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O Why do we need decomposition methods for PD matrices?
O Cholesky decomposition
O LDLT decomposition
O Aspecial PD matrix : Toeplitz System of Equations
 Application to system identification
 Levinson- Durbin algorithm
» Generalized Levinson algorithm

O Conjugate gradient(CG) and pre-conditioned CG methods for sparse
positive definite systems

o

d
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O Inthe last lecture, we discussed how a non-singular n X n matrix A
can be decomposed into a product of unit lower A matrix and an
upper A matrix.

 PA=LU (P is a permutation matrix )
PAX=Pb=b

* solve
— LUx=b

d An important special case is when A=AT and A is PD

= A(A)>0and x"Ax>0

o d

e |

O Fact: “ If A is symmetric PD, then there exist a lower A matrix, S 4
with positive diagonal entries such that A=SS™ :

a
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@ (I Cholesky Decomposition I

S11 O 0 " O O Sll SZl " Skl ' Snl a11 alZ ' a1k ' a1n

21 SZZ O S21 S22 Sn2 a12 a22 a'2n

Skl Skk O Skk Snk Skk Snk
S, S, -« Sy -« Sl - o« o . s, |l&a &, . . . a,

s. >0 S iscalled CHOLESKY A

« A=SSTis called CHOLESKY DECOMPOSITION (or) SQUARE
ROOT DECOMPOSITION

o d
« Note: since A Is symmetric, need to store only the upper (or lower) A fa'a
portion only 14

o

d
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Wihy do we need such decompositions?

Why do we need such a decomposition ?

To test positive definiteness of a symmetric matrix (this will become
apparent from the decomposition algorithm)

Square root updates of covariance matrices in least squares estimation
and Kalman filtering.

 Recall update and propagate equations of Kalman Filtering.
« Measurement update:

Pk|k - [I _GkH]Pk|k—1
P H (R+HP, H")"HP

Kk-1 k-1

* Propagate:
Pk+1|k - CI)P|<||<—1CDT + EWd ET
» Update eqgn. often results in (P;;),<0 especially when |[W|| is small
and / or ||R|| 1s small
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: Square root decomposition & w(P)

 One solution: Joseph’s form, but requires double the computational
load of ordinary update equation

Pk|k :(I _GkH)quk—l(I _GkH)T +GkRGkT

« Second solution: recursive square-root update (Lecture 8)
propagate /p —P =SS

klk klk

« Why does second solution work?
— Py« 1s PD If S Is non-singular

B || I:)k|k ||2:ﬂ’max(|3k|k); || Sk ||2: /’i’max(SkSI;r) :\é/’i'max(l:)ldk)

= S, 1=l Py |,
A (P A (P
_ SO, K(Pk|k): max( k|k); K(Sk)I max( k|k)
ﬂ’min (Pk|k) ﬁmin (Pk|k)
x(P,) =10° = x(S,) =10°
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oYe Unconstrained Minimization - 1

S0, square root propagation reduces the condition number

[ N N N NS .

— Can get greater precision with the same computer , or
equivalently

— Can get the same precision with a smaller word length computer
... critical in applications with space and weight problems

3) Unconstrained and constrained minimization
« X" is arelative local minimum of f(x) = Vf(x)>0
« X" is a strict relative local minimum of f(x) = V4f(x)>0

 Recall modified Newton’s method V%f(x) d, = - Vf(x)
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Unconstrained Minimization - 2

Xy =X + oy =argmin[ f (x +ad,)]
V(% +ad)d =0

f(x +ad)~ f(x)+a Vi (x)d,
Vi'(x)d, <0

=V (X)IV T (X )] VI (%) <0

= V*f(x) must be PD

b 4 4 4 U

* Cholesky’s method will provide a method for testing PD of Vf(x)

and also to make it PD when it is not by adding ¢l to V2f(x)
4) Quasi-Newton methods

X1 = X T d,
d, =-D,Vf(x), where D, is PD

Copyright ©2008 by K. Pattipati




@ Unconstrained Minimization - 3

- Jalarge class of Quasi-Newton methods. But, we restrict ourselves
to the so-called Broyden-Fletcher-Goldfard-Shanno (BFGS) class:

[ N N N NS .

