Lecture 5: Decomposition Methods for
Positive Definite (PD) Matrices

Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering University of Connecticut

Contact: krishna@engr.uconn.edu (860) 486-2890

Fall 2008

September 24, 2008

ECE 6435 Adv Numerical Methods in Sci Comp

Copyright ©2008 by K. Pattipati

- Why do we need decomposition methods for *PD* matrices?
- Cholesky decomposition
- $\Box LDL^T$ decomposition
- A special *PD* matrix : Toeplitz System of Equations
 - Application to system identification
 - Levinson- Durbin algorithm
 - Generalized Levinson algorithm
- Conjugate gradient(CG) and pre-conditioned CG methods for sparse positive definite systems

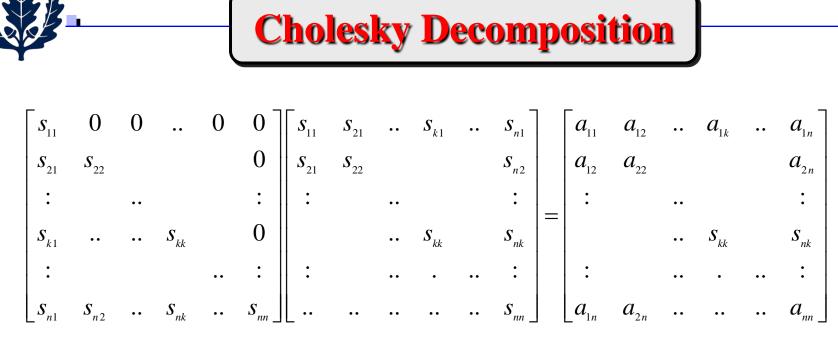
2 Copyright ©2008 by K. Pattipati

Setting

- In the last lecture, we discussed how a non-singular $n \times n$ matrix A can be decomposed into a product of unit lower Δ matrix and an upper Δ matrix.
 - PA = LU (*P* is a permutation matrix) $PA\underline{x} = P\underline{b} = \underline{\tilde{b}}$
 - solve
 - $\Rightarrow LU\underline{x} = \underline{\tilde{b}}$
- An important special case is when $A = A^T$ and A is PD

 $\Rightarrow \lambda_i(A) > 0 \text{ and } \underline{x}^T A \ \underline{x} > 0$

□ Fact: "If A is symmetric PD, then there exist a lower Δ matrix, S with <u>positive</u> diagonal entries such that $A = SS^T$ "



 $s_{ii} > 0$ S is called CHOLESKY Δ

- *A*=*SS^T* is called CHOLESKY DECOMPOSITION (or) SQUARE ROOT DECOMPOSITION
- Note: since A is symmetric, need to store only the upper (or lower) Δ portion only

Why do we need such decompositions?

- Why do we need such a decomposition ?
- 1) To test positive definiteness of a symmetric matrix (this will become apparent from the decomposition algorithm)
- 2) Square root updates of covariance matrices in least squares estimation and Kalman filtering.
 - Recall update and propagate equations of Kalman Filtering.
 - Measurement update:

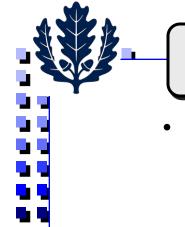
$$P_{k|k} = [I - G_k H] P_{k|k-1}$$

= $P_{k|k-1} - P_{k|k-1} H^T (R + HP_{k|k-1} H^T)^{-1} HP_{k|k-1}$

• Propagate:

$$P_{k+1|k} = \Phi P_{k|k-1} \Phi^T + E W_d E^T$$

• Update eqn. often results in $(P_{ii})_{k/k} < 0$ especially when $||W_d||$ is small and / or ||R|| is small



Square root decomposition & k(P)

• <u>One solution</u>: Joseph's form, but requires <u>double</u> the computational load of ordinary update equation

 $P_{k|k} = (I - G_{k}H)P_{k|k-1}(I - G_{k}H)^{T} + G_{k}RG_{k}^{T}$

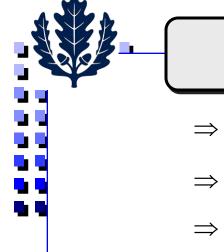
- <u>Second solution</u>: recursive square-root update (Lecture 8) propagate $\sqrt{P_{k|k}} \Rightarrow P_{k|k} = S_k S_k^T$
- Why does second solution work? - $P_{k|k}$ is PD if S_k is non-singular - $||P_{k|k}||_2 = \lambda_{\max}(P_{k|k}); ||S_k||_2 = \sqrt{\lambda_{\max}(S_k S_k^T)} = \sqrt{\lambda_{\max}(P_{k|k})}$ $\Rightarrow ||S_k||_2^2 = ||P_{k|k}||_2$

- So,
$$\kappa(P_{k|k}) = \frac{\lambda_{\max}(P_{k|k})}{\lambda_{\min}(P_{k|k})}; \ \kappa(S_k) = \sqrt{\frac{\lambda_{\max}(P_{k|k})}{\lambda_{\min}(P_{k|k})}}$$

 $\kappa(P_{k|k}) = 10^6 \Longrightarrow \kappa(S_k) = 10^3$

Unconstrained Minimization - 1

- So, square root propagation reduces the condition number
- \rightarrow Can get greater precision with the same computer , or equivalently
- → Can get the <u>same</u> precision with a smaller word length computer ... critical in applications with space and weight problems
- 3) Unconstrained and constrained minimization
 - \underline{x}^* is a relative local minimum of $f(\underline{x}) \Rightarrow \nabla^2 f(\underline{x}) \ge 0$
 - \underline{x}^* is a strict relative local minimum of $f(\underline{x}) \Rightarrow \nabla^2 f(\underline{x}) > 0$
 - Recall modified Newton's method $\nabla^2 f(\underline{x}) \underline{d}_k = -\nabla f(\underline{x})$



Unconstrained Minimization - 2

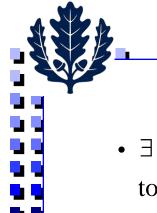
- $\Rightarrow \underline{x}_{k+1} = \underline{x}_k + \alpha_k \underline{d}_k; \alpha_k = \arg\min_{\alpha} [f(\underline{x}_k + \alpha \underline{d}_k)]$
- $\Rightarrow \nabla \underline{f}^{T}(\underline{x}_{k} + \alpha_{k}\underline{d}_{k}) \underline{d}_{k} = 0$
- $\Rightarrow f(\underline{x}_k + \alpha \underline{d}_k) \approx f(\underline{x}_k) + \alpha \nabla \underline{f}^T(\underline{x}_k) \underline{d}_k$
- $\Rightarrow \nabla \underline{f}^{T}(\underline{x}_{k}) \underline{d}_{k} < 0$
- $\Rightarrow -\nabla_f^T(\underline{x}_k) [\nabla^2 f(\underline{x}_k)]^{-1} \nabla f(\underline{x}_k) < 0$

 $\Rightarrow \nabla^2 f(\underline{x}_k)$ must be *PD*

- Cholesky's method will provide a method for testing *PD* of $\nabla^2 f(\underline{x})$ and also to make it *PD* when it is not by adding εI to $\nabla^2 f(\underline{x})$
- 4) Quasi-Newton methods

$$\underline{x}_{k+1} = \underline{x}_k + \alpha_k \underline{d}_k$$

$$\underline{d}_k = -D_k \nabla \underline{f}(\underline{x}_k), \text{ where } D_k \text{ is } PD$$



