Lecture 6: Least Squares Problem, Householder and Serial Gram-Schmidt Orthogonalization Methods

Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering University of Connecticut

Contact: krishna@engr.uconn.edu (860) 486-2890

$$
\text { ECE } 6435
$$

Adv Numerical Methods in Sci Comp
Fall 2008
October 1, 2008

Outline of Lecture 6

\square Why orthogonalization methods ?
\square Least Squares Problem and its properties
\square Householder transformation
\square Gram-Schmidt orthogonalization

- Serial (classical) Gram-Schmidt
- Parallel (modified) Gram-Schmidt

Why Orthogonalization Methods？

\square Orthogonalization methods are ubiquitous in scientific computation
－Used in Chebyshev orthogonal polynomials for function approximation （Lectures 2 and 3）
－We like orthogonal descent directions in function minimization \Rightarrow conjugate directions（so－called Q－orthogonal directions（lecture 5））
－Representation of random functions as weighted sum of orthogonal functions（ e．g．，Karhunen－Loeve expansion，sum of sinusoids or complex exponentials）
－Orthogonal transformations：Householder，Gram－Schmidt，and Givens． Useful in Least Squares Estimation，Eigen value problems（QR）， Lyapunov equations，and Riccati equations．
\square To motivate the methods，consider a system of linear equations：

$$
A \underline{x}=\underline{b}, A \text { is } m \times n, m \gg n
$$

Least Squares Problem

The Least Squares problem:
$\min _{\underline{x}} \frac{1}{2}\|A \underline{x}-\underset{\sim}{b}\|_{2}^{2}=\min _{\underline{x}} \frac{1}{2}(A \underline{x}-\underline{b})^{T}(A \underline{x}-\underline{b})$

- Weighted Least Squares Problem:

$$
\min _{\underline{x}} \frac{1}{2}\|A \underline{x}-\underline{b}\|_{V^{-1}}^{2}=\min _{\underline{x}} \frac{1}{2}(A \underline{x}-\underline{b})^{T} V^{-1}(A \underline{x}-\underline{b})
$$

where V is typically diagonal (i.e., $V=\operatorname{diag}\left(\sigma_{1}{ }^{2} \sigma_{2}{ }^{2} \ldots \sigma_{m}{ }^{2}\right)$). σ_{i}^{2} is a measure of uncertainty (error) in the measurement b_{i}.

- Other Formulations

$$
\begin{aligned}
& \min _{\underline{x}}\|A \underline{x}-\underline{b}\|_{1} \quad \text { can be solved via } \\
& \min _{\underline{x}}\|A \underline{x}-\underline{b}\|_{\infty} \text { Linear Programming (LP) .. Lecture } 9
\end{aligned}
$$

- 1-norm is less sensitive to the presence of "outliers" (bad data).

Example of Least Squares Problem- 1

\square Example:

- $b_{i}=x+e_{i}$
- Criteria to be minimized

2-norm : $\quad \min \sum\left(b_{i}-x\right)^{2} \Rightarrow \hat{x}_{2}=$ average of the b_{i}^{S}
1-norm :

$$
\min \sum_{i}^{i}\left|b_{i}-x\right| \Rightarrow \hat{x}_{1}=\text { median of the } b_{i}^{\mathrm{S}}
$$

∞-norm :

$$
\min _{\max }^{i}\left|b_{i}-x\right| \Rightarrow \hat{x}_{\infty}=\frac{1}{2}\left(\min _{i} b_{i}+\max _{i} b_{i}\right)
$$

- Consider the data set $\left\{b_{i}\right\}=\left\{\begin{array}{llll}1 & 2 & 3 & 5\end{array}\right\}$

$$
\begin{aligned}
& \hat{x}_{2}=3.8 \\
& \hat{x}_{1}=3 \\
& \hat{x}_{\infty}=4.5
\end{aligned}
$$

- Suppose that a mistake has been made and the last data point is thought to be 88 rather than 8 . Then

$$
\begin{aligned}
& \hat{x}_{2}=19.8 \\
& \hat{x}_{1}=3 \\
& \hat{x}_{\infty}=44.5
\end{aligned} \quad \text { the least affected by errors }
$$

Example of Least Squares Problem－ 2

－We will use 2 －norm in this and the next two lectures．
－Solution procedures for 1－and ∞－norm in Lecture 9.
\square Why 2－norm：
－Because it is a twice continuously differentiable function
－Has nice statistical interpretation in terms of maximum likelihood estimation for Gaussian error models
\square Example：Function approximation by a weighted sum of complex exponentials．

$$
f(t)=\sum_{i=1}^{n} x_{i} e^{j \omega_{i} t}
$$

－Suppose we sample the function at $t=0, T, 2 T, \ldots,(m-1) T$
－Then $f(k T)=\sum_{i=1}^{n} x_{i} e^{i k \omega_{T} T}=\sum_{i=1}^{n} x_{i} z^{k} ; z=e^{j \omega_{i} T} ; k=0,1,2, \ldots,(m-1)$
－The (A, \underline{b}) associated with the least squares problem are

$$
A=\left[\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
z_{1} & z_{2} & \ldots & z_{n} \\
z_{1}^{2} & z_{2}^{2} & \ldots & z_{n}^{2} \\
\vdots & \vdots & & \vdots \\
z_{1}^{m-1} & z_{2}^{m-1} & \ldots & z_{n}^{m-1}
\end{array}\right] ; \underline{b}=\left[\begin{array}{c}
f(0) \\
f(T) \\
f(2 T) \\
\vdots \\
f((m-1) T)
\end{array}\right] \quad \text { Rectangular Van der Monde Matrix }
$$

LS Problem Basics

What do orthogonal transformations do for us?