Ek :Zk+l_xk

qk — Vi(zkﬂ) o Vi(lk)

' D,g,q D
Dy, =D+ Eigk - kgkgk : WA
O P 9 Dy
1
\—/k — Ek T Dqu
Tk
_ G D, 9
‘ plﬂk
0<g, <1
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Example of Cholesky Decomposition

Davidon-Fletcher-Powell (DFP) = (=0

BFGS = (=1
Propagate ﬁ to avoid round-off error problems.
Notice rank two (or three) corrections to go from D, — D,

O Example of Cholesky decomposition

A:{Z _2};5={ﬁ O}:AzSST

-2 5 _\/5 \/§
1 O 2 0
« Also note that we can write S ={ } \/_
-1 1]l 0 3

— A=SS" = LDL where S = LD

 As with LU decomposition, we evaluate S one column at a time

Copyright ©2008 by K. Pattipati ‘ . . ‘ ‘
L LR LR



[ N N N NS .

11

¥ | Cholesky : Set Up |

« Consider the situation at the ki column of S (assume done up to
column k-1)
— for i >k, we have

K k-1
aik = Z SimSkm — Z Simskm + Skk Sik
m=1 m=1

— Rearranging this equation, we obtain
1 P
2
Su = (akk _Zskmj
m=1

s, =(a, —Zsimskm)/skk; fori=k+1,...,n

« Compute S one column at a time

« Can also compute S one row at a time (see problem set #5) a4
- Overwrite a; with s;;; i > j (in place computation) : :

o

d
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Q7 Cholesky Decomposition Algorithm
o
: O Algorithm Cholesky: Column Version
a fork=1,2,....,n Do
p -
" a, =(a, —Zafm)l/z « No pivoting is needed if A is PD
_ " « Accumulate sums in DP
fort=k+1,...,n Do « Use of algorithm to test PD of A :
k-1 _H#\1/2 i
aik:(aik_zaimakm)/akk If (-#)Y2= AlisnotPD !l
End Do(i)
End Do(k);

« Computational load : n square roots plus
D k(n—k) multiplies

n‘(n+1) n@2n+1)(n+1) _Nn(n+1(n-1)
2 6

~O(n'/6) z% of LU

k
e s, < Zsim <a, =S, <a, = elements are bounded
m=1
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s (I Pivoting l

O Pivoting for positive semi-definite matrices:

At step k, find the biggest a, —Zsﬁ, | =

Pre- and post-multiply A by permutatlon matrix

Why? ... because we need to preserve symmetry of A

Also recall that the permutation matrix is Symmetric

= permute S by permutation matrix B where r, is the row with the
biggest element in the previous step.

That is, A= PSSP’ =SS”
« So, we actually find an SST factorization of PAP

o d
« (Good to pivot, since can find a reduced rank square-root matrix a2
S=nXr ey

o

d
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o5 (I LDLT Decomposition - 1 I

O Problem with Cholesky
 Need to compute square roots
 Square roots are more expensive than multiplications and divisions
(= a factor of 2).

[ N N N NS .

O LDLT Factorization
« A=LDLT is similar to Cholesky decomposition, but avoids square
root evaluations. d,>0; [;;=1

(1 0 . 0ffd o . offr 1, .. I ] la a . a |
, 1 . 040 d, . OO0 2 . I, |a &, . &,
M 1, .10 0 . djo0 o0 . 1] |a a, . a,)] 13

o

d
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(I LDLT Decomposition - 2 I

« Fori>k, we have

a —lem 1 =d =a —Zlkm 1 _sincel, =1

- Therefore
I - (alk _lem m km)/d

d Comments:
* Thetermdl,,, Is independent of i

* Overwrite a; with I, and a,, with d, = no need for extra storage
 Requires O(n3/6) operations

o

d
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- | LDLTAlgorithm |

d Algorithm for LDLT factorization

Fork=12,...,n Do

Form=12,...k—-1Do
r=a a_ .recalla =d ,a =l
a, «<a, —ar

end Do(m)

If a, <0 then
quit ..A'isnot PD

else

fori=k+1k+2,..,n Do

km

k-1
a, «(a,—> ar)la, .recalla, =d;a, =Ia, =lattheend.
m=1

End
Endif
End

kL
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(I Toeplitz System of Equations I

O Application to System ldentification: Toeplitz system of Equations
« What is the System Identification problem?
“ Given the mput and output sequences, determine the transfer function
relating the input and output.”
 Restricted problem:
— Suppose that the input is a white noise sequence {w(k)} and output
sequence {y(k)} is related to input via the autoregressive relation:

)+ ay(k—i) = gw(k)

— w(k)~ zero mean white noise process with unit variance
— Problem:" Given {y(k)} sequence, finda, 1=12,....,nand g

such that J = E{e*(k)}

= E{[y(k) +Zn:éi y(k —1)I’} is @ minimum" E E

o

d
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@J—| Minimization of Cost Function l

— e(k) is called the prediction error, [y(k) —y(k /k —=1)].

