter Inte**
At k^{th} step, suppose have $\underline{a}^{(k)} = (a_1, ..., a_k)$ and have J_k . • At k^{th} step, suppose have $\underline{a}^{(k)}$
If $k = n$, we are done. **EXECUAL FILTER AND INCORRENANT AT A SET ALL STATE SET A A AND INTERPORT SET ALL STATE SET ALL STATE SET ALL STATE SET ALL STATE SET A LIMIT SET A LI** k^h s
 $k = n$ • At k^{th} step, suppose have $a^{(k)} =$
- Want to find:

If
$$
k = n
$$
, we are done.
\n
\n**What** to find:
\n
$$
\begin{bmatrix}\n\phi_y(0) & \phi_y(1) & \cdots & \phi_y(k+1) \\
\phi_y(1) & \phi_y(0) & \cdots & \phi_y(k)\n\end{bmatrix}\n\begin{bmatrix}\n1 \\
\underline{a}^{(k+1)}\n\end{bmatrix}\n=\n\begin{bmatrix}\n\phi_y(0) & \underline{\phi}^T_{k+1} \\
\underline{\phi}_{k+1} & \underline{\phi}_{k+1}\n\end{bmatrix}\n\begin{bmatrix}\n1 \\
\underline{a}^{(k+1)}\n\end{bmatrix}\n=\n\begin{bmatrix}\nJ_{k+1} \\
0 \\
\vdots \\
0\n\end{bmatrix}
$$

$$
\begin{bmatrix}\n\phi_y(k+1) & \phi_y(k) & \dots & \phi_y(0)\n\end{bmatrix}\n\begin{bmatrix}\n1 & \phi_{k+1} \\
\phi_{k+1} & \phi_{k+1} \\
\phi_{k+1} & \phi_y(0)\n\end{bmatrix}\n\begin{bmatrix}\n1 & 0 \\
a^{(k)} \\
0 \\
\vdots \\
a^{(k+1)}\n\end{bmatrix}\n=\n\begin{bmatrix}\nJ_k \\
0 \\
0 \\
\vdots \\
0\n\end{bmatrix}\n\begin{bmatrix}\n\phi_y(0) & \phi_{k+1}^T \\
\phi_{k+1} & \phi_{k+1}\n\end{bmatrix}\n\begin{bmatrix}\n0 \\
E\underline{a}^{(k)} \\
0 \\
\vdots \\
0\n\end{bmatrix}\n\begin{bmatrix}\n-\gamma_{k+1} \\
0 \\
\vdots \\
\vdots \\
0\n\end{bmatrix}
$$
\nwhere $\gamma_{k+1} = -[\phi_y(k+1) + \sum_{i=1}^k \phi_y(k+1-i)a_i^{(k)}]$

Forward – Backward Filter Interpretation - 3

() () (1) ¹ 1 1 ¹ 1 (1) 1 1 1 1 1 0 1 + 0 1 (0) 1 0 ⁰ : : 0 Ke : y *k k k k k k k ^k T y k k k k k k k a Ea a J J a J*

 \bullet So,

• So,
Pick $\alpha_{k+1} = \gamma_{k+1} / J_k$.. called refl ec $\lambda_{k+1} = \gamma_{k+1} / J_k$ $\alpha_{k+1} = \gamma_{k+1} / J_k$... $=\gamma_{k+1}/J_k$. called reflection coefficient 2 Pick $\alpha_{k+1} = \gamma_{k+1} / J_k$.. called reflection coeffici
 $\Rightarrow J_{k+1} = J_k [1 - \alpha_{k+1}^2] \sim \beta$ of Durbin's Algorithm