- Suppose have made an orthogonal transformation on A such that A is transformed into $Q^{T} A$
$\Rightarrow \min _{x} \frac{1}{2}\left\|Q^{T} A \underline{x}-Q^{T} \underline{b}\right\|_{2}^{2} \quad$ is unchanged since $Q Q^{\mathrm{T}}=Q^{\mathrm{T}} Q=I$
- KEY $\stackrel{x}{\text { In }}$.
- What are the properties of LS solution?
$\min J=\frac{1}{2}\left[\underline{x}^{T} A^{T} A \underline{x}-\underline{x}^{T} A^{T} \underline{\boldsymbol{b}}-\underline{\boldsymbol{b}}^{T} A^{T} \underline{x}+\underline{\boldsymbol{b}}^{T} \underline{\boldsymbol{b}}\right]$ $\partial J / \partial \underline{x}=0 \Rightarrow A^{T} A \underline{x}_{L S}=A^{T} \underline{b}$

These are the so-called normal equations. Bad way to solve. We will come back to this later. or $A^{T}\left[\underline{b}-A \underline{x}_{t s}\right]=\underline{0}$
$\underline{r}=\underline{b}-A \underline{x}_{L S} \quad$ is called the residual vector $=$ measurement - predicted measurement

- Recall the linear spaces associated with $A \underline{x}=\underline{b}$.
- $R(A)=$ column space of $A \in R^{\mathrm{m}}$
- $N(A)=$ Null space of $A \in R^{\mathrm{n}}$
- Linear spaces associated with
- $R\left(A^{T}\right)=$ column space of $A \in R^{\mathrm{n}}$
- $N\left(A^{T}\right)=$ Null space of $A^{T} \in R^{\mathrm{m}}$
\square Know
- $\operatorname{dim}(R(A))+\operatorname{dim}\left(N\left(A^{T}\right)\right)=m$
- $\operatorname{dim}(N(A))+\operatorname{dim}\left(R\left(A^{T}\right)\right)=n$

Least Squares Solution Properties - 1

- Orthogonal property of least squares
- $A^{\top} \underline{r}=\underline{0} \Rightarrow \underline{r} \in N\left(A^{\top}\right)$
- Since $R(A)$ is perpendicular to $N\left(A^{\top}\right) \Rightarrow \underline{r}$ is perpendicular to $R(A)$
- $A \underline{X}_{L S} \Rightarrow$ linear combinations of columns of $A \in R(A)$
- Since $R(A)$ is perpendicular to $N\left(A^{\top}\right)$

$$
A \underline{x}_{L S} \in R(A)_{\perp}{ }^{\mathrm{r}} \underline{\underline{r}} \in N\left(A^{\top}\right) \Rightarrow A \underline{x}_{L S}{ }^{\mathrm{r}} \underline{\underline{r}}
$$

- What does $L S$ do?
- Decomposes \underline{b} into two orthogonal complements

$$
\begin{aligned}
& A \underline{x}_{L S} \in R(\bar{A}) \text { and } \underline{r}=\underline{b}-A \underline{x}_{L S} \in N\left(A^{\top}\right) \\
& \Rightarrow\left\|\left\|_{2}^{\|_{2}}=\right\| A \underline{x}_{s}\right\|_{2}^{2}+\| \underline{\underline{r} \|_{2}^{2}} \\
& \cos \theta=\frac{\left\|A x_{L S}\right\|_{2}}{\|b\|_{2}}, \sin \theta=\| \underline{\| \underline{\|_{2}}} \\
& \|\underline{b}\|_{2}
\end{aligned}
$$

For $m=n=\operatorname{Rank}(A) \theta=0 \Rightarrow A \underline{x}_{L S}=\underline{b}$

- $A \underline{x}_{L S}$ is a "prediction" of what \underline{b} is
- It is correct for full rank and $m \leq n$ case
- If $m<n$ and full rank, \exists an infinite \# of solutions to $A \underline{x}=\underline{b}$

Least Squares Solution Properties - 2

- We will then ask for that \underline{x} which has minimum $\underline{2-\text { norm (i.e., smallest }\|x\|_{2}, ~}$ $\ni A \underline{x}=\underline{b}$).
- When $\operatorname{rank}(A)=n, m>n$, $\underline{x}_{L S}=\left(A^{T} A\right)^{-1} A^{T} \underline{b}=A^{\dagger} \underline{b}$ where $A^{\dagger}=$ Moore-Penrose generalized (pseudo) inverse
- So, predicted measurement:

$$
A \underline{x}_{L S}=A\left(A^{T} A\right)^{-1} A^{T} \underline{b}=A A^{\dagger} \underline{b}=P \underline{b}
$$

where $P \sim$ projection matrix

- P is called Orthogonal projection onto $R(A)$ (very useful in constrained optimization)
$\Rightarrow \underline{r}=(I-P) \underline{b}$
\square Properties of orthogonal Projections:
- $P=P^{T}$ (Symmetric)
- $P^{2}=P$ (idempotent)
- $(I-P)^{2}=(\mathrm{I}-P)$ (idempotent)
- $P A=A$ or $(I-P) A=0$

$$
\begin{gathered}
\Rightarrow P A \underline{x}_{L S}=A \underline{x}_{L S} \\
(I-P) \underline{r}=(I-P)^{2} \underline{b}=\underline{r} \Rightarrow P \underline{r}=\underline{0}
\end{gathered}
$$