— S0, want to minimize mean-squared error prediction of y(k) from
its past data {y(k-n), y(k-n-1),..., y(k-1)}

— This is a Parameter Identification (estimation)problem

« The necessary conditions of optimality yield:
0J

5 =0 = E{[y(k)+Za y(k=Dly(k—-1}=0;]=1,
— e(k) Is orthogonal to y(k ) Vij=12,.
— J =E[y(k)e(k)]=
« Expanding the necessary conditions of optimality, we obtain:

2.8,(i=1)=—¢,(i); j=L.m

[ N N N NS .

where ¢, () —1) = E{y(k—1)y(k — })}=E{y()) y()} 4
due to stationarity which is due to linear time-invariance assumption of |3 °
the stochastic system T

o

d
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@J—| Toeplitz System of Equations l

* In matrix form, the necessary conditions are given by:

40 40 . g0-D|a] [4O]
6,0 4,0 . 4{0-2)|4 ?,(2)

[ N N N NS .

4,(0-D) 4,0-2) .. 40 |&] [4M]
O The objective function is:

J=E{y(kek)}= ¢,0)+ _Zn:éiqby(i) =¢,(0)-a'®,a=g
] premultiply by Diag [¢_y (O_)]‘1

1 r rn . r,|lq I
r?l. 1 rzl. ' rn—2 éZ r2 ¢()
|
. _ . . _ y - - -
b L 1 . r.fl:|=-]:|iK= correlation coefficient |,
y o

19 Copyright ©2008 by K. Pattipati



@ Properties of Toeplitz Matrix

Tné =—r

These are called Yule-Walker equations

Toeplitz matrix:

« Symmetric matrix specified by n elements (including RHS).
« RHS has a special form

« This enables us to solve this problem in O(n?) operations

O Key properties of Toeplitz:

* T,Is persymmetric = T,=E T, E, E~ Exchange Matrix

[ N N N NS .

DO

0 0 1]
E'=E;E°=I;E=|0 1 O

1 0 0]
« T.1lisalso persymmetric 4
. . .- . . . . e |
O Physical meaning: The statistical properties of a stationary time series g
are not modified by reversing time (time-reversibility property) d :
a
20 Copyright ©2008 by K. Pattipati ‘ . . ‘ ‘ ‘
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@%Soluti«m of Toeplitz Equations - 1|

O We will solve T, x = b as a solution of two subproblems.
 Subproblem 1:solve T,a=-(r;r,..... )"
(Levinson-Durbin’s Algorithm)
 Subproblem 2: use the solution of 1 to solve T, x =b (b is general)
(Generalized Levinson’s algorithm)

O Subproblem 1:
« Suppose have solved T,a =-r=>a=-T'r
* Note that a iIs of dimension k

« What we are looking for is a recursive way of building up a from
dimension 1 to n.

rO I?L r2 " rk -1 al r1
I?L IFO r1 " IPk -2 a'2 I"2

Copyright ©2008 by K. Pattipati



@%Soluti«m of Toeplitz Equations - 2|

Z r
« Can we solve Tk+{ } = { } using a”?
(04

rk +1

[ N N N NS .

— Can we get next a?
* Recursion k — k+1

Eani M

where E, ~ k by k exchange matrix

« Given a, we can solve this problem in O(k) flops. How?
T.z+ Eira=-r

=z=-T'r—aTl, 'Er

*  Toeplitz is per symmetric = T, 'E, =E, T, a3
o
=lz=a+aEa=(1+aE)a=z =38 +aa,,, 2%

o

d
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Y J—|Soluti0n of Toeplitz Equations - 3|

« Insignal processing,
a IS termed the reflection coefficient
{a;} = forward filter coefficients
{a,.1;} = backward filter coefficients
= next forward filter coefficients = weighted sum of previous
forward and backward filter coefficients
e Next, a=—r,—r'Ez=—(r,, +r' Ea+ar'a)

[ N N N NS .

