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Outline of Lecture 6

 Why orthogonalization methods ?

 Least Squares Problem and its properties

 Householder transformation

 Gram-Schmidt orthogonalization

− Serial (classical) Gram-Schmidt

− Parallel (modified) Gram-Schmidt
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Why Orthogonalization Methods ?

 Orthogonalization methods are ubiquitous in scientific computation

• Used in Chebyshev orthogonal polynomials for function approximation 

(Lectures 2 and 3)

• We like orthogonal descent directions in function minimization 

conjugate directions (so-called Q-orthogonal directions (lecture 5))

• Representation of random functions as weighted sum of orthogonal 

functions ( e.g., Karhunen-Loeve expansion, sum of sinusoids or 

complex exponentials)

• Orthogonal transformations: Householder, Gram-Schmidt, and Givens. 

Useful in Least Squares Estimation, Eigen value problems (QR), 

Lyapunov equations, and Riccati equations.

 To motivate the methods, consider a system of linear equations:

Ax = b, A is mn, m≫n
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 The Least Squares problem:

Least Squares Problem

21 1
2 22

min min ( ) ( )T

x x
Ax b Ax b Ax b   

f(x)

x

data 
point

best-fit function, f(x)
Least squares estimate minimizes 

the vertical distance from the data 

points to the model

 Weighted Least Squares Problem:

where V is typically diagonal ( i.e., V=diag(1
2 2

2…m
2)). i

2 is a    

measure of uncertainty (error) in the measurement bi.

1

2 11 1
2 2

min min ( ) ( )T

Vx x
Ax b Ax b V Ax b

   

 Other Formulations

can be solved via

Linear Programming (LP) .. Lecture 9

• 1-norm is less sensitive to the presence of “outliers” (bad data). 

1
min

min

x

x

Ax b

Ax b
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 Example:

Example of Least Squares Problem- 1

•

• Criteria to be minimized

2-norm :                          

1-norm :

-norm :

• Consider the data set {bi}={1 2 3 5 8}

• Suppose that a mistake has been made and the last data point is 

thought to be 88 rather than 8. Then

the least affected by errors

i ib x e 

2 S

2
ˆmin ( )     average of the i i

i

b x x b  
S

1̂min | |    median of the i i

i

b x x b  
1
2

ˆmin max  | |    (min  +max  )i i i
ii i

b x x b b  

2

1

ˆ 3.8

ˆ 3

ˆ 4.5

x

x

x







2

1

ˆ 19.8

ˆ 3

ˆ 44.5

x

x

x
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Example of Least Squares Problem - 2

• We will use 2-norm in this and the next two lectures.

• Solution procedures for 1- and - norm in Lecture 9.

 Why 2-norm:
• Because it is a twice continuously differentiable function

• Has nice statistical interpretation in terms of maximum likelihood 

estimation for Gaussian error models 

 Example: Function approximation by a weighted sum of complex  

exponentials.

• Suppose we sample the function at t=0,T,2T,…, (m-1)T

• Then

• The (A, b) associated with the least squares problem are

Rectangular Van der Monde Matrix

1

( ) i

n
j t

i

i

f t x e






1 1

( ) ;  ;  0,1,2,..., ( 1)i i

n n
jk T j Tk

i i

i i

f kT x e x z z e k m
 

 

     

1 2

2 2 2

1 2

11 1

1 2

1 1 ... 1 (0)

... ( )

... ;  (2 )

:: : :

... (( 1) )

n

n

mm m

n

f

z z z f T

A z z z b f T

zz z f m T
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LS Problem Basics

 What do orthogonal transformations do for us?