Unconstrained Minimization - 3

• ∃ a large class of Quasi-Newton methods. But, we restrict ourselves to the so-called Broyden-Fletcher-Goldfard-Shanno (BFGS) class:

$$\underline{\underline{P}}_{k} = \underline{x}_{k+1} - \underline{x}_{k}$$

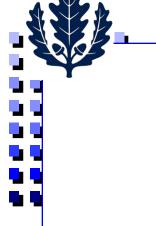
$$\underline{\underline{q}}_{k} = \nabla \underline{f}(\underline{x}_{k+1}) - \nabla \underline{f}(\underline{x}_{k})$$

$$D_{k+1} = D_{k} + \frac{\underline{\underline{P}}_{k} \underline{\underline{P}}_{k}^{T}}{\underline{\underline{q}}_{k}^{T} \underline{\underline{P}}_{k}} - \frac{D_{k} \underline{\underline{q}}_{k} \underline{\underline{q}}_{k}^{T} D_{k}}{\underline{\underline{q}}_{k}^{T} D_{k} \underline{\underline{q}}_{k}} + \zeta_{k} \tau_{k} \underline{\underline{v}}_{k} \underline{\underline{v}}_{k}^{T}$$

$$\underline{\underline{v}}_{k} = \underline{\underline{P}}_{k} - \frac{1}{\tau_{k}} D_{k} \underline{\underline{q}}_{k}$$

$$\tau_{k} = \frac{\underline{\underline{q}}_{k}^{T} D_{k} \underline{\underline{q}}_{k}}{\underline{\underline{p}}_{k}^{T} \underline{\underline{q}}_{k}}$$

$$0 \le \zeta_{k} \le 1$$



Example of Cholesky Decomposition

- Davidon-Fletcher-Powell (DFP) $\Rightarrow \zeta_k = 0$
- BFGS $\Rightarrow \zeta_k = 1$
- Propagate $\sqrt{D_k}$ to avoid round-off error problems.
- Notice rank two (or three) corrections to go from $D_k \rightarrow D_{k+1}$

Example of Cholesky decomposition

$$A = \begin{bmatrix} 2 & -2 \\ -2 & 5 \end{bmatrix}; \quad S = \begin{bmatrix} \sqrt{2} & 0 \\ -\sqrt{2} & \sqrt{3} \end{bmatrix} \Rightarrow A = SS^{T}$$

• Also note that we can write $S = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} \sqrt{2} & 0 \\ 0 & \sqrt{3} \end{bmatrix}$

 $\Rightarrow A = SS^{T} = LDL^{T}$ where $S = LD^{1/2}$

• As with LU decomposition, we evaluate S one column at a time

- Consider the situation at the *k*th column of *S* (assume done up to column *k*-1)
 - for $i \ge k$, we have

$$a_{ik} = \sum_{m=1}^{k} s_{im} s_{km} = \sum_{m=1}^{k-1} s_{im} s_{km} + s_{kk} s_{ik}$$

- Rearranging this equation, we obtain

$$s_{kk} = \left(a_{kk} - \sum_{m=1}^{k-1} s_{km}^{2}\right)^{\frac{1}{2}}$$
$$s_{ik} = \left(a_{ik} - \sum_{m=1}^{k-1} s_{im} s_{km}\right) / s_{kk}; \text{ for } i = k+1, \dots, n$$

- Compute *S* one column at a time
- Can also compute *S* one row at a time (see problem set #5)
- Overwrite a_{ij} with s_{ij} ; $i \ge j$ (in place computation)

Cholesky Decomposition Algorithm

Algorithm Cholesky: Column Version

for k = 1, 2, ..., n Do

$$a_{kk} = (a_{kk} - \sum_{m=1}^{k-1} a_{km}^2)^{1/2}$$

for i = k + 1, ..., n Do

$$a_{ik} = (a_{ik} - \sum_{m=1}^{k-1} a_{im} a_{km}) / a_{kk}$$

• No pivoting is needed if *A* is *PD*

- Accumulate sums in DP
- Use of algorithm to test *PD* of *A* : If $(-\#)^{1/2} \Rightarrow A$ is not *PD* !!

End Do(k);

End Do(i)

• Computational load : *n* square roots plus $\sum_{k=1}^{n} k(n-k) \text{ multiplies}$ $= \frac{n^2(n+1)}{2} - \frac{n(2n+1)(n+1)}{6} = \frac{n(n+1)(n-1)}{6} \approx O(n^3/6) \approx \frac{1}{2} \text{ of } LU$ • $s_{kk}^2 \le \sum_{m=1}^{k} s_{km}^2 \le a_{kk} \Rightarrow s_{kk} < a_{kk} \Rightarrow \text{ elements are bounded}$ **Pivoting**

- Pivoting for positive semi-definite matrices:
 - At step k, find the biggest $a_{ll} \sum_{i=1}^{k-1} s_{li}^2$; l = k, ..., n
 - Pre- and post-multiply *A* by permutation matrix
 - Why? ... because we need to preserve symmetry of *A*
 - Also recall that the permutation matrix is <u>Symmetric</u>
 - ⇒ permute *S* by permutation matrix $P_k^{r_k}$, where r_k is the row with the biggest element in the previous step.

That is, $A = PSS^T P^T = \tilde{S}\tilde{S}^T$

- So, we actually find an SS^T factorization of PAP
- Good to pivot, since can find a reduced rank square-root matrix $S = n \times r$

LDL^T Decomposition - 1

Problem with Cholesky

- Need to compute square roots
- Square roots are more expensive than multiplications and divisions (≈ a factor of 2).

LDL^T Factorization

A=LDL^T is similar to Cholesky decomposition, but <u>avoids</u> square root evaluations. d_i ≥ 0; l_{ii}=1

$$\begin{bmatrix} 1 & 0 & \dots & 0 \\ l_{21} & 1 & \dots & 0 \\ \vdots & \vdots & \vdots \\ l_{n1} & l_{n2} & \dots & 1 \end{bmatrix} \begin{bmatrix} d_1 & 0 & \dots & 0 \\ 0 & d_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n \end{bmatrix} \begin{bmatrix} 1 & l_{21} & \dots & l_{n1} \\ 0 & 1 & \dots & l_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & d_n \end{bmatrix} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

LDL^T Decomposition - 2

• For $i \ge k$, we have

$$a_{ik} = \sum_{m=1}^{k} l_{im} d_m l_{km} \Longrightarrow d_k = a_{kk} - \sum_{m=1}^{k-1} l_{km} d_m l_{km} \text{ since } l_{kk} = 1$$

• Therefore

$$l_{ik} = (a_{ik} - \sum_{m=1}^{k} l_{im} d_m l_{km}) / d_k$$

Comments:

- The term $d_m l_{km}$ is independent of *i*
- Overwrite a_{ik} with l_{ik} and a_{kk} with $d_k \Rightarrow$ no need for extra storage
- Requires $O(n^3/6)$ operations

LDL^T Algorithm

Algorithm for LDL^T factorization For k = 1, 2, ..., n Do For m = 1, 2, ..., k - 1 Do ...recall $a_{mm} = d_m, a_{km} = l_{km}$ $r_m = a_{mm} a_{km}$ $a_{kk} \leftarrow a_{kk} - a_{km}r_{m}$ end Do(m)If $a_{kk} \leq 0$ then ...A is not PD quit else for i = k + 1, k + 2, ..., n Do $a_{ik} \leftarrow (a_{ik} - \sum_{k=1}^{k-1} a_{im} r_m) / a_{kk}$...recall $a_{kk} = d_k; a_{im} = l_{im}; a_{ik} = l_{ik}$ at the end. End Endif End