= a=—(r,+r'Ea)/(l+r'a)

= 1-r'T.'r>0

1+r'a>0. This is true because T, , is PD and

| Eal[ T Er]|1 Ea] [T, 0
0 | r'E, 1 Jl0 1 | |0 1+r'a

T. isPD = A'T, ,AisPD, if A is nonsingular

Copyright ©2008 by K. Pattipati




Jes (I Simplification I

d Check:

I o[ T, Er]1 Eal T, Er 1[I Ea
aE, 1| |r'E. 1 ||[0 1| |a'ET.+r'E 1+rfall0 1

_ T, T Ea+E-~r B T, 0
|a'ET+r'E,  1+r'a | [0 1+r'a

since T,E,a+E, r =0 (recall a=T,"'r and persymmetry of T )

[ N N N NS .

O Major Simplification;

(k-1) (k-1)
a" “+a, . E .,a
N
a4
=1+ L(k_l) g(k_l) + ak—1£(k_1) Ek—lg(k_l) +a,h = :Bk—l + ak_l[L(k_l) Ek_lg(k_l) + I’k]
I |
T ] d'd
But, 3 ., ,=—t —r“PE_ a%“? ..recall equation for « .
o

== | B = (1_ak2—1)ﬂk—1

o

d
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@ Levisnon — Durbin Algorithm - 1

O Levinson-Durbin’s Problem (subproblem 1)
* "Givenr r...r, p=1T=[r,_;] such that |r, [<1 Vi
and T is PD, solve Ta=—(F, r,....r,)"

Q =-0

p=1

a=-r,

Fork=12,....n-1Do

p(1-a*)p

k
a=—(f.,+ Z hai®) 1
i-1

Fori=12,....k Do
Z, < a +aa,, ;. (Note: can't set a «— a here because

of the exchange matrix E)

25 Copyright ©2008 by K. Pattipati
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@ Levisnon — Durbin Algorithm - 2

End Do(i)
a <z 1=12..k
a.,=a
End Do(k)
p <« pl-a’)
J=p4,00)=¢
« Total Flop count over n steps = O(n?) operations

 Reference:
Durbin, “ The Fitting of time series models”, Rev. Inst. Int. Statistics,

28, pp. 233-243, 1960 or any Standard book on statistical signal
processing (e.g., L. Scharf, Addison — Wesley, 1991).

o

d
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@J—| Example of Toeplitz Equations l

Example 1: Solve

{ 1 O.S}P} _ {—0.5} o ﬂ{ 1 —0.5}{—0.5} _ {—8/15}
05 1 |4 02| ~— 3|-05 1 ||-0.2 1/15
a =-05 =1 a=-05

k=1= f=0.75 «=—(0.2-0.25)(4/3) =0.067 =1/15

z =a +aa =-0.51+0.067)=-8/15

a,=a=1/15

A —-8/15
:solutionéz{al}z{ } ;J:1+alrl+ar=@=g2

a 1/15

[ N N N NS .

2
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15| Forward — Backward Filter Interpretation - 1
a
: O Another way of looking at Levinson- Durbin problem:
o « Recall
L _
. ]
CDnQ:— ¢.2 :_?
8
4,0)+¢'a=1
. S0,
9,0 40 . 40 [J]
4,0 ¢,0) . 40-D|[1] |40 ¢ |[1] |O
: : : al | ¢ o, |a] |:
4, 4,00-1) . 40 | 0
- Initially, let J = ¢, (0) = zeroth order prediction (k = 0)
28  Copyright ©2008 by K. Pattipati LR
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s~ |

o
d
o
o
]
: If kK =n, we are done.
W . Want to find:
- 4,00 4,0 #,(k+1) |
9,1  ¢,(0) ¢, (k)
g, (k+D) 4,(K) . 4,0)
1 - J
1] 0
[(D:ﬂ ¢k+1] g(") _ 0
AIC ry
_7k+1
29 Copyright ©2008 by K. Pattipati
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1
5 (kD) =

- Instead, consider two alternative versions of the equations:

. Atk™ step, suppose have a" =(a,,...,a,) and have J, .