• Suppose have made an orthogonal transformation on A such that A is 

transformed into QTA

is unchanged since QQT =QTQ=I

• KEY IDEA: choose Q such that QTA has nice form (e.g., upper )

 What are the properties of LS solution?

 is called the residual vector = measurement - predicted measurement

 Recall the linear spaces associated with         :

• R(A) = column space of A  Rm

• N(A) = Null space of A  Rn

 Linear spaces associated with 

• R(AT) = column space of A  Rn

• N(AT) = Null space of AT Rm

 Know 

• dim(R(A)) + dim(N(AT)) = m

• dim(N(A)) + dim(R(AT)) = n

2
1
2 2

 min T T

x
Q Ax Q b 

LSr b Ax 

1
2

min

0

or [ ] 0

T T T T T T T

T T

LS

T

LS

J x A Ax x A b b A x b b

J x A Ax A b

A b Ax

     

    

 

These are the so-called normal 

equations. Bad way to solve. We will 

come back to this later.

Ax b
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Least Squares Solution Properties - 1

 Orthogonal property of least squares 
• AT r = 0  r  N(AT)

• Since R(A) is perpendicular to N(AT)  r is perpendicular to R(A)

• A xLS  linear combinations of columns of A  R(A)

• Since R(A) is perpendicular to N(AT)

 What does LS do?
• Decomposes b into two orthogonal complements

A xLS  R(A) and r = b- A xLS N(AT)



For m=n=Rank(A) =0  AxLS =b

• AxLS is a “prediction” of what b is

• It is correct for full rank and m ≤ n case

• If m < n and full rank,      an infinite # of solutions to Ax = b

AxLS R(A) 
r r N(AT)  AxLS 

r r

2 2 2

2 2 2LSb Ax r 

2 2

2 2

cos ,sin
LSAx r

b b
  

r=b-AxLSN(AT)



AxLSR(A)

b
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Least Squares Solution Properties - 2

• We will then ask for that x which has minimum 2-norm (i.e., smallest ║x║2 

∋ Ax=b).

• When rank(A)=n, m>n,

xLS=(ATA)-1ATb=A†b

where A†= Moore-Penrose generalized (pseudo) inverse

• So, predicted measurement:

AxLS=A(ATA)-1ATb=AA†b=Pb

where P~ projection matrix 

• P is called Orthogonal projection onto R(A) (very useful in constrained 

optimization)

 r=(I-P)b

 Properties of orthogonal Projections:
• P=PT (Symmetric)

• P2=P (idempotent)

• (I-P)2=(I-P) (idempotent)

• PA=A or (I-P)A=0

PAxLS=AxLS

(I-P) r = (I-P) 2b= r  Pr = 0
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 Note 1: Standard deviation of the residuals is given by

• 95% of the scaled residuals ri/r should lie in the interval [-2,2]. If not, 

there may be a problem with the data or model or both. See:

– S. Chatterjee and B. Price, Regression Analysis by Example, Wiley: 

New York, 1977.

– P. A. Belsey, E. Kuh and R. Welsh, Regression Diagnostics: 

Identifying Influential Data and Source of Collinearity, Wiley: New 

York, 1981. 

 Note 2: A† is defined for rank deficient cases also (See Lecture 7)
• In the general case, A† satisfies Moore-Penrose conditions:

A A† A=A; AA† =(AA†)T; A† A=(A† A)T; A† A A† = A†

AA† ~ orthogonal projection onto R(A) = P

A†A ~ orthogonal projection onto R(AT)

xLS= A† b= A†A x;

 A†A x belongs to R(AT). This will become clear from the following SVD

analysis

2 2LS

r

b Ax r

m n m n
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LS Solution & SVD

 Further insights into LS problem using SVD

R(A)=(u1 u2 … ur);      R(AT)=(v1 v2 … vr);

N(A)=(vr+1 … vn);      N(AT)=(ur+1 … um);

• If xLS solves the LS problem, then

 xLSR(AT)

1 2 1 2

1

0
            =               rank of 

0 0

      U=(   ... );       V=(   ... );

rT

r

T

i i i m n

i

A U V r A

u v u u u v v v


 
    

 



2 22

2 2 2

2
2 2

2
1 1

Let ( ) ( )

T T T T T

r m

T T T T

i i i i

i i r

J Ax b U Ax U b U AVV x U b

y V x J y U b y u b u b
  

     

        

1

;   1

0     otherwise

T

i

ii

r

i i

i

u b
i r

y

x Vy x y v






 