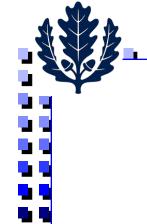
- Application to System Identification: Toeplitz system of Equations
- What is the System Identification problem?
- "Given the input and output sequences, determine the transfer function relating the input and output."
- Restricted problem:
 - Suppose that the input is a white noise sequence $\{w(k)\}$ and output sequence $\{y(k)\}$ is related to input via the autoregressive relation:

$$y(k) + \sum_{i=1}^{n} a_{i} y(k-i) = gw(k)$$

- w(k)~ zero mean white noise process with unit variance - Problem : " Given {y(k)} sequence, find \hat{a}_i , i = 1, 2, ..., n and \hat{g}

such that $J = E\{e^2(k)\}$

=
$$E\{[y(k) + \sum_{i=1}^{n} \hat{a}_{i} \ y(k-i)]^{2}\}$$
 is a minimum"



Minimization of Cost Function

- e(k) is called the prediction error, $[y(k) \hat{y}(k/k-1)]$.
- So, want to minimize mean-squared error prediction of y(k) from its past data {y(k-n), y(k-n-1),..., y(k-1)}
- This is a Parameter Identification (estimation)problem
- The necessary conditions of optimality yield:

$$\frac{\partial J}{\partial \hat{a}_{j}} = 0 \implies E\{[y(k) + \sum_{i=1}^{n} \hat{a}_{i}y(k-i)]y(k-j)\} = 0; j = 1, ..., n$$

-e(k) is orthogonal to $y(k - j) \forall j = 1, 2, ..., n$

$$J = E[y(k)e(k)] = \hat{g}^2$$

• Expanding the necessary conditions of optimality, we obtain:

$$\sum_{i=1}^{n} \hat{a}_{i} \phi_{y}(j-i) = -\phi_{y}(j); j = 1,...,n$$

where $\phi_{y}(j-i) = E\{y(k-i)y(k-j)\} = E\{y(j)y(i)\}$

due to stationarity which is due to linear time-invariance assumption of the stochastic system

Toeplitz System of Equations

• In matrix form, the necessary conditions are given by:

$$\begin{bmatrix} \phi_{y}(0) & \phi_{y}(1) & \dots & \phi_{y}(n-1) \\ \phi_{y}(1) & \phi_{y}(0) & \dots & \phi_{y}(n-2) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{y}(n-1) & \phi_{y}(n-2) & \dots & \phi_{y}(0) \end{bmatrix} \begin{bmatrix} \hat{a}_{1} \\ \hat{a}_{2} \\ \vdots \\ \hat{a}_{n} \end{bmatrix} = -\begin{bmatrix} \phi_{y}(1) \\ \phi_{y}(2) \\ \vdots \\ \phi_{y}(n) \end{bmatrix} \Rightarrow \Phi_{n} \hat{\underline{a}} = -\underline{b}$$

The objective function is:

$$J = E\{y(k)e(k)\} = \phi_{y}(0) + \sum_{i=1}^{n} \hat{a}_{i}\phi_{y}(i) = \phi_{y}(0) - \underline{\hat{a}}^{T}\Phi_{n}\underline{\hat{a}} = \hat{g}^{2}$$

premultiply by Diag $[\phi_y(0)]^{-1}$

$$\begin{bmatrix} 1 & r_{1} & r_{2} & \dots & r_{n-1} \\ r_{1} & 1 & r_{1} & \dots & r_{n-2} \\ r_{2} & r_{1} & 1 & \dots & r_{n-3} \\ \vdots & \vdots & & & \vdots \\ r_{n-1} & r_{n-2} & \dots & \dots & 1 \end{bmatrix} \begin{bmatrix} \hat{a}_{1} \\ \hat{a}_{2} \\ \vdots \\ \vdots \\ \hat{a}_{n} \end{bmatrix} = -\begin{bmatrix} r_{1} \\ r_{2} \\ \vdots \\ \vdots \\ r_{n} \end{bmatrix}; r_{i} = \frac{\phi_{y}(i)}{\phi_{y}(0)} \text{ correlation coefficient}$$

$$T_n \underline{\hat{a}} = -\underline{r}$$

- These are called Yule-Walker equations
- Toeplitz matrix:
 - Symmetric matrix specified by *n* elements (including *RHS*).
 - RHS has a special form
 - This enables us to solve this problem in $O(n^2)$ operations
- Key properties of Toeplitz:
 - T_n is persymmetric \Rightarrow $T_n = E T_n E$, $E \sim Exchange$ Matrix

$$E^{-1} = E; E^2 = I; E = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$

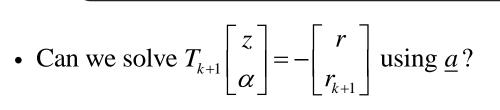
- T_n^{-1} is also persymmetric
- Physical meaning: The statistical properties of a stationary time series are not modified by reversing time (time-reversibility property)

Solution of Toeplitz Equations - 1

We will solve $T_n \underline{x} = \underline{b}$ as a solution of two subproblems.

- Subproblem 1: solve $T_n \underline{a} = -(r_1 r_2 \dots r_n)^T$ (Levinson-Durbin's Algorithm)
- Subproblem 2: use the solution of 1 to solve $T_n \underline{x} = \underline{b}$ (\underline{b} is general) (Generalized Levinson's algorithm)
- **Subproblem 1:**
 - Suppose have solved $T_k \underline{a} = -\underline{r} \Rightarrow \underline{a} = -T_k^{-1} \underline{r}$
 - Note that \underline{a} is of dimension k
 - What we are looking for is a recursive way of building up <u>a</u> from dimension 1 to *n*.

$$\begin{bmatrix} r_{0} & r_{1} & r_{2} & \dots & r_{k-1} \\ r_{1} & r_{0} & r_{1} & \dots & r_{k-2} \\ r_{2} & r_{1} & r_{0} & \dots & r_{k-3} \\ \vdots & \vdots & & \vdots & \vdots \\ r_{k-1} & r_{k-2} & \dots & \dots & r_{0} \end{bmatrix} \begin{bmatrix} a_{1} \\ a_{2} \\ \vdots \\ \vdots \\ a_{k} \end{bmatrix} = -\begin{bmatrix} r_{1} \\ r_{2} \\ \vdots \\ \vdots \\ r_{k} \end{bmatrix}; r_{0} = 1$$



- \Rightarrow Can we get next <u>a</u>?
- Recursion $k \rightarrow k+1$

$$\begin{bmatrix} T_k & E_k \underline{r} \\ \underline{r}^T E_k & 1 \end{bmatrix} \begin{bmatrix} z \\ \alpha \end{bmatrix} = - \begin{bmatrix} r \\ r_{k+1} \end{bmatrix}$$

where $E_k \sim k$ by k exchange matrix

• Given <u>a</u>, we can solve this problem in O(k) flops. How? $T_k \underline{z} + E_k \underline{r} \alpha = -\underline{r}$ $\Rightarrow \underline{z} = -T_k^{-1} \underline{r} - \alpha T_k^{-1} E_k \underline{r}$

Solution of Toeplitz Equations - 2

• Toeplitz is per symmetric $\Rightarrow T_k^{-1}E_k = E_kT_k^{-1}$ $\Rightarrow \underline{z} = \underline{a} + \alpha E_k \underline{a} = (I + \alpha E_k)\underline{a} \Rightarrow z_i = a_i + \alpha a_{k+1-i}$