4,(0) H{

?kﬂ k+1

2

T 0
?, (0) ?k+1 Ea® |=
Qkﬂ Py _1

where y,., =4, (k+1)+ Equﬁy (k +1-i)a®]

1

g(|<+1)

ki

0
0

Jy

}:

Y2 Forward — Backward Filter Interpretation - 2



i

1Ye# | Forward — Backward Filter Interpretation - 3
. AR
: - Key: |:a(k+1):|: a" |+o,, | Ea¥
: - | 0 | 1
_‘Jk_ak+17/k+l— _‘]k+1_
40 4. 17 0 _| 0
?kﬂ (Dk+1 {g(kﬂ)}_ : ) :
ady Y| L0

SO,
Pick o, ., =7,.,/J,.. called reflection coefficient
= J,.. = . [1-a’,] ~ B of Durbin's Algorithm

n
O Estimates 4 =a™ are > roots of (1+>_4z™") are inside the unit
i=1

circle, if the reflection coefficients |¢, |<1fork =1,2,...,n.
Guranteed if Toeplitz matrix is PD.

30 Copyright ©2008 by K. Pattipati ‘ . . ‘ ‘
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Y. #Forward — Backward Filter Interpretation - 4

Moving-average whitening filter Interpretation of Levinson-Durbin algorithm
k _ . -1
A(z)=1+> alz" (Forward Filter) A2)=AL@)+az B.(2)
= . B, (2) = Z_lBk—1(Z) +o, A 4(2)
B (z)=2z"+) ak 27" =z"A(z") (Backward Filter)
i=1

can show (look at z. =a. + aa, ,,_; of Levinson -Durbin)

A(2)=1 A(2) A (2) _AQ@)
............ .
z] N > > 5
BO(Z) =,1 Bl,(Z) Z_1 Bn—l(z) Z_1 Bn (Z)
«d o
Moving Average Lattice Filter: A (2){y(k)}= §{w(k)} : :

o

d
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@J—| Toeplitz with General RHS I

O Generalized Levinson-Durbin’s Problem (subproblem 2):
« What if the RHS is arbitrary b
- Suppose have solved T, x" =b"™ =(b, b, ... )’
- For simplicity, write T, x=Db

vi_| b T Erjvi | b
Want to solve T, ,, = = ; =
H D, re. 1 ju D,

r=(rr,..r)" asbefore
v=T,'[b-Eru]l=x+uEaa=-T'r

=
vtu=b,= u=@0,- r'gx)/l+r'a

- Note: need to solve T, a = —r using Levinson-Durbin's algorithm

- If you know x and a, computing v and x requires O(2k) operations

o

d
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@J—| Generalized Levinson — Durbin I

O Keyldea:tosolve T x=b

1) solve T,x® =b™ =(b, b, ...b)" O(n?) C_an be done
, In parallel
2) solve T.a=-r O(") ] Flop count O(2n?)

. "Givenr, ,.,r,, [, =1T =[r_Jsuchthat|r |<1Vi % =X +ua.  ;;1=12..kK

and T is PD, solve T x =b." X4 = M
a =-1 iIf k <n-1then
X =D k
p=1 a :_(rk+1+zriak+1—i)/ﬂ
i=1
@="h z «—a+aa,, ;i=12..KkK
fork=12,...,n-1Do 15 y
L — 7 1=
p«—1-a®)p A B a'a
k ak+1 = d'Jd
ﬂ:(bkﬂ_;rixkﬂ—i)/ﬁ End if %

End Do(k)

o

d

Copyright ©2008 by K. Pattipati ‘ . . ‘ ‘ ‘
LR LR



&

Sparse Matrix and Iterative Methods

O Sparse matrix methods for Symmetric Positive Definite Systems
« Store only non-zero elements (row, column, element value)
» Two classes of methods:
— Sparse Cholesky or LDLT decomposition (intelligent data
structures and strategies to minimize fill-in)
Ref:
1.1. S. Duff, A. M. Erisman, and J. K. Reid, Direct Methods
for Sparse Matrices, Oxford Univ. Press, 1986.
2.J. A. George and J. W. Liu, Computer Solution of Large
Sparse Positive Definite Systems, Prentice-Hall, 1981.
— Iterative methods
= Gauss-Seidel method with successive overrelaxation:
Convergence critically depends on several parameters
that are hard to choose
= Conjugate Gradient (CG) method: Widely used method
for sparse PD systems

[ N N N NS .
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@ ' rCcmjlugar-e Gradient Method - 1

O Conjugate Gradient method
 Consider the problem of minimizing a quadratic function
f(x)="2 X"Ax-b'X
where A is an n x n symmetric and PD matrix
 The unique solution to this problem is the solution of

Vi(x)=0= Ax=Db

» An efficient (especially when A is sparse such as in a large-scale
linear programming problem) way of solving the linear equation
IS the conjugate gradient or the conjugate direction method.