  



   

1

( )
Tr

i

LS i

i
i

u b
x v
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LS Solution Properties



Note that Orthogonal Projection 



AxLS=Pb  orthogonal projection onto R(A)

xLSR(AT)  A†A is orthogonal projection onto R(AT)

Since xLS=A†b=A†Ax

A†=V†UT

Also, A† minimizes: (whenever A is full rank)

1 1 1 1

( )( ) ( ) ( )
Tr r r r

T T Tk

LS i i i k i i i i

k i i i
k

u b
Ax u v v u u b u b u R A

   

     

1 1 1

( ) ( ) ( ) ( )
m r m

T T T T

LS i i i i i i

i i i r

r b Ax u u b u b u u b u I P b N A
   

         

1

   and   
r

T

i i LS

i

P u u Ax Pb


 

2 2 22 †

2 22
1

( ) ( ) ( )
m

T

opt i

i r

J u b I AA b I P b r
 

     

† 1 1 1

1 2
(   ...  0 .... 0)

r
Diag      

 

 
1 †

min min ( ) ( )

min

( )

T

m m mFX X

T T T T

mX

T T T T

AX I tr AX I AX I

tr X A AX X A AX I

A AX A X A A A A
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 Let us return to the normal equations. ATA x=AT b.

Assume full rank: Rank(A)=n

 One way:

• Form Cholesky decomposition of ATA=LDLT or SST

and solve Sy=ATb; STx=y

 Problems

• Must form ATAO(n3/2)

• Cholesky of ATAO(n3/6)

• There exist other stable methods of solving Ax=b when m ≫ n and 

rank(A)=n

• We will consider deficient rank case later in computing A†

 These stable methods are:

• Householder

• Gram-Schmidt (serial & Parallel) and

• Givens orthogonalization methods.

How to Solve LS Problems?

 
2

2
max max

min min

( ) ( )
( ) ( )

( ) ( )

T

T

T

A A A
Error A A A

A A A
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 Key idea of all three methods:

• Find an m  n orthogonal matrix

where R1 is upper   A=QR

• Do the same thing to b 

• Then

• If rank(A)=n, R1 is invertible 

 Householder transformations to compute R1

• Basic Idea: If have a vector a=(a1 a2 … am)T, then it is possible to 

find an orthogonal matrix W such that

• Since orthogonal matrices do not change the 2-norm, =║a║2

Key Idea of Orthogonalization Methods 

1

0

T
R

Q Q A R
 

    
 

2 2 1

12 2
 if LSAx b d x R b  

2

22 2 21

12 2 22

2

 
0

T T

n

R c
Ax b Q Ax Q b x R x c d

d

x R

   
          

   

 

T
n c

Q b
m n d

 
  

  

1

2 0

: :

0m

a

a
W

a
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• Suppose we have a way of getting W. What does it mean in terms of 

solving the over determined system of equations Ax=b (m>n) 

• Illustrative example: m=6, n=4

 W4W3W2W1A=R QTA=R

 W=Householder matrix or Householder transformation (reflection matrix) 

~unit vector

 W is symmetric W=WT

31 2

4

0 0 * * 0 * *

0 0 0 * * 0 0

0 0 0 * * 0 0 0

0 0 0 * * 0 0 0

0 0 0 * * 0 0 0

0 * *

0 0

WW W

W

x x x x y y y y y y y y y

x x x x y y y

x x x x y y y z

x x x x y y y z

x x x x y y y z

x x x x y y y z

y y y

z

  

 









       
       
       
       

         
       
       
       
       



1

0 0 0
0

0 0 0 0

0 0 0 0

R

 
 
   
   

           
 
 

2 2 2

2
2 2 ;  =

T T
T

T

uu u u u
I I I vv v

u u u u u
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 W is also orthogonal because

W-1=W=WT  orthogonal

• So, Householder matrix W is ORTHOGONAL and 

SYMMETRIC

 What does W do? if 

 det W = -1 also Wv1 = -v1

where

2

2
2 2 4

( )