Solution of Toeplitz Equations - 3

- In signal processing,
 α is termed the reflection coefficient
 - $\{a_i\}$ = forward filter coefficients
 - $\{a_{k+1-i}\}$ = backward filter coefficients
- ⇒ next forward filter coefficients = weighted sum of previous forward and backward filter coefficients
- Next, $\alpha = -r_{k+1} \underline{r}^T E_k \underline{z} = -(r_{k+1} + \underline{r}^T E_k \underline{a} + \alpha \underline{r}^T \underline{a})$
- $\Rightarrow \alpha = -(r_{k+1} + \underline{r}^T E_k \underline{a}) / (1 + \underline{r}^T \underline{a})$
- $\implies 1 \underline{r}^T T_k^{-1} \underline{r} > 0$

 $1 + \underline{r}^T \underline{a} > 0$. This is true because T_{k+1} is *PD* and

$$\begin{bmatrix} I & E_k \underline{a} \\ 0 & I \end{bmatrix}^T \begin{bmatrix} T_k & E_k \underline{r} \\ \underline{r}^T E_k & I \end{bmatrix} \begin{bmatrix} I & E_k \underline{a} \\ 0 & I \end{bmatrix} = \begin{bmatrix} T_k & 0 \\ 0 & 1 + \underline{r}^T \underline{a} \end{bmatrix}$$
$$T_{k+1} \text{ is } PD \implies A^T T_{k+1} \text{ A is } PD, \text{ if } A \text{ is nonsingular}$$

Simplification

Check:

$$\begin{bmatrix} I & 0 \\ \underline{a}^{T}E_{k} & 1 \end{bmatrix}^{T} \begin{bmatrix} T_{k} & E_{k}\underline{r} \\ \underline{r}^{T}E_{k} & 1 \end{bmatrix} \begin{bmatrix} I & E_{k}\underline{a} \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} T_{k} & E_{k}\underline{r} \\ \underline{a}^{T}E_{k}T_{k} + \underline{r}^{T}E_{k} & 1 + \underline{r}^{T}\underline{a} \end{bmatrix} \begin{bmatrix} I & E_{k}\underline{a} \\ 0 & 1 \end{bmatrix}$$
$$= \begin{bmatrix} T_{k} & T_{k}E_{k}\underline{a} + E_{k}\underline{r} \\ \underline{a}^{T}E_{k}T_{k} + \underline{r}^{T}E_{k} & 1 + \underline{r}^{T}\underline{a} \end{bmatrix} = \begin{bmatrix} T_{k} & 0 \\ 0 & 1 + \underline{r}^{T}\underline{a} \end{bmatrix}$$

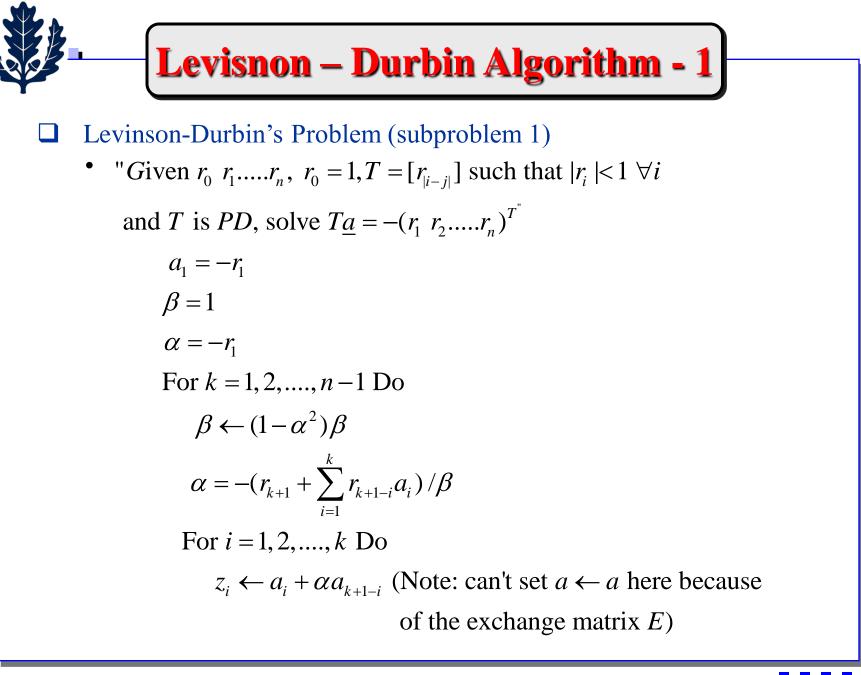
since $T_k E_k \underline{a} + E_k \underline{r} = 0$ (recall $\underline{a} = T_k^{-1} \underline{r}$ and persymmetry of T_k)

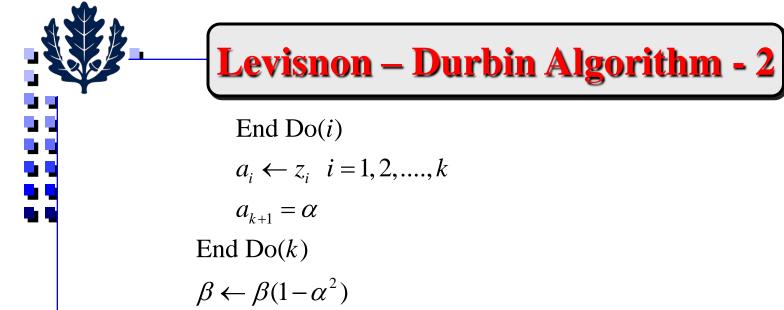
□ Major Simplification:

$$\beta_{k} = (1 + \underline{r}^{(k)^{T}} \underline{a}^{(k)}) = 1 + \left[\underline{r}^{(k-1)^{T}} \quad r_{k}\right] \begin{bmatrix} \underline{a}^{(k-1)} + \alpha_{k-1} E_{k-1} \underline{a}^{(k-1)} \\ \alpha_{k-1} \end{bmatrix}$$

$$= 1 + \underline{r}^{(k-1)^{T}} \underline{a}^{(k-1)} + \alpha_{k-1} \underline{r}^{(k-1)^{T}} E_{k-1} \underline{a}^{(k-1)} + \alpha_{k-1} r_{k} = \beta_{k-1} + \alpha_{k-1} [\underline{r}^{(k-1)^{T}} E_{k-1} \underline{a}^{(k-1)} + r_{k}]$$
But, $\beta_{k-1} \alpha_{k-1} = -r_{k} - \underline{r}^{(k-1)^{T}} E_{k-1} \underline{a}^{(k-1)}$...recall equation for α

$$\Rightarrow \beta_{k} = (1 - \alpha_{k-1}^{2}) \beta_{k-1}$$





- $J = \beta \phi_y(0) = \hat{g}^2$
- Total Flop count over *n* steps $\approx O(n^2)$ operations

Reference:

Durbin, "The Fitting of time series models", <u>Rev. Inst. Int. Statistics</u>, 28, pp. 233-243, 1960 or any Standard book on statistical signal processing (e.g., L. Scharf, Addison – Wesley, 1991).