 \Box k+1
(*n*)
: 1 $\Rightarrow J_{k+1} = J_k[1 - \alpha_{k+1}^2] \sim \beta$ of Durbin's Algorithm
Estimates $\hat{a}_i = a_i^{(n)}$ are \Rightarrow roots of $(1 + \sum_{i=1}^n \hat{a}_i z^{-i})$ are inside the unit Estimates $\hat{a}_i = a_i^{(n)}$ are \Rightarrow roots of $(1 + \sum_{i=1}^n \hat{a}_i z^{-i})$ are inside to circle, if the reflection coefficients $|\alpha_k| < 1$ for $k = 1, 2, ..., n$. Guranteed if Toeplitz matrix is PD. ^{*n*} are $\overline{ }$ p creations regionally $[\mathbf{1} - \alpha_{k+1}^2] \sim \beta$ of Durbin's Algorith
 $\hat{a}_i = a_i^{(n)}$ are \Rightarrow roots of $(1 + \sum_{i=1}^n \hat{a}_i z_i)$ *i* circle, if the reflection coefficients $|\alpha_k|$ <1 for $k = 1, 2, ..., n$. $1+\sum_{i=1}^{n} \hat{a}_i z^{-i}$ are inside
 α_k |<1 for $k = 1, 2, ..., n$ \overline{a} $=$ $-\alpha_{k+1}^2$] ~ β of Durbin's
= $a_i^{(n)}$ are \rightarrow roots of ($\sum_{i=1}^{n} \hat{a}_i z^{-i}$ are inside th
<1 for $k = 1, 2, ..., n$. \sum

Toeplitz with General RHS

- Generalized Levinson-Durbin's Problem (subproblem 2): evinson-Durbin's
RHS is arbitrary <u>b</u>
	- What if the RHS is arbitrary
	- ary \underline{b}
 $\binom{k}{k} = b^{(k)}$ What if the *RHS* is arbitrary <u>b</u>
Suppose have solved $T_k \underline{x}^{(k)} = \underline{b}^{(k)} = (b_1 \ b_2 \ ... \ b_k)$ *k*) $= b^{(k)} = (b, b, \ldots, b)$ ^T *b* bitrary \underline{b}
*T*_{*k*} $\underline{x}^{(k)} = \underline{b}^{(k)} = (b_1 \ b_2 \ ... \ b_k \ b_k$ Foldary
 $T_k \underline{x}^{(k)} =$
 $T_k \underline{x} = \underline{b}$ s Problem (subp)
 $\frac{b}{b}$
 $= \underline{b}^{(k)} = (b_1 \ b_2 \ ...$ \bullet
	- For simplicity, write $T_k \underline{x} =$

1 Want to solve $T_{k+1} \begin{bmatrix} \frac{\nu}{\mu} \\ \frac{\nu}{\mu} \end{bmatrix} = \begin{bmatrix} \frac{\nu}{\mu} \\ b_{k+1} \end{bmatrix} = \begin{bmatrix} I_k & L_k I \\ I_k & 1 \end{bmatrix} \begin{bmatrix} \frac{\nu}{\mu} \\ \frac{\nu}{\mu} \end{bmatrix} = \begin{bmatrix} \frac{\nu}{\mu} \\ b_{k+1} \end{bmatrix}$ 1 \sum_k E_k $k+1$, $\vert - \vert$, $\vert - \vert$, \vert $\left[\sum_{k=1}^{L_k} \frac{1}{k} \sum_{k=1}^{L_k} \frac{E_k}{k} \right] \left[\sum_{k=1}^{L_k} \frac{1}{k} \right] = \left[\sum_{k=1}^{L_k} \frac{1}{k} \sum_{k=1}^{L_k} \frac{1}{k} \right]$ solved $I_k \underline{x} = \underline{b}$ $-(v_1 v_2 ... v_k)$
 n, write $T_k \underline{x} = \underline{b}$
 $T_{k+1} \begin{bmatrix} \underline{v} \\ \underline{v} \end{bmatrix} = \begin{bmatrix} \underline{b} \\ \underline{v} \end{bmatrix} = \begin{bmatrix} T_k & E_k \underline{r} \\ \underline{r} \end{bmatrix} \begin{bmatrix} \underline{v} \\ \underline{v} \end{bmatrix} = \begin{bmatrix} \underline{b} \\ \underline{v} \end{bmatrix}$ $\begin{bmatrix} \frac{b}{b} \\ b_{k+1} \end{bmatrix} = \begin{bmatrix} T_k & F_k T \\ \frac{r^T E_k}{T} & 1 \end{bmatrix} \begin{bmatrix} V \\ \mu \end{bmatrix} = \begin{bmatrix} F_k \\ \mu \end{bmatrix}$ e $T_k \underline{x} = \underline{b}$