Least Squares Solution Properties - 3

Note 1: Standard deviation of the residuals is given by

$$
\sigma_{r}=\frac{\left\|\underline{\|}-A x_{s}\right\|_{2}}{\sqrt{m-n}}=\frac{\|\underline{r}\|_{2}}{\sqrt{m-n}}
$$

- 95% of the scaled residuals r_{i} / σ_{r} should lie in the interval [-2,2]. If not, there may be a problem with the data or model or both. See:
- S. Chatterjee and B. Price, Regression Analysis by Example, Wiley: New York, 1977.
- P. A. Belsey, E. Kuh and R. Welsh, Regression Diagnostics: Identifying Influential Data and Source of Collinearity, Wiley: New York, 1981.
$\square \quad$ Note $2: A^{\dagger}$ is defined for rank deficient cases also (See Lecture 7)
- In the general case, A^{\dagger} satisfies Moore-Penrose conditions:
$A A^{\dagger} A=A ; A A^{\dagger}=\left(A A^{\dagger}\right)^{T} ; A^{\dagger} A=\left(A^{\dagger} A\right)^{T} ; A^{\dagger} A A^{\dagger}=A^{\dagger}$
$A A^{\dagger} \sim$ orthogonal projection onto $R(A)=P$
$A^{\dagger} A \sim$ orthogonal projection onto $R\left(A^{T}\right)$
$\underline{x}_{L S}=A^{\dagger} \underline{b}=A^{\dagger} A \underline{x} ;$
$\Rightarrow A^{\dagger} A \underline{x}$ belongs to $R\left(A^{T}\right)$. This will become clear from the following $\underline{\text { SVD }}$ analysis

LS Solution \& SVD

- Further insights into LS problem using SVD

$$
J=\|A \underline{x}-\underline{b}\|_{2}^{2}=\left\|U^{\tau} A \underline{x}-U^{\tau} \underline{b}\right\|_{2}^{2}=\left\|U^{\tau} A V V^{\tau} \underline{x}-U^{\tau} \underline{b}\right\|_{2}^{2}
$$

$$
\text { Let } \underline{y}=V^{\tau} \underline{x} \Rightarrow J=\left\|\underline{\Sigma} \underline{y}-U^{\tau} \underline{b}\right\|_{2}^{2}=\sum_{i=1}^{r}\left(\sigma_{i} y_{i}-\underline{u}_{i}^{\tau} \underline{b}\right)^{2}+\sum_{i=+1}^{m}\left(u_{i}^{\tau} \underline{b}\right)^{2}
$$

$$
\left.\begin{array}{l}
\Rightarrow \underline{y}_{i}= \begin{cases}\frac{\underline{u}_{i}^{r} b}{\sigma_{i}} ; & 1 \leq i \leq r \\
0 & \text { otherwise }\end{cases} \\
\Rightarrow \underline{x}=V \underline{y} \Rightarrow \underline{x}=\sum_{i=1} y_{i} \underline{v}
\end{array}\right\}
$$

- If $\underline{x}_{L S}$ solves the LS problem, then

$$
\underline{x}_{t s}=\sum_{i=1}^{r}\left(\frac{\underline{u}_{i}^{T} \underline{b}}{\sigma_{i}}\right) \quad \Rightarrow \underline{x}_{L S} \in R\left(A^{T}\right)
$$

$$
\begin{aligned}
& A=U \Sigma V^{T} \quad \Sigma=\left[\begin{array}{cc}
\Sigma_{r} & 0 \\
0 & 0
\end{array}\right] \quad r=\operatorname{rank} \text { of } A \\
& =\sum_{i=1}^{r} \sigma_{i} \underline{u}_{\underline{u}}^{v_{t}^{T}} \quad \mathrm{U}=\left(\underline{u}_{1}, \underline{u}_{2} \ldots \underline{u}_{m}\right) ; \quad \mathrm{V}=\left(\underline{\nu}, \underline{v}_{2} \ldots \underline{v}_{n}\right) ; \\
& R(A)=\left(\underline{u}_{1} \underline{u}_{2} \ldots \underline{u}_{r}\right) ; \quad R\left(A^{T}\right)=\left(\underline{v}_{1} \underline{v}_{2} \ldots \underline{v}_{r}\right) ; \\
& N(A)=\left(\underline{v}_{r+1} \cdots \underline{\underline{u}}_{n}\right) ; \quad N\left(A^{T}\right)=\left(\underline{u}_{r+1} \quad \cdots \quad \underline{u}_{n}\right) ;
\end{aligned}
$$