Example 1: Solve

$$\begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = \begin{bmatrix} -0.5 \\ -0.2 \end{bmatrix} \Rightarrow \underline{a} = \frac{4}{3} \begin{bmatrix} 1 & -0.5 \\ -0.5 & 1 \end{bmatrix} \begin{bmatrix} -0.5 \\ -0.2 \end{bmatrix} = \begin{bmatrix} -8/15 \\ 1/15 \end{bmatrix}$$
$$a_1 = -0.5, \ \beta = 1, \ \alpha = -0.5$$
$$k = 1 \Rightarrow \beta = 0.75, \ \alpha = -(0.2 - 0.25)(4/3) = 0.067 = 1/15$$
$$z_1 = a_1 + \alpha a_1 = -0.5(1 + 0.067) = -8/15$$
$$a_2 = \alpha = 1/15$$
$$\Rightarrow \text{ solution } \underline{\hat{a}} = \begin{bmatrix} \hat{a}_1 \\ \hat{a}_2 \end{bmatrix} = \begin{bmatrix} -8/15 \\ 1/15 \end{bmatrix}; \ J = 1 + \hat{a}_1 r_1 + \hat{a}_2 r_2 = \frac{56}{75} = \hat{g}^2$$

Forward – Backward Filter Interpretation - 1

- Another way of looking at Levinson- Durbin problem:
 - Recall

$$\Phi_{n}\underline{a} = -\begin{bmatrix} \phi_{1} \\ \phi_{2} \\ \vdots \\ \phi_{n} \end{bmatrix} = -\underline{\phi}$$
$$\phi_{y}(0) + \phi^{T}\underline{a} = J$$

• So,

$$\begin{bmatrix} \phi_{y}(0) & \phi_{y}(1) & \dots & \phi_{y}(n) \\ \phi_{y}(1) & \phi_{y}(0) & \dots & \phi_{y}(n-1) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{y}(n) & \phi_{y}(n-1) & \dots & \phi_{y}(0) \end{bmatrix} \begin{bmatrix} 1 \\ \underline{a} \end{bmatrix} = \begin{bmatrix} \phi_{y}(0) & \underline{\phi}^{T} \\ \underline{\phi} & \overline{\Phi}_{n} \end{bmatrix} \begin{bmatrix} 1 \\ \underline{a} \end{bmatrix} = \begin{bmatrix} J \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

• Initially, let $J = \phi_y(0) \Rightarrow$ zeroth order prediction (k = 0)

Forward – Backward Filter Interpretation - 2

- At k^{th} step, suppose have $\underline{a}^{(k)} = (a_1, ..., a_k)$ and have J_k . If k = n, we are done.
- Want to find:

$$\begin{bmatrix} \phi_{y}(0) & \phi_{y}(1) & \dots & \phi_{y}(k+1) \\ \phi_{y}(1) & \phi_{y}(0) & \dots & \phi_{y}(k) \\ \vdots & \vdots & \ddots & \vdots \\ \phi_{y}(k+1) & \phi_{y}(k) & \dots & \phi_{y}(0) \end{bmatrix} \begin{bmatrix} 1 \\ \underline{a}^{(k+1)} \end{bmatrix} = \begin{bmatrix} \phi_{y}(0) & \underline{\phi}_{k+1}^{T} \\ \underline{\phi}_{k+1} & \Phi_{k+1} \end{bmatrix} \begin{bmatrix} 1 \\ \underline{a}^{(k+1)} \end{bmatrix} = \begin{bmatrix} J_{k+1} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$$

• Instead, consider two alternative versions of the equations:

$$\begin{bmatrix} \mathbf{1} \\ \Phi_{k+1} & \Phi_{k+1} \\ \Phi_{k+1}^{T} & \phi_{y}(0) \end{bmatrix} \begin{bmatrix} 1 \\ a^{(k)} \\ 0 \end{bmatrix} = \begin{bmatrix} J_{k} \\ 0 \\ 0 \\ \vdots \\ -\gamma_{k+1} \end{bmatrix} \qquad \begin{bmatrix} \phi_{y}(0) & \Phi_{k+1}^{T} \\ \Phi_{k+1} & \Phi_{k+1} \end{bmatrix} \begin{bmatrix} 0 \\ E\underline{a}^{(k)} \\ 1 \end{bmatrix} = \begin{bmatrix} -\gamma_{k+1} \\ 0 \\ 0 \\ \vdots \\ J_{k} \end{bmatrix}$$
where $\gamma_{k+1} = -[\phi_{y}(k+1) + \sum_{i=1}^{k} \phi_{y}(k+1-i)a_{i}^{(k)}]$

Forward – Backward Filter Interpretation - 3

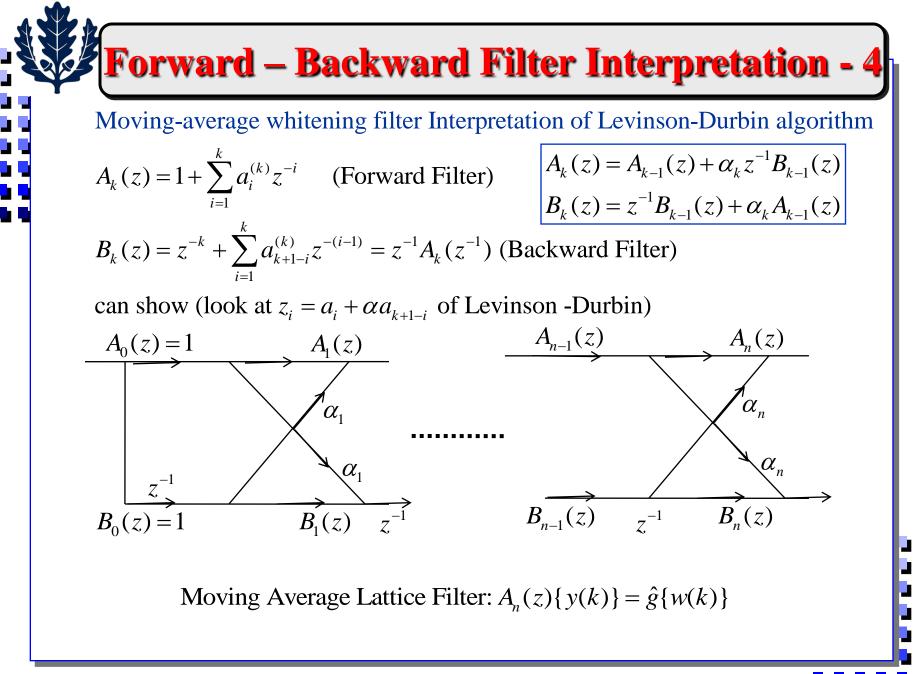
• Key:
$$\begin{bmatrix} 1 \\ \underline{a}^{(k+1)} \end{bmatrix} = \begin{bmatrix} 1 \\ \underline{a}^{(k)} \\ 0 \end{bmatrix} + \alpha_{k+1} \begin{bmatrix} 0 \\ E\underline{a}^{(k)} \\ 1 \end{bmatrix}$$

 $\begin{bmatrix} \phi_{y}(0) & \phi_{k+1}^{T} \\ \underline{\phi}_{k+1} & \Phi_{k+1} \end{bmatrix} \begin{bmatrix} 1 \\ \underline{a}^{(k+1)} \end{bmatrix} = \begin{bmatrix} J_{k} - \alpha_{k+1}\gamma_{k+1} \\ 0 \\ \vdots \\ \alpha_{k+1}J_{k} - \gamma_{k+1} \end{bmatrix} = \begin{bmatrix} J_{k+1} \\ 0 \\ \vdots \\ 0 \end{bmatrix}$

• So,

Pick $\alpha_{k+1} = \gamma_{k+1} / J_k$.. called reflection coefficient $\Rightarrow J_{k+1} = J_k [1 - \alpha_{k+1}^2] \sim \beta$ of Durbin's Algorithm

Estimates $\hat{a}_i = a_i^{(n)}$ are \ni roots of $(1 + \sum_{i=1}^n \hat{a}_i z^{-i})$ are inside the unit circle, if the reflection coefficients $|\alpha_k| < 1$ for k = 1, 2, ..., n. Guranteed if Toeplitz matrix is PD.