e $T_k \underline{x} = \underline{b}$
 \underline{v} $\begin{bmatrix} \underline{b} \end{bmatrix} = \begin{bmatrix} T_k & E_k \underline{r} \end{bmatrix} \begin{bmatrix} \underline{v} \end{bmatrix} = \begin{bmatrix} \underline{b} \end{bmatrix}$ $\begin{bmatrix} E & I_k \underline{x} = \underline{b} \\ \mu & \end{bmatrix} = \begin{bmatrix} \underline{b} \\ b_{k+1} \end{bmatrix} = \begin{bmatrix} T_k & E_k \underline{r} \\ \underline{r}^T E_k & 1 \end{bmatrix} \begin{bmatrix} \underline{v} \\ \mu \end{bmatrix} = \begin{bmatrix} \underline{b} \\ b_{k+1} \end{bmatrix}$ $^{+}$ $\begin{bmatrix} \mathcal{L} \\ \mathcal{L} \end{bmatrix} = \begin{bmatrix} I_k & L_k I_k \\ \mathcal{L}^T E_k & 1 \end{bmatrix} \begin{bmatrix} V \\ \mu \end{bmatrix} = \begin{bmatrix} \mathcal{L} \\ b_{k+1} \end{bmatrix}$ te $T_k \underline{x} = \underline{b}$
 $\begin{bmatrix} \underline{v} \\ \end{bmatrix} = \begin{bmatrix} \underline{b} \\ \end{bmatrix} = \begin{bmatrix} T_k & E_k \underline{r} \\ \end{bmatrix} \begin{bmatrix} \underline{v} \\ \end{bmatrix} = \begin{bmatrix} \underline{b} \\ \end{bmatrix}$ te $T_k \underline{x} = \underline{b}$
 $\begin{bmatrix} \underline{v} \\ \mu \end{bmatrix} = \begin{bmatrix} \underline{b} \\ b_{k+1} \end{bmatrix} = \begin{bmatrix} T_k & E_k \underline{r} \\ \underline{r}^T E_k & 1 \end{bmatrix} \begin{bmatrix} \underline{v} \\ \mu \end{bmatrix} = \begin{bmatrix} \underline{b} \\ b_{k+1} \end{bmatrix}$ nt to solve $T_{k+1} \begin{bmatrix} \frac{V}{\mu} \\ \frac{V}{\mu} \end{bmatrix} = \begin{bmatrix} \frac{V}{\mu} \\ b_{k+1} \end{bmatrix} = \begin{bmatrix} I_k \\ I^T L \end{bmatrix}$
 $\underline{r} = (r_1 \ r_2 \ ... \ r_k)^T$ as before $\underline{r} = (r_1 \, r_2 \, \dots \, r_k)^T$ as before is before
¹[b – E_ir µ] = x + µE_i a; a = -T_i⁻¹ $\frac{1}{k} \sum_{k} \mu - \frac{1}{k} \implies \frac{1}{k} - \frac{1}{k} \sum_{k} \mu - \frac{1}{k} \sum_{k} \mu$
 $\frac{1}{k} \mu + \mu = b_{k+1} \implies \mu = (b_{k+1} - \mu^T E_k)$ $\underline{r} = (r_1 r_2 ... r_k)^T$ as before
+ $E_k \underline{r} \mu = \underline{b} \implies \underline{v} = T_k^{-1}[\underline{b} - E_k \underline{r} \mu] = \underline{x} + \mu E_k \underline{a};$ $T_k \underline{v} + E_k \underline{r} \mu = \underline{b} \implies \underline{v} = T_k^{-1} [\underline{b} - E_k \underline{r} \mu] = \underline{x} + \mu E_k \underline{a}; \underline{a} = -T_k$