How to Solve LS Problems？

\square Let us return to the normal equations．$A^{T} A \underline{x}=A^{T} \underline{b}$ ．
Assume full rank： $\operatorname{Rank}(A)=n$
\square One way：
－Form Cholesky decomposition of $A^{T} A=L D L^{T}$ or $S S^{T}$ and solve $S \underline{y}=A^{T} \underline{b} ; S^{T} \underline{x}=\underline{y}$
－Problems
－Must form $A^{T} A \approx \mathrm{O}\left(n^{3} / 2\right)$
－Cholesky of $A^{T} A \approx \mathrm{O}\left(n^{3} / 6\right)$

$$
\text { Error } \propto \kappa\left(A^{T} A\right)=\frac{\lambda_{\max }\left(A^{T} A\right)}{\lambda_{\min }\left(A^{T} A\right)}=\left[\frac{\sigma_{\text {max }}(A)}{\sigma_{\text {min }}(A)}\right]^{2}=[\kappa(A)]^{2}
$$

－There exist other stable methods of solving $A \underline{x}=\underline{b}$ when $m \gg n$ and $\operatorname{rank}(A)=n$
－We will consider deficient rank case later in computing A^{\dagger}
\square These stable methods are：
－Householder
－Gram－Schmidt（serial \＆Parallel）and
－Givens orthogonalization methods．

Key Idea of Orthogonalization Methods

－Key idea of all three methods：
－Find an $m \times n$ orthogonal matrix $Q \ni Q^{T} A=R=\left[\begin{array}{c}R_{1} \\ 0\end{array}\right]$
where R_{1} is upper $\Delta \Rightarrow A=Q R$
－Then
Then
$\|A \underline{x}-\underline{b}\|_{2}^{2}=\left\|Q^{T} A \underline{x}-Q^{T} \underline{b}\right\|_{2}^{2}=\left\|\left[\begin{array}{c}R_{1} \\ 0\end{array}\right] \underline{x}-\left[\begin{array}{c}\underline{c} \\ \underline{d}\end{array}\right]\right\|_{2}^{2}=\left\|R_{1} \underline{x}-\underline{c}\right\|_{2}^{2}+\|\underline{d}\|_{2}^{2}, ~$ $\forall x \in R^{n}$
－If $\underline{\operatorname{rank}(A)=n, R_{1} \text { is invertible } \Rightarrow\|A \underline{x}-\underline{b}\|_{2}^{2}=\|\underline{d}\|_{2}^{2} \text { if } \underline{x}_{L S}=R_{1}^{-1} \underline{b}, ~}$
\square Householder transformations to compute R_{1}
－Basic Idea：If have a vector $\underline{a}=\left(a_{1} a_{2} \ldots a_{m}\right)^{T}$ ，then it is possible to find an orthogonal matrix W such that

$$
W\left[\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{m}
\end{array}\right]=\left[\begin{array}{c}
\alpha \\
0 \\
\vdots \\
0
\end{array}\right]
$$

－Since orthogonal matrices do not change the 2－norm，$\alpha= \pm\|a\|_{2}$

Householder Method

- Suppose we have a way of getting W. What does it mean in terms of solving the over determined system of equations $A \underline{x}=\underline{b}(m>n)$
- Illustrative example: $m=6, n=4$

$$
\begin{aligned}
& {\left[\begin{array}{llll}
x & x & x & x \\
x & x & x & x
\end{array}\right] \xrightarrow{\boldsymbol{w}_{1}}\left[\begin{array}{llll}
\alpha & y & y & y \\
0 & y & y & y
\end{array}\right] \xrightarrow{\boldsymbol{w}_{2}}\left[\begin{array}{llll}
\alpha & y & y & y \\
0 & \beta & * & * \\
0 & 0 & * & * \\
0 & 0 & * & * \\
0 & 0 & * & * \\
0 & 0 & * & *
\end{array}\right] \xrightarrow{\boldsymbol{w}_{3}}\left[\begin{array}{llll}
\alpha & y & y & y \\
0 & \beta & * & * \\
0 & 0 & \gamma & z \\
0 & 0 & 0 & z \\
0 & 0 & 0 & z \\
0 & 0 & 0 & z
\end{array}\right]} \\
& \xrightarrow{w_{s}}\left[\begin{array}{llll}
\alpha & y & y & y \\
0 & \beta & * & * \\
0 & 0 & \gamma & z \\
0 & 0 & 0 & \Delta \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right]=\left[\begin{array}{c}
R_{1} \\
--- \\
0
\end{array}\right] \\
& \Rightarrow W_{4} W_{3} W_{2} W_{1} A=R \Rightarrow Q^{T} A=R
\end{aligned}
$$

- $W=$ Householder matrix or Householder transformation (reflection matrix)
$=\left[I-\frac{2 \underline{u} \underline{u}^{T}}{\underline{\underline{u}}^{T} \underline{u}}\right]=\left[I-2 \frac{\underline{u}}{\|\underline{\underline{u}}\|_{2}} \frac{\underline{u}^{T}}{\|\underline{u}\|_{2}}\right]=\left[I-2 \underline{v} \underline{v}^{T}\right] ; \underline{v}=\frac{\underline{u}}{\|\underline{\underline{u}}\|_{2}} \sim$ unit vector
$\Rightarrow W$ is symmetric $\Rightarrow W=W^{T}$

What does Householder Matrix do?