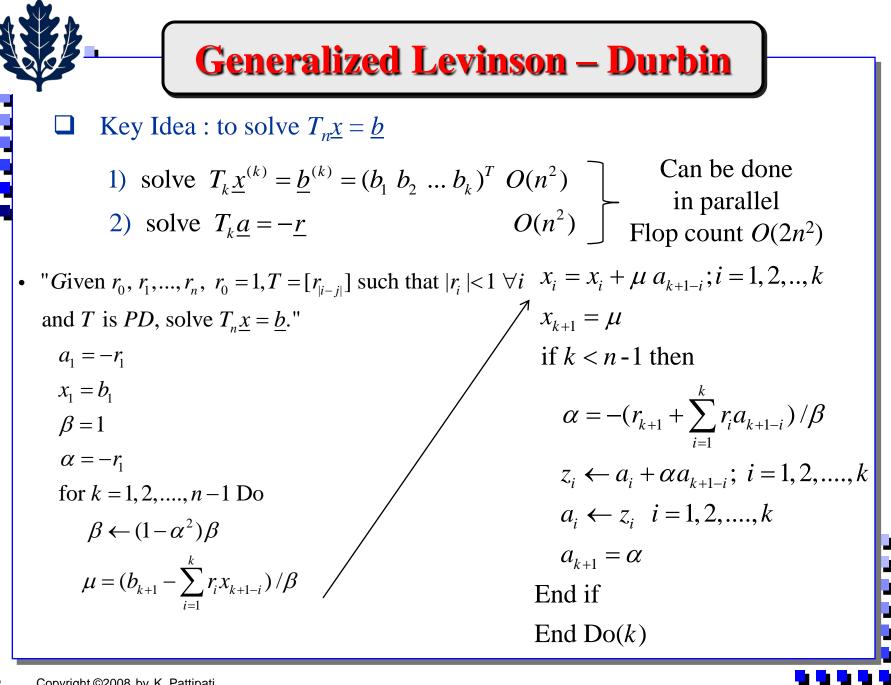


Toeplitz with General RHS

- Generalized Levinson-Durbin's Problem (subproblem 2):
 - What if the *RHS* is arbitrary \underline{b}
 - Suppose have solved $T_k \underline{x}^{(k)} = \underline{b}^{(k)} = (b_1 \ b_2 \ \dots \ b_k)^T$
 - For simplicity, write $T_k \underline{x} = \underline{b}$

Want to solve $T_{k+1}\begin{bmatrix} \underline{\nu} \\ \mu \end{bmatrix} = \begin{bmatrix} \underline{b} \\ b_{k+1} \end{bmatrix} = \begin{bmatrix} T_k & E_k \underline{r} \\ \underline{r}^T E_k & 1 \end{bmatrix} \begin{bmatrix} \underline{\nu} \\ \mu \end{bmatrix} = \begin{bmatrix} \underline{b} \\ b_{k+1} \end{bmatrix}$ $\underline{r} = (r_1 \ r_2 \ \dots \ r_k)^T$ as before $T_k \underline{\nu} + E_k \underline{r} \mu = \underline{b} \implies \underline{\nu} = T_k^{-1} [\underline{b} - E_k \underline{r} \mu] = \underline{x} + \mu E_k \underline{a}; \underline{a} = -T_k^{-1} \underline{r}$ $\underline{r}^T E_k \underline{\nu} + \mu = b_{k+1} \implies \mu = (b_{k+1} - \underline{r}^T E_k \underline{x}) / (1 + \underline{r}^T \underline{a})$

- Note: need to solve $T_k \underline{a} = -\underline{r}$ using Levinson-Durbin's algorithm
- If you know \underline{x} and \underline{a} , computing \underline{v} and μ requires O(2k) operations



Sparse Matrix and Iterative Methods

Sparse matrix methods for Symmetric Positive Definite Systems

- Store only non-zero elements (row, column, element value)
- Two classes of methods:
 - Sparse Cholesky or LDL^T decomposition (intelligent data structures and strategies to minimize fill-in)

Ref:

- 1. I. S. Duff, A. M. Erisman, and J. K. Reid, <u>Direct Methods</u> for Sparse Matrices, Oxford Univ. Press, 1986.
- 2. J. A. George and J. W. Liu, <u>Computer Solution of Large</u> <u>Sparse Positive Definite Systems</u>, Prentice-Hall, 1981.
- Iterative methods
 - Gauss-Seidel method with successive overrelaxation: Convergence critically depends on several parameters that are hard to choose
 - Conjugate Gradient (CG) method: Widely used method for sparse PD systems

- Conjugate Gradient method
- Consider the problem of minimizing a quadratic function $f(\underline{x}) = \frac{1}{2} \underline{x}^T A \underline{x} - b^T \underline{x}$

where A is an $n \times n$ symmetric and PD matrix

• The unique solution to this problem is the solution of

 $\nabla f(\underline{x}) = 0 \Longrightarrow A\underline{x} = \underline{b}$

- An efficient (especially when *A* is sparse such as in a large-scale linear programming problem) way of solving the linear equation is the **conjugate gradient** or the **conjugate direction** method.
- Definition: A set of vectors {<u>d</u>_i}^k_{i=1} are *A*-orthogonal or mutually conjugate with respect to *A*, if <u>d</u>_i^TA <u>d</u>_j=0∀*i*≠*j*, *i*=1, 2, ..., *k* Basic idea of conjugate direction method:
 - Given a collection of *n* mutually *A*-conjugate directions, $\{\underline{d}_i\}_{i=1}^n$ conjugate direction method generates the solution of $A\underline{x}=\underline{b}$ via: $\underline{x}=\alpha_1\underline{d}_1+\alpha_2\underline{d}_2+\ldots+\alpha_n\underline{d}_n$ (1)

- **Key**: $\{\alpha_i\}$ are very easy to obtain :
- Multiply (1) by $\underline{d}_i^T A \underline{x}$ to obtain: $\underline{d}_i^T A \underline{x} = \alpha_i \underline{d}_i^T A \underline{d}_i$ recalling: $\underline{d}_i^T A \underline{d}_j = 0 \forall i \neq j$

$$\Rightarrow \alpha_i = \frac{\underline{d}_i^T \underline{b}}{\underline{d}_i^T A \underline{d}_i}$$

- Q: Is there a simple and iterative (i.e., sequential) way of generating $\{d_i\}$?Yes!!
 - *Q*: What if I start at a point $\underline{x}_i \neq \underline{0}$? No problem... only the equations for $\{\alpha_i\}$ will change.
- □ In order to solve $A\underline{x}=\underline{b}$, this is what we would like to do
 - Start with \underline{x}_1
 - Compute residual $\underline{r}_1 = \underline{b} A\underline{x}_1 = -\nabla f(x)$ Negative gradient of quadratic function f(x) is the residual
 - Let $\underline{d}_1 = \underline{r}_1 \Longrightarrow \underline{x}_2 = \underline{x}_1 + \alpha_1 \underline{d}_1$
 - Compute new residual $\underline{r}_2 = \underline{b} A\underline{x}_2$
 - Get $\underline{d}_2 = \underline{r}_2 + \beta_1 \underline{d}_1 \neq \underline{d}_2$ is *A*-orthogonal to \underline{d}_1 , etc.
- □ Since our directions are based on residuals (=negative gradients), the method is called Conjugate gradient (CG) method.