 $\underline{r}^T E_k \underline{v} + \mu = b_{k+1} \implies \mu = (b_{k+1} - \underline{r}^T E_k \underline{x}) / (1 + \underline{r}^T \underline{a})$ $\underline{V} + E_k \underline{r} \mu = \underline{b} \implies \underline{v} = T_k^{-1}[\underline{b} - E_k \underline{r} \mu] = \underline{x} + \mu$.
 $T E_k v + \mu = b_{k+1} \implies \mu = (b_{k+1} - r^T E_k x) / (1 + r^T).$ $T_k \underline{v} + E_k \underline{r} \mu = \underline{b} \implies \underline{v} = T_k^{-1} [\underline{b} - E_k \underline{r} \mu] = \underline{x} + \mu E_k \underline{a}; \underline{a} = -T_k^{-1} \underline{r}$ $\int_{k}^{R} \frac{\nu}{k} + E_{k} \frac{r}{\mu} = \underline{b} \implies \underline{v} = T_{k}^{-1} [\underline{b} - E_{k} \underline{r} \mu] = \underline{x} + \mu E_{k}$
 $\int_{R}^{T} E_{k} \underline{v} + \mu = b_{k+1} \implies \mu = (b_{k+1} - \underline{r}^{T} E_{k} \underline{x}) / (1 + \underline{r}^{T} \underline{a})$ L^{k+1} L^{k+1} L^{k-1} L^{k-1} L^{k+1} L^{k+1}
 $\underline{r} = (r_1 r_2 ... r_k)^T$ as before
 $\underline{v} + E_k \underline{r} \mu = \underline{b} \implies \underline{v} = T_k^{-1}[\underline{b} - E_k \underline{r} \mu] = \underline{x} + \mu E_k \underline{a}; \underline{a} = -\mu$ $E_k L \mu = \underline{b} \implies \underline{v} = T_k^{-1} [\underline{b}]$
 $\underline{v} + \mu = b_{k+1} \implies \mu = (b_{k+1})$ as before
⁻¹[b – E, r u] = x + uE, a: a = – T^{-1} r $\underline{r} = (r_1 \ r_2 \ ... \ r_k)^T$ as before
+ $E_k \underline{r} \mu = \underline{b} \implies \underline{v} = T_k^{-1}[\underline{b} - E_k \underline{r} \mu] = \underline{x} + \mu E_k \underline{a}; \underline{a} = -T_k^{-1} \underline{r}$ $E_k L \mu = \underline{b} \implies \underline{v} = T_k^{-1} [\underline{b} - E_k L \mu] = \underline{x} + \mu E_k \underline{a}; \underline{a} =$
 $+\mu = b_{k+1} \implies \mu = (b_{k+1} - \underline{r}^T E_k \underline{x}) / (1 + \underline{r}^T \underline{a})$ $\frac{r}{L} E_k \underline{v} + \mu = b_{k+1} \implies \mu =$
Note: need to solve $T_k \underline{a} = -\underline{r}$ $\frac{r^T E_k \underline{V}}{T} + \mu = b_{k+1} \implies \mu = (b_{k+1} - \underline{r}^T)$