$\Rightarrow W$ is also orthogonal because
$W^{2}=I-2 \frac{\underline{\underline{u} \underline{u}^{T}}}{\underline{u}^{T} \underline{u}}-2 \frac{\underline{u} \underline{\underline{u}} \underline{u}^{T}}{\underline{u}^{T} \underline{u}}+4 \frac{\underline{\underline{u}} \underline{u}^{T} \underline{u^{T}} \underline{\underline{u}}}{\left(\underline{u}^{T} \underline{u}\right)^{2}}=I$
$W^{-1}=W=W^{T} \Rightarrow$ orthogonal

- So, Householder matrix W is ORTHOGONAL and
$\square \quad \underline{\text { SYMMETRIC }}$ What does W do? if $\underline{v}=\left[\begin{array}{l}1 \\ 0\end{array}\right], W=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]-\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right]=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$
$\Rightarrow \operatorname{det} W=-1$ also $W \underline{v}_{1}=-\underline{v}_{1}$
$\underline{v}_{2}=\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}}\end{array}\right] \Rightarrow W \underline{v}_{2}=-\underline{v}_{2}=\left[\begin{array}{c}-\frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]$
where
$W=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]-2\left[\begin{array}{c}\frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}}\end{array}\right] \frac{\left[\begin{array}{ll}\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}\end{array}\right]}{1}=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
$\underline{\nu}_{3}=\left[\begin{array}{c}\cos \theta \\ -\sin \theta\end{array}\right], W=\left[\begin{array}{cc}1-2 \cos ^{2} \theta & 2 \sin \theta \cos \theta \\ 2 \sin \theta \cos \theta & 1-2 \sin ^{2} \theta\end{array}\right]=\left[\begin{array}{cc}-\cos 2 \theta & \sin 2 \theta \\ \sin 2 \theta & \cos 2 \theta\end{array}\right]$

Properties of Householder Matrix

$\square \quad$ What if we apply W to a general vector \underline{a} ?

$$
W \underline{a}=\underline{a}-\frac{2 \underline{v}\left(\underline{v}^{T} \underline{a}\right)}{\underline{v}^{T} \underline{v}}=\underline{a}-2\left(\underline{v}^{T} \underline{a}\right) \underline{v}=\underline{a}-\left(\underline{v}^{T} \underline{a}\right) \underline{v}-\left(\underline{v}^{T} \underline{a}\right) \underline{v}
$$

Also, $\left.\underline{a}=\left(\underline{a}-\underline{v}^{T} \underline{a} \underline{v}\right) \overline{+}+\underline{\bar{v}}^{T} \underline{a}\right) \underline{v}$
Projection Projection
onto $\underline{v}^{T} \underline{x}=0$ of \underline{a} onto \underline{v}
\square What does it mean?

- To fix ideas, consider two dimensional case

$$
\begin{aligned}
\underline{v} & =\left[\begin{array}{c}
\cos \theta \\
-\sin \theta
\end{array}\right], \underline{a}=\binom{a_{1}}{a_{2}} \Rightarrow \underline{v}^{T} \underline{a}=a_{1} \cos \theta-a_{2} \sin \theta \\
\underline{a} & =\left[\begin{array}{c}
a_{1}\left(1-\cos ^{2} \theta\right)+a_{2} \sin \theta \cos \theta \\
a_{1} \sin \theta \cos \theta+a_{2}\left(1-\sin ^{2} \theta\right)
\end{array}\right]+\left[\begin{array}{c}
a_{1} \cos ^{2} \theta-a_{2} \sin \theta \cos \theta \\
-a_{1} \sin \theta \cos \theta+a_{2} \sin ^{2} \theta
\end{array}\right] \\
& =\underline{c}+\underline{d}
\end{aligned}
$$

- W $\underline{a}=\underline{c}-\underline{d}$ mirror image on the otherside of $\underline{v}^{T} \underline{x}=0$
- In n-dimensions, $\underline{v}^{T} \underline{x}=0$ is a plane
$\Rightarrow W \underline{a}=$ mirror image of \underline{a} on the other side of $\underline{v}^{T} \underline{x}=0$
- If \underline{a} lies on the plane (i.e., $\underline{v}^{T} \underline{a}=0$), then $W \underline{a}=\underline{a} \Rightarrow$ lies on the plane
- So, $W \underline{v}=-\underline{v} ; W \underline{a}=\underline{a}$ if $\underline{a} \ni \underline{v}^{T} \underline{a}=0 \Rightarrow \ni(n-1)$ such independent columns \underline{a}
- $\Rightarrow \underline{\lambda}_{\mathrm{i}}(w)=-1,1,1, \ldots, 1 \Rightarrow|W|=-1$

Householder Method－ 1

$\square \quad$ What we want to do is to use W^{s} to change columns of A into columns of R
－Suppose we want $W \underline{a}=\underline{r}$ ，then what should \underline{v} be？

$$
\underline{a}=\underline{a}_{v}+\underline{a}_{\perp v}, a_{v} \| \underline{v}
$$