In general, at the i^{th} step of CG method, we compute

 \rightarrow residual $\underline{r}_i = \underline{b} - A \underline{x}_i$

new direction $\underline{d}_i = \underline{r}_i + \beta_{i-1} \underline{d}_{i-1}$

new point $\underline{x}_{i+1} = \underline{x}_i + \alpha_i \underline{d}_i$

Note: residual \underline{r}_i can be computed from previous residual \underline{r}_{i-1}

$$r_i = \underline{b} - A \underline{x}_i = \underline{b} - A(\underline{x}_{i-1} + \alpha_{i-1} \underline{d}_{i-1})$$

 $\Rightarrow \underline{r}_i = \underline{r}_{i-1} - \alpha_{i-1} A \underline{d}_{i-1}$

Computing Key: we will see later that $A\underline{d}_{i-1}$ comes for free because it is used in computing α_i

So, need expression for α_i and β_i

•Suppose we are at \underline{x}_i and know the direction \underline{d}_i . What is α_i ? •The best $\alpha = \alpha_i$ must minimize $f(\underline{x})$ along \underline{d}_i starting from \underline{x}_i •To get α_i , consider $f(\underline{x}_i + \alpha \underline{d}_i)$ $f(\underline{x}_i + \alpha \underline{d}_i) = \frac{1}{2} (\underline{x}_i + \alpha \underline{d}_i)^T A(\underline{x}_i + \alpha \underline{d}_i) - \underline{b}^T (\underline{x}_i + \alpha \underline{d}_i)$ Optimal $\alpha \Rightarrow \frac{\partial f(\underline{x} + \alpha \underline{d}_i)}{\partial \alpha}|_{\alpha = \alpha_i} = 0$ $\Rightarrow \left[\alpha \underline{d}_i^T A \underline{d}_i + \underline{d}_i^T (A \underline{x}_i - \underline{b}) \right]|_{\alpha = \alpha_i} = 0$

or,

$$\alpha_{i} = \frac{\underline{d}_{i}^{T} \underline{r}_{+}}{\underline{d}_{i}^{T} A \underline{d}_{i}}$$

$$\Rightarrow \text{The residual at the current point, the current direction and, of course, the A matrix are all that are needed in computing α_{i} .
Consider the derivative of $f(\underline{x} + \alpha \underline{d}_{i})$ at $\alpha = \alpha_{i}$. This is:
 $\nabla f^{T}(\underline{x} + \alpha_{i} \underline{d}_{i}) \underline{d}_{i} = -\underline{r}_{+1}^{T} \underline{d}_{i} = 0$

$$\Rightarrow \text{The current direction } \underline{d}_{i} \text{ is orthogonal to the next residual } \underline{r}_{i+1}$$

$$\Rightarrow \text{Note, however, that the direction } \underline{d}_{i} \text{ is a linear combination of } \underline{r}_{i}$$$$

and \underline{d}_{i-1} (we will formally show this below).

 \Rightarrow \underline{r}_{i+1} is orthogonal to \underline{r}_i and \underline{d}_{i-1} as well

□ So, we have the important CG relations

$$\underline{r}_{i+1}^{T}\underline{d}_{i} = 0$$
$$\underline{r}_{i+1}^{T}\underline{r}_{i} = 0$$
$$\underline{r}_{i+1}^{T}\underline{d}_{i-1} = 0$$

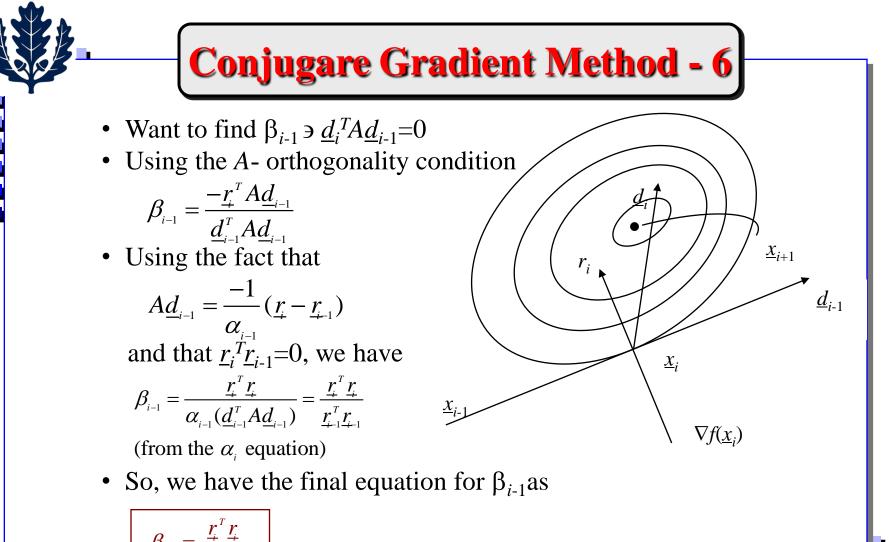
■ Key: The residuals in a conjugate gradient method are mutually orthogonal. We will see later (in lecture 11) that they are parallel to the so called <u>Lanczos vectors</u>

- To further simplify the equation for α_i , let us consider $\underline{d}_i = \underline{r}_i + \beta_{i-1} \underline{d}_{i-1}$
- Taking the inner product with r_i , we get $\underline{r_i^T d_i} = \underline{r_i^T r_i} + \beta_{i-1} \underline{r_i^T d_{i-1}} = \underline{r_i^T r_i}$
- So, we have our final equation for α_i :

$$\alpha_{i} = \frac{\underline{r_{i}}^{T} \underline{r_{i}}}{\underline{d}_{i}^{T} A \underline{d}_{i}}$$

Proof of direction update equation: $\underline{d}_i = \underline{r}_i + \beta_{i-1} \underline{d}_{i-1}$

At step *i*, we have \underline{x}_i and \underline{r}_i . What we want to do is this. We seek \underline{x}_{i+1} such that it is a minimum point not merely in the negative gradient direction \underline{r}_i , but in a plane passing through \underline{x}_i and spanned by \underline{r}_i and \underline{d}_{i-1} . (It turns out that we are effectively minimizing in a subspace spanned by \underline{r}_i and $\{\underline{d}_j\}_{j=1}^{i-1}$ as well)



$$\beta_{i-1} = \frac{\underline{r_{i}}^{T} \underline{r_{i}}}{\underline{r_{i-1}}^{T} \underline{r_{i-1}}}$$

	CG Algorithm
All residuals \underline{r}_i are or	rthogonal $\Rightarrow \underline{r}_i^T \underline{r}_j = 0 \forall i \neq j$ See Luenberger
$\square \text{All directions } \underline{d}_i \text{ are } A \text{-orthogonal} \Rightarrow \underline{d}_i^T A \underline{d}_j = 0 \forall i \neq j (1984)$	
CG Algorithm:	
"Given a PD matrix A, b and	a tolerance parameter, \in , and maximum number of iterations
i_{max} , the following algorithm	solves $A\underline{x} = \underline{b}$."
<i>i</i> =1	
$\underline{x} = \underline{x}_1$	initial point
<u>r=b</u> -A <u>x</u>	initial residual
$\rho = \underline{r} _2^2$	square of norm of residual
$c = \underline{b} _2^2$	norm of <u>b</u>
<u>d=r</u>	
DO while $\sqrt{\rho} \ge c \in Q$	or $i \leq i_{\max}$
$\underline{w} = A\underline{d}$	
$\alpha = \rho / \underline{d}^T \underline{w}$	step length
<u>x=x</u> +α <u>d</u>	new point
<u>r=r</u> - α <u>w</u>	new residual
$\beta = \left\ \underline{r} \right\ _2^2 / \rho$	
$\underline{d} = \underline{r} + \beta \underline{d}$	new direction
$\rho = \underline{r} _2^2$	square of norm of residual
<i>i=i</i> +1	
end DO	
2 Copyright ©2008 by K. Pattipati	

.....