• Note: need to solve $T_k \underline{a} = -\underline{r}$ using Le

- Note: need to solve $T_k \underline{a} = -\underline{r}$ using Levinson-Durbin's algorithm Note: need to solve $T_k \underline{a} = -\underline{r}$ using Levinson-Durbin's algorithm
If you know <u>x</u> and <u>a</u>, computing <u>v</u> and μ requires $O(2k)$ operations μ v_{k+1} \rightarrow μ v_{k+1} \pm μ _{*k*² \rightarrow μ _k² \rightarrow (1+ \pm 2 μ)
 \rightarrow solve $T_k \underline{a} = -\underline{r}$ using Levinson-Durbin's also as $\frac{x}{a}$ and \underline{a} , computing \underline{v} and \underline{u} requires $O(2k)$}
- If you know x and a, computing ν and μ requires $O(2k)$ operations

Sparse Matrix and Iterative Methods

Sparse matrix methods for Symmetric Positive Definite Systems

- Store only non-zero elements (row, column, element value)
- Two classes of methods:
	- $-$ Sparse Cholesky or LDL^T decomposition (intelligent data structures and strategies to minimize fill-in)

Ref:

- 1.I. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods for Sparse Matrices, Oxford Univ. Press, 1986.
- 2.J. A. George and J. W. Liu, Computer Solution of Large Sparse Positive Definite Systems, Prentice-Hall, 1981.
- Iterative methods
	- Gauss-Seidel method with successive overrelaxation: Convergence critically depends on several parameters that are hard to choose
	- Conjugate Gradient (CG) method: Widely used method for sparse PD systems

- Conjugate Gradient method
- Consider the problem of minimizing a quadratic function *f*(*x*)=½ *x ^TAx-b Tx*

where *A* is an $n \times n$ symmetric and *PD* matrix

• The unique solution to this problem is the solution of

 $\nabla f(x) = 0 \Longrightarrow Ax = b$

- An efficient (especially when *A* is sparse such as in a large-scale linear programming problem) way of solving the linear equation is the **conjugate gradient** or the **conjugate direction** method.
- \Box Definition: A set of vectors $\{d_i\}_{i=1}^k$ are *A*-orthogonal or mutually conjugate with respect to *A*, if $\underline{d_i}^T A \underline{d_j} = 0 \forall i \neq j, i = 1, 2, ..., k$ □ Basic idea of conjugate direction method:
	- Given a collection of *n* mutually *A*-conjugate directions, $\{\underline{d}_i\}_{i=1}^n$ conjugate direction method generates the solution of *Ax*=*b* via: $x = \alpha_1 d_1 + \alpha_2 d_2 + \ldots + \alpha_n d_n$ (1)

- **Key**: $\{\alpha_i\}$ are very easy to obtain :
- Multiply (1) by $\underline{d}_i^T A x$ to obtain: $d_i^T A x = \alpha_i d_i^T A d_i$ recalling: $d_i^T A d_j = 0 \ \forall i \neq j$

$$
\Rightarrow \alpha_i = \frac{\underline{d}_i^T \underline{b}}{\underline{d}_i^T \underline{A} \underline{d}_i}
$$

- **Q** : Is there a simple and iterative (i.e., sequential) way of generating $\{d_i\}$?Yes!!
	- *Q*: What if I start at a point $x_i \neq 0$? No problem... only the equations for $\{\alpha_i\}$ will change.
- In order to solve $Ax=b$, this is what we would like to do
	- Start with x_1
	- Compute residual $r_1 = b A x_1 = -\nabla f(x)$

Negative gradient of quadratic function $f(x)$ is the residual

- Let $\underline{d}_1 = \underline{r}_1 \implies \underline{x}_2 = \underline{x}_1 + \alpha_1 \underline{d}_1$
- Compute new residual $r_2 = b A x_2$
- Get $\underline{d}_2 = r_2 + \beta_1 \underline{d}_1 \partial \underline{d}_2$ is *A*-orthogonal to \underline{d}_1 , etc.
- \Box Since our directions are based on residuals (=negative gradients), the method is called Conjugate gradient (CG) method.