[ N N N NS .

QO Definition: A set of vectors{d. }, are A-orthogonal or mutually
conjugate with respect to A, if d,'A d;=0Vi#j, i=1, 2, ..., k
L Basic idea of conjugate direction method:

- Given a collection of n mutually A-conjugate directions,{d. }_, 14
conjugate direction method generates the solution of Ax=b via: "
x=a,d;+ a,d,+...+ a.d, (1) 43

o

d
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oYes - (I Conjugare Gradient Method - 2|

« Key: {o,} are very easy to obtain :
« Multiply (1) by d."Ax to obtain: d'b

dTAx= oy dAd, recalling: dTAD=0V i [T % T gTad

O Q: Isthere asimple and iterative (i.e., sequential) way of generating{d;}?Yes!!

Q: What if | start at a point x;#0? No problem... only the equations for {a, }
will change.

 In order to solve Ax=b, this is what we would like to do
« Start with x,

Compute residual r;=b-Ax,=- Vf(x)
Negative gradient of quadratic function f(x) is the residual

Let d;=r; =X,=X;toud,
Compute new residual r,=b-Ax,

Get d,=r,+p,d,3d, is A-orthogonal to d, , etc.

O Since our directions are based on residuals (=negative gradients), the method is 4 4
called Conjugate gradient (CG) method.

o

d
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(I Conjugare Gradient Method - 3|
O Ingeneral, at the i*" step of CG method, we compute

—> residual r;=b-Ax;
new direction d; = r;+f;.1d;4
new point X;,,=x;+o;d
O Note: residual r; can be computed from previous residual r; ,
ri=0-A X;=b-A(X;.1 +a;.1d;4)
=I= I 0 Adig
d  Key: we will see later that Ad, , comes for free because it Is used In
computing ¢
O So, need expression for ¢; and S,
*Suppose we are at x; and know the direction d;. What is o;?
*The best a=a,; must minimize f(x) along d; starting from x;
*To get o, consider f(x;+oad;)
f(x +ad)=1(x +ad) A(x +ad)-b'(x +ad)

«d o
Optimal o = ot(x+ad) oo =0 : :
a a

= [ad A, +d (A% ~b)],., =0

o

d
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or, d'r

—l —

a.
T dAd

[ N N N NS .

—=The residual at the current point, the current direction and, of
course, the A matrix are all that are needed in computing o
O Consider the derivative of f(x+ ad;) at o= o;. This is:
V' (x+ad)d, =-r'd =0
=The current direction d; is orthogonal to the next residual r;,,
—Note, however, that the direction d. is a linear combination of r,
and d; ; (we will formally show this below).
= I;,, IS orthogonal to r; and d; ; as well
U So, we have the important CG relations

o

d
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Yes (Canjugare Gradient Method - 5

O Key: The residuals In a conjugate gradient method are mutually
orthogonal. We will see later (in lecture 11) that they are parallel to the so
called Lanczos vectors
* To further simplify the equation for o, let us consider
di=ri+P;1di4
» Taking the inner product with r;, we get
L= BT =0T

[ N N N NS .

* So, we have our final equation for o;:
r'r

d'Ad
4 Proof of direction update equation: d; = ri+f;1d;,
At step I, we have x; and r;. What we want to do is this. We seek x;,; such
that it is a minimum point not merely in the negative gradient direction r;,

we are effectively minimizing in a subspace spanned by r, and {d } as
well)

30 Copyright ©2008 by K. Pattipati ‘ . . ‘ ‘
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but in a plane passing through x; and spanned by r; and d; ;. (It turns out that |~ -

o 'd



@ ' (Cﬁnjugare Gradient Method - 6

Want to find ;> d;"Ad, ;=0
Using the A- orthogonality condition
B - —r"Ad_,

Using the fact that

_|1:_(r_r )

and that rTrI =0, we have
r'r r'r

@A)

(from the ¢, equation)

So, we have the final equation for B, ;as

[ N N N NS .