T T T T

T T T

uu uu uu u u
W I I

u u u u u u
    

1 1 0 2 0 1 0
,  

0 0 1 0 0 0 1
v W

       
          
       

V2

V1

V3

-V3

-V2

-V1

V2

V1

1 1

2 2

2 2 21 1

2 2

v Wv v
   

       
   

1 1 1

2 2 2

1

2

2

3 2

1 0 0 1
2

0 1 1 01

cos cos 2 sin 21 2cos 2sin cos
,  

sin sin 2 cos 22sin cos 1 2sin

W

v W
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 What if we apply W to a general vector a?

Also, a=(a-vT a v)+(vTa)v

 What does it mean?

• To fix ideas, consider two dimensional case

• W a=c-d mirror image on the otherside of vTx=0

• In n-dimensions, vT x=0 is a plane

W a=mirror image of a on the other side of vT x=0

• If a lies on the plane (i.e., vT a=0), then W a =a  lies on the plane

• So, W v=-v; W a=a if a  vT a=0   (n-1) such independent columns a

• i(w)=-1,1,1,…,1  |W|=-1

2 ( )
2( ) ( ) ( )

T
T T T

T

v v a
Wa a a v a v a v a v v a v

v v
      

1

1 2

2

2 2

1 2 1 2

2 2

1 2 1 2

cos
,  cos sin

sin

(1 cos ) sin cos cos sin cos

sin cos (1 sin ) sin cos sin

T
a

v a v a a a
a

a a a a
a

a a a a

c d


 



     

     

  
      

   

     
    

      

 

(vTa)v

(a-(vTa)v)

vTx=0

v

-(vTa)v

a

Wa

Projection 

onto vTx=0
Projection 

of a onto v
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 What we want to do is to use WS to change columns of A into 

columns of R

• Suppose we want W a = r, then what should v be?

a=av +av, av║ v

• Since Wa = - av+ av  r = av - av

• a- r = 2av, r =av-av  a-r║v

• Also ║a║2= ║r║2 since W is orthogonal

• Want

• This must be true because:

11 11 1111

21 21

1 1

0
||

: ::

0

             

m n

a a rr

a a
v

a a

a r

    
    
     
    
    

    

1

1

2

( )( ) 2( )
2 ( )

( ) ( ) ( ) ( )

T

T

T T

T T

uu
W I

u u

a r a r a r a
W a I a a a r r

a r a r a r a r
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 What is uTu=(a-r)T(a-r)
• (a-r)T a-(a-r)T r =aTa+rTr-2aTr =2aTu (recall aT a=rTr)

=2[a11(a11-r1)+(a21)
2+..+(an1)

2]=2[(||a||2)
2-a11r11]

• To avoid round-off errors, select r11= -sign(a11) ||a||2= -s1

u1=a11-r11=a11+sign(a11) ||a||2; ui=ai1; i2

• Also, uT u =2(||a2||
2+a11s1)=2s1(s1+a11)=2s11=21

• To get the rest of the matrix (columns 2 to n) 

Where uTA/1 is a row vector and

• Next

1

1 1

2
T T T

T

uu uu u A
W A I A I A A u

u u  

    
         
     

11 12 13 1

22 23 2

2 1

0

0 0

0 0

n

n

r r r r

r r r
W W A

 
 
 
  
 

  









11 12 13 1

1

0

0

0

n
r r r r

W A
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• The u vector associated with W2 will have

• Continue n steps to get QT=WnWn-1…W1 or Q=W1W2…W n

 Example: 

1
2

1

2 22 2

2

2 22 2

2

2 22 2

0

( )
n

i

i

u

u a s

s sign a a

a u





 

 
  

 





3 4

5 5

1 1 1

34

5 5

11

2 2 2 1

3

11 1 2

3 1

0 0

4 7

8 0 5 5

0 ;  0 1 0 ;  0 0

4 0 0 5

1 0 0 5 5
5

;  0 0 1 ;  0 5
5 0

0 1 0 0 0

5 5
So,  and 

0 5

A

u W W A

R
u W W W A

R Q WW

 
 