 \Box In general, at the *i*th step of CG method, we compute

 \rightarrow residual $r_i = b - Ax_i$

new direction $\underline{d}_i = \underline{r}_i + \beta_{i-1} \underline{d}_{i-1}$

new point $\underline{x}_{i+1} = \underline{x}_i + \alpha_i \underline{d}_i$

 \Box Note: residual r_i can be computed from previous residual r_{i-1}

$$
r_i = \underline{b} - A \underline{x}_i = \underline{b} - A(\underline{x}_{i-1} + \alpha_{i-1} \underline{d}_{i-1})
$$

 \Rightarrow *<u><i>r*_i</u>=</sup> <u>*r*_{i-1}</sub> α _{*i*-1} *A* d _{*i*-1}</u>

 \Box Key: we will see later that Ad_{i-1} comes for free because it is used in computing α_i

 \Box So, need expression for α_i and β_i

•Suppose we are at \underline{x}_i and know the direction \underline{d}_i . What is α_i ? •The best $\alpha = \alpha_i$ must minimize $f(\underline{x})$ along \underline{d}_i starting from \underline{x}_i •To get α_i , consider $f(\underline{x}_i + \alpha \underline{d}_i)$ timal $\alpha \Rightarrow \frac{\partial}{\partial \alpha} \left|_{\alpha = \alpha_i} = 0 \right|$
 $\left[\alpha \underline{d}_i^T A \underline{d}_i + \underline{d}_i^T (A \underline{x}_i - \underline{b}) \right] \Big|_{\alpha = \alpha_i} = 0$ 1 To get α_i , consider $f(\underline{x}_i + \alpha \underline{d}_i)$
 $(\underline{x}_i + \alpha \underline{d}_i) = \frac{1}{2} (\underline{x}_i + \alpha \underline{d}_i)^T A(\underline{x}_i + \alpha \underline{d}_i) - \underline{b}^T (\underline{x}_i + \alpha \underline{d}_i)$ $f(\underline{x}_i + \alpha \underline{d}_i) = \frac{1}{2} (\underline{x}_i + \alpha \underline{d}_i)^T A(\underline{x}_i + \alpha \underline{d}_i)$
Optimal $\alpha \Rightarrow \frac{\partial f(\underline{x} + \alpha \underline{d}_i)}{\partial \alpha} \big|_{\alpha = \alpha_i} = 0$ $\frac{(X_i + \alpha \underline{d}_i)}{T}$
 $\frac{T}{A}$ $\frac{(X + \alpha \underline{d}) - b^T}{T}$ The best $\alpha = \alpha_i$ must minimize $f(\underline{x})$ along \underline{a}_i statum

•To get α_i , consider $f(\underline{x}_i + \alpha \underline{d}_i)$
 $f(\underline{x}_i + \alpha \underline{d}_i) = \frac{1}{2}(\underline{x}_i + \alpha \underline{d}_i)^T A(\underline{x}_i + \alpha \underline{d}_i) - \underline{b}^T(\underline{x}_i + \alpha \underline{d}_i)$ $(\underline{x}_i + \alpha \underline{d}_i)^T$
 f $(\underline{x} + \alpha \underline{d}_i)^T$ $T \, Ad \, + d^T$ $\text{mal } \alpha \Rightarrow \frac{\overline{a_j} \times \underline{b_j}}{\partial \alpha} \big|_{\alpha = \alpha_i} = 0$
 $\frac{d_i^T A \underline{d}_i + \underline{d}_i^T (A \underline{x}_i - \underline{b})}{\big|_{\alpha = \alpha_i} = 0}$ $\frac{\alpha_{d_i}}{\alpha_{i}}\big|_{\alpha=\alpha_i}=0$ α α Optimal $\alpha \Rightarrow \frac{\partial f}{\partial \alpha} \Big|_{\alpha = \alpha_i} = 0$
 $\Rightarrow [\alpha \underline{d}_i^T A \underline{d}_i + \underline{d}_i^T (A \underline{x}_i - \underline{b})] \Big|_{\alpha = \alpha_i} = 0$ $\frac{\partial f(x_i + \alpha \underline{d}_i)^T A(x_i)}{\partial x_i}$ $\begin{aligned} \n\mu = \frac{1}{2} (\underline{x}_i + \alpha \underline{d}_i)^T A(\underline{x}_i + \alpha \underline{d}_i) - \n\Rightarrow \frac{\partial f(\underline{x} + \alpha \underline{d}_i)}{\partial \alpha} \big|_{\alpha = \alpha_i} = 0 \n\end{aligned}$