—1—-1

Vi)

Lr

p=

T

L.L,
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¥ [ cG Algorithm

See Luenberger
(1984)

d
d
: Q  All residuals r; are orthogonal = r;'r;=0 Vi#]
a O All directions d; are A-orthogonal = giTAgJ:O Vi#]
. Q CG Algorithm:
: “Given a PD matrix A, b and a tolerance parameter, <, and maximum number of iterations
I the following algorithm solves Ax=b.”
i=1
X=X, ... Initial point
r=b-Ax ... Initial residual
p=|Ir|l,? ... square of norm of residual
c=||b]|,2 ... norm of b
d=r
DO while \[p >ce ori<i_
w=Ad
o=p/dw ... step length
x=x+od ... new point
r=r- ow ... new residual
B=Irll2 /p
d=r+ pd ...new direction
p=|Irl[,? ... square of norm of residual
32 Copyright ©2008 by K. Pattipati
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DO D%

(I Pre-conditioned CG - 1 I

Each iteration requires a matrix-vector multiplication +10n operations
 Exploit sparsity in computing w=A d

Need just four vectors for x, r, d, and w

Convergence is faster if k(A) is small ... see Luenberger (1984)

(X=x)" Q(x-x) s4(><—z<o)TQ(x—z<o)( k(A _1J

: k(A) +1
k(A)~1 = convergence is faster.

Q : can we make k(A)~1 = pre-conditioned conjugate gradient method.
O Pre-conditioned conjugate gradient (PCG) method
« Consider
Ax=b
* Instead of solving Ax=Db, we solve
L-tAx=L"b
where L is an approximation to the square-root of A. -
=LIALYHL™x=L"1b a2
or ~ ~ o d
X=Db al

Copyright ©2008 by K. Pattipati
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&

| Pre-conditioned CG - 2 |

(L*ALY)

T

where i

Il
—

X

b=L"b

* So, if L is close to the square-root S of A, then
A=L"SS"(LY) ~ 1 =k(A) =1

= Fast convergence

O 1>

0  Q1: How to obtain L without actually doing complete Cholesky
decomposition? ... Incomplete Cholesky decomposition

0 Q2: How to solve the modified system of equations?

O We will take up equation 2 first. It turns out that the preconditioner has
“local” effect in the sense that it always appears as M1=(L1)L1 in
computing inner products related to the computation of 3 and o

e See Golub and Van Loan, 1989

kL
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Ve (I PCG Algorithm - 1 I

O Preconditioned CG algorithm:

« “Given a PD matrix A, b, a pre-conditioner L, a tolerance parameter
g and maximum no. of iterations, i_.,, the following algorithm
solves Ax=b.”

=1

Solve L y=b } Computes initial point. If L LT™=A, we

Solve LT x=y have a good starting solution

o =D-AX ... initial residual

P=IIFnewl 2

c=(lo|,

DO while p>ce or i<i,,

solve Ly=r,.,,

solve L'z..,,=Y

Ynew:ZTneWInew d'Jd

If1=1 a4
d:me

- o o
else

o

d
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Yes ™ (I PCG Algorithm - 2 I

B _Ynewl Yold

—_ —new+ Bd
end if

y=Ad
OL:'Ynew/ QTY
x=x+ ad
Yold™ Ynew
Zolg=Znew
Foig=Thew

rnew r
I=i+1

end DO
O Incomplete Cholesky decomposition to obtain L

* Fact: even if A is sparse, its “true”” Cholesky factor S need not be!! This is
called “fill-in”

—new" y

* So, what incomplete Cholesky decomposition does is to set: 4 4
l;=0ifa;=0 D
» We can do this with a slightly altered version of Cholesky, where L 2%

overwrites A.

o

d
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— Incomplete Cholesky Algorithm

O Algorithm Incomplete Cholesky
Fork=1,2,...,n, DO
a, =\a,
Fori=k+1, ...,n DO
If 8,0
=
end if
end
For j=k+1, ..., n DO
Fori=j, ..., nDO
I a;0
aj=a;; — Qi Ay
end if
end DO (i)
end DO (j)
end DO (k)

FlR OO L.

kL

L Preconditioning has dramatic effect on convergence of the solution to
Ax=Db using the conjugate gradient method.
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@ | (l Summary |

O Why do we need decomposition methods for PD matrices?
O Cholesky decomposition
O LDLT decomposition
O Aspecial PD matrix : Toeplitz System of Equations
 Application to system identification
 Levinson- Durbin algorithm
» Generalized Levinson algorithm

O Conjugate gradient(CG) and pre-conditioned CG methods for sparse
positive definite systems

o

d
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