－Since $W a=-\underline{a}_{v}+\underline{a}_{\perp v} \Rightarrow \underline{r}=\underline{a}_{\perp v}-\underline{a}_{v}$
－$\underline{a}-\underline{r}=2 \underline{a}_{v}, \underline{r}=a_{\perp v}-\underline{a}_{v} \Rightarrow \underline{a}-\underline{r} \| \underline{v}$
－Also $\|\underline{a}\|_{2}=\|\underline{r}\|_{2}$ since W is orthogonal
－Want

$$
\begin{aligned}
& {\left[\begin{array}{c}
a_{11} \\
a_{21} \\
: \\
a_{m 1}
\end{array}\right]} \\
& \underline{a} \underline{\left[\begin{array}{c}
r_{11} \\
0 \\
: \\
0
\end{array}\right]} \underset{\underline{a}}{\underline{v}} \underline{\underline{v}} \|\left[\begin{array}{c}
a_{11}-r_{11} \\
a_{21} \\
: \\
a_{n 1}
\end{array}\right]
\end{aligned}
$$

－This must be true because：

$$
\begin{aligned}
& W_{1}=\left[I-2 \underline{\underline{u} \underline{u}^{T}}\right] \\
& W_{1} \underline{\underline{a}}=[I-2 \underline{\underline{u}}] \\
& (\underline{a}-\underline{r})(\underline{r})^{T}(\underline{a}-\underline{r})^{T} \\
& \hline \underline{r})
\end{aligned} \underline{a}=\underline{a}-(\underline{a}-\underline{r}) \frac{2(\underline{a}-\underline{r})^{T} \underline{a}}{(\underline{a}-\underline{r})^{T}(\underline{a}-\underline{r})}=\underline{r} .
$$

Householder Method - 2

$\square \quad$ What is $\underline{u}^{\mathrm{T}} \underline{u}=(\underline{a}-\underline{r})^{\mathrm{T}}(\underline{a}-\underline{r})$

- $(\underline{a}-\underline{r})^{\mathrm{T}} \underline{a}-(\underline{a}-\underline{r})^{T} \underline{r}=\underline{a}^{T} \underline{a}+\underline{r}^{T} \underline{r}-2 \underline{a}^{T} \underline{r}=2 \underline{a}^{T} \underline{u}$ (recall $\underline{a}^{T} \underline{a}=\underline{r}^{T} \underline{r}$)
$=2\left[a_{11}\left(a_{11}-r_{1}\right)+\left(a_{21}\right)^{2}+. .+\left(a_{n 1}\right)^{2}\right]=2\left[\left(\|\underline{a}\|_{2}\right)^{2}-a_{11} r_{11}\right]$
- To avoid round-off errors, select $r_{11}=-\operatorname{sign}\left(a_{11}\right)\|\underline{a}\|_{2}=-s_{1}$
$\Rightarrow u_{1}=a_{11}-r_{11}=a_{11}+\operatorname{sign}\left(a_{11}\right)\|\underline{a}\|_{2} ; u_{i}=a_{i 1} ; i \geq 2$
- Also, $\underline{u}^{\mathrm{T}} \underline{u}=2\left(\left\|\underline{a}_{2}\right\|^{2}+a_{11} s_{1}\right)=2 s_{1}\left(s_{1}+a_{11}\right)=2 s_{1} \mu_{1}=2 \beta_{1}$
- To get the rest of the matrix (columns 2 to n)

$$
W_{1} A=\left[I-2 \underline{\underline{\underline{u} \underline{u}^{T}}} \underset{\underline{u}^{T} \underline{u}}{ }\right] A=\left[I-\frac{\underline{u} \underline{u}^{T}}{\beta_{1}}\right] A=A-\underline{u}\left(\frac{\underline{u}^{T} A}{\beta_{1}}\right)
$$

Where $\underline{u}^{T} A / \beta_{1}$ is a row vector and

$$
W_{1} A=\left[\begin{array}{ccccc}
r_{11} & r_{12} & r_{13} & \ldots & r_{1 n} \\
0 & \times & \times & \ldots & \times \\
0 & \times & \times & \ldots & \times \\
0 & \times & \times & \ldots & \times
\end{array}\right] \quad W_{2} W_{1} A=\left[\begin{array}{ccccc}
r_{11} & r_{12} & r_{13} & \ldots & r_{1 n} \\
0 & r_{22} & r_{23} & \ldots & r_{2 n} \\
0 & 0 & \times & \ldots & \times \\
0 & 0 & \times & \ldots & \times
\end{array}\right]
$$

Householder Method - 3

- The \underline{u} vector associated with W_{2} will have

$$
\begin{aligned}
& u_{1}=\overline{0} \\
& u_{2}=a_{22}+s_{2} \\
& s_{2}=\operatorname{sign}\left(a_{22}\right)\left(\sum_{i=2}^{n} a_{i 2}^{2}\right)^{\frac{1}{2}} \\
& \beta_{2}=a_{22} u_{2}
\end{aligned}
$$

- Continue n steps to get $Q^{T}=W_{n} W_{n-1} \ldots W_{1}$ or $Q=W_{1} W_{2} \ldots W_{n}$

Example:

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
3 & -1 \\
0 & 0 \\
4 & 7
\end{array}\right] \\
& \underline{u}_{1}=\left[\begin{array}{l}
8 \\
0 \\
4
\end{array}\right] ; W_{1}=\left[\begin{array}{ccc}
-\frac{3}{5} & 0 & -\frac{4}{5} \\
0 & 1 & 0 \\
-\frac{4}{5} & 0 & \frac{3}{5}
\end{array}\right] ; W_{1} A=\left[\begin{array}{cc}
-5 & -5 \\
0 & 0 \\
0 & 5
\end{array}\right] \\
& \underline{u}_{2}=\left[\begin{array}{l}
5 \\
5
\end{array}\right] ; W_{2}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right] ; W_{2} W_{1} A=\left[\begin{array}{cc}
-5 & -5 \\
0 & -5 \\
0 & 0
\end{array}\right]=\left[\begin{array}{c}
R_{11} \\
0
\end{array}\right] \\
& \text { So, } R_{11}=\left[\begin{array}{cc}
-5 & -5 \\
0 & -5
\end{array}\right] \text { and } Q=W_{1} W_{2}=\left[\begin{array}{ccc}
-\frac{3}{5} & \frac{4}{5} & 0 \\
0 & 0 & -1 \\
-\frac{4}{5} & -\frac{3}{5} & 0
\end{array}\right]
\end{aligned}
$$

Householder Algorithm - 1

\square Storage considerations: overwrite A with R and \underline{u} vectors as follows

$$
W_{n} W_{n-1} . . W_{2} W_{1} A=\left[\begin{array}{ccccc}
u_{1}^{(1)} & r_{12} & r_{13} & \ldots & r_{1 n} \\
u_{2}^{(1)} & u_{2}^{(2)} & r_{23} & \ldots & r_{2 n} \\
& & u_{3}^{(3)} & & \\
u_{m}^{(1)} & u_{m}^{(2)} & u_{m}^{(3)} & \ldots & u_{m}^{(n)}
\end{array}\right] ; \underline{d}=\operatorname{diag}(R)=\left[\begin{array}{c}
r_{11} \\
r_{22} \\
\cdot \\
r_{n n}
\end{array}\right] ; \beta=\left[\begin{array}{c}
\beta_{1} \\
\beta_{2} \\
\cdot \\
\beta_{n}
\end{array}\right]
$$

\ldots Since $\beta_{i}=u_{i}^{(i)} s_{i}=\left|u_{i}^{(i)} r_{i i}\right|$, need not store β_{i}^{s}
\square Algorithm Householder

$$
\text { For } k=1,2, \ldots, n \mathrm{DO}
$$

$s=\operatorname{sgn}\left(a_{k k}\right) \sqrt{\sum_{i=k}^{n} a_{i i}^{2}}$
$u_{k}=a_{k k}+s \Rightarrow$ can store in $a_{k k}$ location
$u_{i}=a_{i k}$ for $i=k+1, \ldots, n \Rightarrow$ don't do anything
$\beta_{k}=\left|s u_{k}\right|$

$a_{l i \leftarrow} a_{l i}-u_{l} z_{i} i=k+1, \ldots, n, l=k, \ldots, n$
$\underline{b} \leftarrow \underline{b}-\underline{u}\left(\underline{u}^{T} \underline{b} / \beta\right)$
end DO

Householder Algorithm - 2

- Note: Q matrix can be computed off-line

$$
Q=I
$$

For $k=1,2, \ldots, n$ DO

$$
\begin{aligned}
& \quad Q \leftarrow Q-Q \frac{u^{(k)} u^{(k) T}}{\left|u_{k}^{(k)} d_{k}\right|} \\
& \text { end DO }
\end{aligned}
$$

- To solve LS:
- We have already formed $\underline{b}^{\text {new }}=Q^{T} \underline{b}$
- So, use back substitution

$$
x_{n}=\frac{b_{n}^{n e w}}{d_{n}}
$$

For $i=n-1, \ldots, 1$ DO

$$
x_{i}=\frac{\left(b_{i}^{n e w}-\sum_{j=i+1}^{n} a_{i j} x_{j}\right)}{d_{i}}
$$

end DO

Householder Example

\square Example again:

- Suppose $[0$

$$
\underline{b}=\left[\begin{array}{c}
0 \\
18 \\
25
\end{array}\right]
$$

- Then, the least squares solution is obtained via:

$$
\begin{aligned}
& \binom{R_{11}}{0} \underline{x}_{L S}=Q^{T} \underline{b}=\left[\begin{array}{ccc}
-\frac{3}{5} & 0 & -\frac{4}{5} \\
\frac{4}{5} & 0 & -\frac{3}{5} \\
0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
0 \\
18 \\
25
\end{array}\right]=\left[\begin{array}{l}
-20 \\
-15 \\
-18
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{cc}
-5 & -5 \\
0 & -5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
-20 \\
-15
\end{array}\right] \Rightarrow \underline{x}_{L S}=\left[\begin{array}{l}
1 \\
3
\end{array}\right]
\end{aligned}
$$

- Residual at the solution $\underline{r}=\underline{b}-A \underline{x}_{L S}=\left[\begin{array}{c}0 \\ 18 \\ 0\end{array}\right]$