 
  

        
     

  
     
          

    
      

           
         


  

   
 

4

5 5

34

5 5

0

0 0 1

0
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 Storage considerations: overwrite A with R and u vectors as follows

Since                                 , need not store    

 Algorithm Householder

For k=1, 2, …, n DO

uk =akk + s  can store in akk location

ui= aik for i=k+1,…, n  don’t do anything

k=|s uk|

dk=-s

Compute zi=          for i=k,…,n

ali  ali-ul zi i=k+1,…,n, l=k,…,n

b  b-u(uT b/)

end DO

Householder Algorithm - 1

(1)

11 11 12 13 1

(1) (2)

22 22 2 23 2

1 2 1 (3)

3

(1) (2) (3) ( )

.. ;  ( ) ;  =
. .

n

n

n n

n

nn nm m m m

ru r r r

ru u r r
W W W W A d diag R

u

ru u u u










     
     
       
     
     

    






( ) ( )i i

i i i i ii
u s u r  

S

i


2sgn( )
n

kk ii

i k

s a a


 

T

i

k

a u
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 Note: Q matrix can be computed off-line

Q = I

For k=1, 2, …, n DO

end DO

 To solve LS:

• We have already formed bnew = QT b

• So, use back substitution

For i=n-1,…, 1 DO

end DO

( ) ( )

( )| |

k k T

k

k k

u u
Q Q Q

u d
 

new

n

n

n

b
x

d


1

n

new

i ij j

j i

i

i

b a x

x
d
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 Example again:

• Suppose

• Then, the least squares solution is obtained via:

• Residual at the solution 

Householder Example

0

18

25

b

 
 


 
  

3 4

5 5

11 34

5 5

1

2

0 0 20

0 18 15
0

0 1 0 25 18

5 5 20 1

0 5 15 3

T

LS

LS

R
x Q b

x
x

x

       
       

           
             

        
         

       

0

18

0

LS
r b Ax
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 Computational load

• Want R only: n2(m-n/3)

• Want R and b and x: n2(m-n/3 + m n + O(n2/2))

• Want R, b, x and Q: n2(m-n/3) +m n + O(n2/2)+2[m2n-mn2+n3/3]

 A nice feature of Householder method

• Can get orthonormal basis for Rm

• Given (a1 a2 … an) where each aiRm, find orthonormal basis for R(A)

• Since qi are orthonormal

a1=r11q1

a2=r12q1+r22q2

a k=r1kq1+r2kq2+…+rkk qk

R(a1 … ak)=R(q1 … qk)

• So 

R(A)=(q1 …qn)

N(AT)=(qn+1 …qm)=R(A)

= orthonormal basis for the null space of AT

= orthogonal complement of R(A)

R(A) and N(AT) from Householder 

1 2 1 2

1

(   ) (   )
k

m m k ik i

i

A QR a a a Qr Qr Qr a r q


     

;  1,2,...,T

ik i k
r q a i k 
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 Example again

 Gram-Schmidt orthogonalization procedure

• Rank(A)=n  rkk  0 for k=1, 2, …, n

 can solve for qk via

can think of                                     

• This is precisely the classical Gram-Schmidt procedure for 

constructing an orthonormal basis (q1…qn)  qi
Tqj=ij and span          

(a1 … an)

• The procedure also computes A=QR in the process

1 2

3

0.6 0.8

( ) 0 0

0.8 0.6

0

( ) 1

0

T

R A q q

N A q

 
      
   

 
 

  
 
  

1

1

1 k

k k ik i

i
kk

q a r q
r





 
 

  


1

1

|| ( )  since 
k

T T

k k i k i ik i k

i

q a q a q r q a
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 Algorithm: Classical Gram-Schmidt

For k=1, 2, …, n DO

For i=1,k-1

rik=ai
Tak

ak ak- rik ai

end DO

end DO

end DO

• At the kth step, we determine kth column of Q and kth column of R.   