Conjugare Gradient Method - 4
or,

$$
\alpha_i = \frac{d_i^T r_i}{d_i^T A d_i}
$$

 \Rightarrow The **residual** at the current point, the current **direction** and, of course, the *A* matrix are all that are needed in computing α_i . \Box Consider the derivative of $f(\underline{x} + \alpha \underline{d}_i)$ at $\alpha = \alpha_i$. This is: \Rightarrow The current direction <u> d_i </u> is orthogonal to the *next* residual r_{i+1} \Rightarrow Note, however, that the direction <u> d_i </u> is a linear combination of r_i and \underline{d}_{i-1} (we will formally show this below). \Rightarrow \underline{r}_{i+1} is orthogonal to \underline{r}_i and \underline{d}_{i-1} <u>as well</u> \Box So, we have the important CG relations r the derivative of $f(\underline{x} + \alpha \underline{d}_i)$
 $\nabla f^T(\underline{x} + \alpha_i \underline{d}_i) \underline{d}_i = -\underline{r}_{i+1}^T \underline{d}_i = 0$

$$
\underline{r}_{i+1}^T \underline{d}_i = 0
$$

$$
\underline{r}_{i+1}^T \underline{r}_i = 0
$$

$$
\underline{r}_{i+1}^T \underline{d}_{i-1} = 0
$$

 Key: The residuals in a conjugate gradient method are mutually orthogonal. We will see later (in lecture 11) that they are parallel to the so called Lanczos vectors

- To further simplify the equation for α_i , let us consider $d_i = r_i + \beta_{i-1} d_{i-1}$
- Taking the inner product with r_i , we get $r_i^T d_i = r_i^T r_i + \beta_{i-1} r_i^T d_{i-1} = r_i^T r_i$
- So, we have our final equation for α_i : $\overline{0}$

$$
\alpha_i = \frac{\underline{r_i}^T \underline{r_i}}{\underline{d_i}^T \underline{A} \underline{d_i}}
$$

Proof of direction update equation: $\underline{d}_i = \underline{r}_i + \beta_{i-1} \underline{d}_{i-1}$

At step *i*, we have \underline{x}_i and \underline{r}_i . What we want to do is this. We seek \underline{x}_{i+1} such that it is a minimum point not merely in the negative gradient direction r_i , but in a plane passing through \underline{x}_i and spanned by \underline{r}_i and \underline{d}_{i-1} . (It turns out that we are effectively minimizing in a subspace spanned by \underline{r}_i and $\{\underline{d}_j\}_{j=1}^{i-1}$ as Proof of direction up
At step *i*, we have \underline{x}_i and
that it is a minimum poin
but in a plane passing th
we are effectively minim
well) 1 $\{\underline{d}_{j}\}_{j=1}^{i-1}$ =

i i

$$
\beta_{_{i-1}} = \frac{\underline{r_i}^T \underline{r_i}}{\underline{r_{i-1}}^T \underline{r_{i-1}}}
$$

,,,,,,

Ų $\overline{}$ $\overline{}$ Ļ L. T

Pre-conditioned CG - 1

- Each iteration requires a matrix-vector multiplication +10*n* operations
	- Exploit sparsity in computing *w*=*A d*
- Need just four vectors for *x*, *r*, *d*, and *w*
- Convergence is faster if $k(A)$ is small ... see Luenberger (1984) 2 *k* .. see Luenberger (1)
 $\left(\frac{\sqrt{k(A)}-1}{\sqrt{k(A)}}\right)^{2k}$

Convergence is faster if
$$
k(A)
$$
 is small ... see Luenberger (1
\n
$$
\frac{(x - x_k)^T Q (x - x_k) \le 4(x - x_0)^T Q (x - x_0)}{\sqrt{k(A) - 1}}^2
$$
\n
$$
k(A) \approx 1 \Rightarrow \text{convergence is faster.}
$$

- *Q* : can we make $k(A) \approx 1 \Rightarrow$ pre-conditioned conjugate gradient method.
	- Pre-conditioned conjugate gradient (PCG) method
		- Consider