Pre-conditioned CG - 1

- Each iteration requires a matrix-vector multiplication +10n operations
 - Exploit sparsity in computing $\underline{w}=A \underline{d}$
- Need just four vectors for $\underline{x}, \underline{r}, \underline{d}$, and \underline{w}
- Convergence is faster if k(A) is small ... see Luenberger (1984)

$$(\underline{x} - \underline{x}_{k})^{T} Q(\underline{x} - \underline{x}_{k}) \leq 4(\underline{x} - \underline{x}_{0})^{T} Q(\underline{x} - \underline{x}_{0}) \left(\frac{\sqrt{k(A)} - 1}{\sqrt{k(A)} + 1} \right)$$

 $k(A) \approx 1 \Rightarrow$ convergence is faster.

- *Q* : can we make $k(A) \approx 1 \Rightarrow$ pre-conditioned conjugate gradient method.
 - Pre-conditioned conjugate gradient (PCG) method
 - Consider

 $A\underline{x} = \underline{b}$

• Instead of solving $A\underline{x}=\underline{b}$, we solve

$$L^{-1}A\underline{x}=L^{-1}\underline{b}$$

where *L* is an approximation to the square-root of *A*.

$$\Rightarrow L^{-1}A(L^{-1})^T L^T \underline{x} = L^{-1}\underline{l}$$

 $\tilde{A}\tilde{x} = \tilde{b}$

or

Pre-conditioned CG - 2

where $\tilde{A} = (L^{-1}AL^{-1})^{T}$ $\underline{\tilde{X}} = L^{T}\underline{X}$ $\underline{\tilde{b}} = L^{-1}\underline{b}$

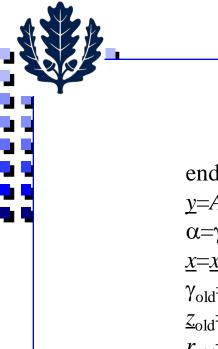
• So, if *L* is close to the square-root *S* of *A*, then $\tilde{A} = L^{-1}SS^{T}(L^{-1})^{T} \approx I \Longrightarrow k(\tilde{A}) \approx 1$

 \Rightarrow Fast convergence

- Q1: How to obtain *L* without actually doing complete Cholesky decomposition? ... Incomplete Cholesky decomposition
- Q2: How to solve the modified system of equations?
- We will take up equation 2 first. It turns out that the preconditioner has "local" effect in the sense that it always appears as $M^{-1} = (L^{-1})^T L^{-1}$ in computing inner products related to the computation of β and α
 - See Golub and Van Loan, 1989

PCG Algorithm - 1

- Preconditioned CG algorithm:
 - "Given a PD matrix A, <u>b</u>, a pre-conditioner L, a tolerance parameter ε and maximum no. of iterations, i_{max} , the following algorithm solves $A\underline{x}=\underline{b}$."
 - *i*=1 Solve $L \underline{y} = \underline{b}$ Solve $L^T \underline{x} = \underline{y}$ $\underline{r}_{\text{new}} = \underline{b} - A\underline{x}$ $\rho = ||\underline{r}_{new}||_2$ $c = ||\underline{b}||_{2}$ DO while $\rho > c \in$ or $i \le i_{max}$ solve $L\underline{y} = \underline{r}_{new}$ solve $L^T \underline{z}_{new} = \underline{y}$ $\gamma_{\text{new}} = \underline{z}^T_{\text{new}} \underline{r}_{\text{new}}$ If i=1 $\underline{d} = \underline{z}_{new}$ else
 - Computes initial point. If $L L^T \approx A$, we have a good starting solution ... initial residual



PCG Algorithm - 2

$$\beta = \gamma_{\text{new}} / \gamma_{\text{old}}$$

$$\underline{d} = \underline{z}_{\text{new}} + \beta \underline{d}$$
end if
$$\underline{y} = A \underline{d}$$

$$\alpha = \gamma_{\text{new}} / \underline{d}^T \underline{y}$$

$$\underline{x} = \underline{x} + \alpha \underline{d}$$

$$\gamma_{\text{old}} = \gamma_{\text{new}}$$

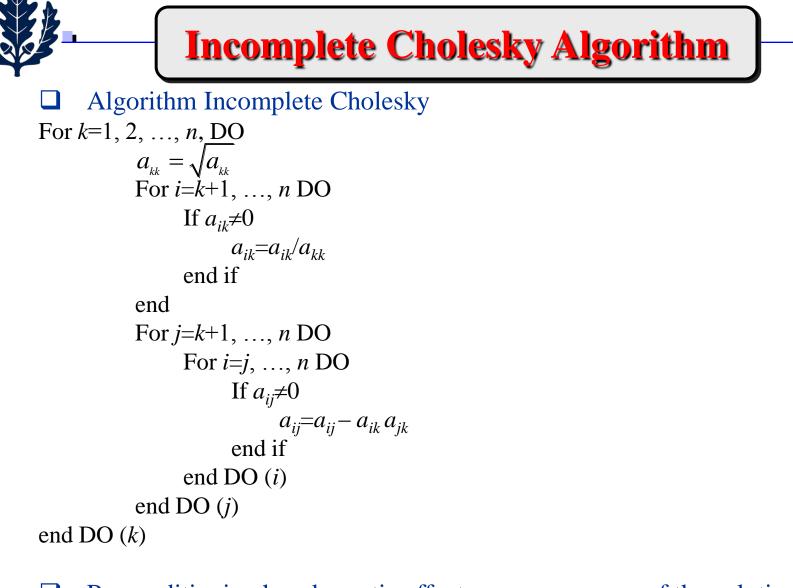
$$\underline{z}_{\text{old}} = \underline{z}_{\text{new}}$$

$$\underline{r}_{\text{old}} = \underline{r}_{\text{new}} - \alpha \underline{y}$$

$$i = i + 1$$

end DO

- $\Box \quad \text{Incomplete Cholesky decomposition to obtain } L$
 - Fact: even if A is sparse, its "true" Cholesky factor S need not be!! This is called "fill-in"
 - So, what incomplete Cholesky decomposition does is to set: $l_{ij} = 0$ if $a_{ij} = 0$
 - We can do this with a slightly altered version of Cholesky, where L overwrites A.



□ Preconditioning has dramatic effect on convergence of the solution to $A\underline{x} = \underline{b}$ using the conjugate gradient method.

Summary

- Why do we need decomposition methods for *PD* matrices?
- Cholesky decomposition
- $\Box LDL^T$ decomposition
- A special *PD* matrix : Toeplitz System of Equations
 - Application to system identification
 - Levinson- Durbin algorithm
 - Generalized Levinson algorithm
- Conjugate gradient(CG) and pre-conditioned CG methods for sparse positive definite systems