replaces A with Q

• Can solve LS problem

A=QR Q=m  n; R=n  n; QTQ=In

ATA x=RTQTQR x =RTQT b  RTR x=RTb

Rx=b since R is nonsingular

• The algorithm behaves very badly numerically… severe loss of  

orthogonality

Classical Gram-Schmidt - 1

 
1
2T

kk k k

k

k

kk

r a a

a
a

r
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 One solution

• Go through it a second time

• Can show that     add up

 Algorithm: Two-Step Gram-Schmidt

R0

For k=1, 2, …, n DO

For l=1, 2,… DO

For i=1,k-1

s=ai
T ak

akak –s ai

rikrik +s

end DO

end DO

• end DO

 However  a better method called: Modified Gram-Schmidt (MGS) ..(also 

called parallel Gram-Schmidt)

S

ik
r

 
1
2T

kk k k

k

k

kk

r a a

a
a

r





27

Classical Gram-Schmidt - 2



Copyright © 2008 by K. Pattipati 

 To motivate the procedure, consider Serial (classical) Gram-Schmidt

 Determine R one column at a time and orthogonalize qk w.r.t.

q1, q2, …, qk-1, etc.

Result: (a1 a2 … an)=[Qr1 Qr2 … Q rn]   Backward looking

Motivating Parallel Gram-Schmidt

1

1 1 1 1 11

1

2

2 2 2 1 2 2 22 2 1 12

2

3

3 3 3 1 3 2 3 3 33 3 1 13 3 2 23

3

;  ;|| ||
|| ||

;  ;|| || ;  
|| ||

;  ;|| || ;  ;  
|| ||

T T

T T T T

q
q a q q r

q

q
q a a q q q r a q r

q

q
q a a q a q q q r a q r a q r

q

  

    

      

4321
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 In Parallel or modified Gram-Schmidt, we determine kth column of 

Q and kth row of R at the  kth step

The procedure essentially writes A as a dyadic (or outer-

product) sum

Consider step k=1

We have

Set r11=||a1||2=(a1
Ta1)

½

q1=a1/r11

recalling that qi
T qj=ij, we have

q1
T [a1B]=r1

T=(r11…r1n)

(q1
Ta1 q1

TB)=r1
T  q1

TB=(r12…r1n)

Parallel Gram-Schmidt - 1

1

n

T

i i

i

A q r




 (1)

1 21 1 2

1

n
T T T T

i ni n

i

A a B q r q r q r q r
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columns

1 non-zero 
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Forward Looking
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Consequently, , k=2, …, n

So, at step 2 we have

A(2)=[z B]; z=new a1; B=new B

r22=||z||2; q2=z/r22;

As before, (r23…r2n)=q2
TB

and A(3)=B-q2 (r23…r2n) since q2 r22 = z

Next step, do with

 Note:

• Can store Q in A

• Do orthogonalization twice 

1 1

T

k k
r q a

 (3)

3

0 0
n

T

i i

i

A q r




 1 11 1 1 1 12 1
| 0 | ( )

T T

n
A q r a B q r B q r r      

 (2)

11

2

0
n

T T

ii

i

A A q r q r


  

Parallel Gram-Schmidt - 2

 from each iteration add upkir
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R = 0

For k=1, 2, …, n Do

rkk= (ak
T ak)

½

For i=1, …, m Do

aik =aik / rkk

end DO

For l=1, 2 DO

For j=k+1, …, n Do

For i=1,…, m Do

aij=aij-aik   computing aj=aj-(qk
T aj) aj

end DO

rkj=rkj+

end DO

end DO

end DO

 Requires O(mn2) operations per iteration.   Do it twice

 Householder 2(mn2-n3/3) to get Q and R, but Householder has better accuracy

Parallel Gram-Schmidt Algorithm

1

computing 
m

T

ik ij k j

i

a a q a
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Summary

 Why orthogonalization methods ?

 Least Squares Problem and its properties

 Householder transformation

 Gram-Schmidt orthogonalization

− Serial (classical) Gram-Schmidt

− Parallel (modified) Gram-Schmidt
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