Ax=*b*

• Instead of solving $A \underline{x} = \underline{b}$, we solve

$$
L^1A\underline{x}=L^1\underline{b}
$$

 $\tilde{A}\tilde{x} = \tilde{b}$

where *L* is an approximation to the square-root of *A.*

$$
\Rightarrow L^{-1}A(L^{-1})^T L^T \underline{x} = L^{-1} \underline{b}
$$

or

Pre-conditioned CG - 2

where $\tilde{A} = (L^{-1}AL^{-1})^T$ $\tilde{b} = L^{-1}b$ $\tilde{\chi} = L^T \chi$

- So, if *L* is close to the square-root *S* of *A*, then $\tilde{A} = L^{-1}SS^{T}(L^{-1})^{T} \approx I \Rightarrow k(\tilde{A}) \approx 1$ So, if *L* is close to the square-roo $\tilde{A} = L^1 S S^T (L^1)^T \approx I \Rightarrow k(\tilde{A}) \approx 1$
- \Rightarrow Fast convergence
- Q1: How to obtain *L* without actually doing complete Cholesky decomposition? … Incomplete Cholesky decomposition
- Q2: How to solve the modified system of equations?
- \Box We will take up equation 2 first. It turns out that the preconditioner has "local" effect in the sense that it always appears as $M^{-1}=(L^{-1})^T L^{-1}$ in computing inner products related to the computation of β and α
	- See Golub and Van Loan, 1989

PCG Algorithm - 1

- Preconditioned CG algorithm:
	- "Given a PD matrix A , \underline{b} , a pre-conditioner L , a tolerance parameter ε and maximum no. of iterations, i_{max} , the following algorithm solves $Ax=b$."

i=1

Solve $L \underline{y} = \underline{b}$ Solve $L^T \underline{x} = \underline{y}$

 $r_{\text{new}}=b-Ax$ Ω

=*b*-*Ax* … initial residual Computes initial point. If $L L^T\approx A$, we have a good starting solution

$$
P^{-||L_{new}||_2}
$$
\nc=||b||₂
\nDO while $\rho > c \in \text{ or } i \le i_{\text{max}}$
\nsolve $L\underline{y} = r_{\text{new}}$
\nsolve $L^T \underline{z}_{\text{new}} = \underline{y}$
\n
$$
\gamma_{\text{new}} = z^T_{\text{new}} r_{\text{new}}
$$
\nIf $i=1$
\n $d = z_{\text{new}}$

else

PCG Algorithm - 2

 $\beta = \gamma_{\text{new}}/\gamma_{\text{old}}$ $\underline{d} = \underline{z}_{\text{new}} + \beta \underline{d}$ $\alpha = \gamma_{\text{new}}/d^T y$ $x=x+\alpha d$ $\gamma_{old} = \gamma_{new}$ \mathcal{Z}_{old} = \mathcal{Z}_{new} $r_{\text{old}}=r_{\text{new}}$ $r_{\text{new}} = r_{\text{new}} - \alpha y$ $i=i+1$

end DO

- Incomplete Cholesky decomposition to obtain *L*
	- Fact: even if *A* is sparse, its "true" Cholesky factor *S* need not be!! This is called "fill-in"
	- So, what incomplete Cholesky decomposition does is to set: $l_{ij} = 0$ if $a_{ij} = 0$
	- We can do this with a slightly altered version of Cholesky, where *L* overwrites *A*.

 \Box Preconditioning has dramatic effect on convergence of the solution to *Ax*=*b* using the conjugate gradient method.

Summary

- Why do we need decomposition methods for *PD* matrices?
- Cholesky decomposition
- *LDL^T* decomposition
- □ A special *PD* matrix : Toeplitz System of Equations
	- Application to system identification
	- Levinson- Durbin algorithm
	- Generalized Levinson algorithm
- □ Conjugate gradient(CG) and pre-conditioned CG methods for sparse positive definite systems