$R(\mathbf{A})$ and $N\left(A^{1}\right)$ from Householder

\square Computational load

- Want R only: $n^{2}(m-n / 3)$
- Want R and \underline{b} and $\underline{x}: n^{2}\left(m-n / 3+m n+\mathrm{O}\left(n^{2} / 2\right)\right)$
- Want $R, \underline{b}, \underline{x}$ and $Q: n^{2}(m-n / 3)+m n+\mathrm{O}\left(n^{2} / 2\right)+2\left[m^{2} n-m n^{2}+n^{3} / 3\right]$
\square A nice feature of Householder method
- Can get orthonormal basis for R^{m}
- Given $\left(\underline{a}_{1} \underline{a}_{2} \ldots \underline{a}_{n}\right)$ where each $\underline{a}_{i} \in R^{m}$, find orthonormal basis for $R(A)$ $\left.\begin{array}{c}A=Q R \Rightarrow\left(\underline{a}_{1} \underline{a}_{2} \ldots \underline{a}_{n}\right.\end{array}\right)=\left(Q \underline{r_{1}} Q \underline{\underline{r}}_{2} \ldots Q \underline{r}_{m+}\right) \Rightarrow a_{k}=\sum_{i=1} r_{i k} \underline{q}_{i}$
- Since q_{i} are orthonormal
$r_{i k}=\underline{q}_{i}^{T} \underline{a}_{k} ; i=1,2, \ldots, k$
$\underline{a}_{1}=r_{11} q_{1}$
$\underline{a}_{2}=r_{12} q_{1}+r_{22} q_{2}$
$\underline{a}_{k}=r_{1 k} q_{1}+r_{2 k} q_{2}+\ldots+r_{k k} q_{k}$
$\Rightarrow R\left(\underline{a}_{1} \ldots \underline{a}_{k}\right)=R\left(q_{1} \ldots \underline{q}_{k}\right)$
- So
$R(A)=\left(q_{1} \ldots q_{n}\right)$
$N\left(A^{T}\right)=\left(q_{n+1} \cdots q_{m}\right)=R(A)^{\perp}$
$=$ orthonormal basis for the null space of A^{T}
= orthogonal complement of $R(A)$

Serial (Classical) Gram-Schmidt

\square Example again

$$
R(A)=\left[\begin{array}{ll}
\underline{q}_{1} & \underline{q}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-0.6 & 0.8 \\
0 & 0 \\
-0.8 & -0.6
\end{array}\right]
$$

$$
N\left(A^{T}\right)=\underline{q}_{3}=\left[\begin{array}{c}
0 \\
-1 \\
0
\end{array}\right]
$$

\square Gram-Schmidt orthogonalization procedure

- $\operatorname{Rank}(A)=n \Rightarrow r_{k k} \neq 0$ for $k=1,2, \ldots, n$
\Rightarrow can solve for q_{k} via $\underline{q}_{k}=\frac{1}{r_{k k}}\left[a_{k}-\sum_{i=1}^{k-1} r_{i k} \underline{q}_{i}\right]$
can think of $\quad \underline{q}_{k} \|\left[a_{k}-\sum_{i=1}^{k-1}\left(\underline{q}_{i}^{T} \underline{a}_{k}\right) \underline{q}_{i}\right]$ since $r_{i k}=\underline{q}_{i}^{T} \underline{a}_{k}$
- This is precisely the classical Gram-Schmidt procedure for constructing an orthonormal basis $\left(q_{1} \ldots q_{n}\right) \ni q_{i}^{T} q_{j}=\delta_{i j}$ and span $\left(\underline{a}_{1} \ldots \underline{a}_{n}\right)$
- The procedure also computes $A=Q R$ in the process

Classical Gram-Schmidt - 1

- Algorithm: Classical Gram-Schmidt

$$
\text { For } k=1,2, \ldots, n \mathrm{DO}
$$

$$
\text { For } i=1, k-1
$$

$$
r_{i k}=\underline{a}_{i}^{T} \underline{a}_{k}
$$

$$
\underline{a}_{k} \leftarrow \underline{a}_{\underline{k}}-\underline{r}_{i k} \underline{a_{\underline{i}}}
$$

end DO
end DO

$$
\begin{aligned}
& r_{k k} \leftarrow\left(\underline{a}_{k}^{T} \underline{a}_{k}\right)^{\frac{1}{2}} \\
& \underline{a}_{k} \leftarrow \frac{a_{k}}{r_{k k}}
\end{aligned}
$$

end DO

- At the $k^{\text {th }}$ step, we determine $k^{\text {th }}$ column of Q and $k^{\text {th }}$ column of R. replaces A with Q
- Can solve LS problem
$A=Q R \quad Q=m \times n ; R=n \times n ; Q^{T} Q=I_{n}$
$A^{T} A \underline{x}=R^{T} Q^{T} Q R \underline{x}=R^{T} Q^{T} \underline{b} \Rightarrow R^{T} R \underline{x}=R^{T} \underline{b}$
$\Rightarrow R \underline{x}=\underline{b}$ since R is nonsingular
- The algorithm behaves very badly numerically... severe loss of orthogonality

Classical Gram-Schmidt - 2
One solution

- Go through it a second time
- Can show that $r_{i k}^{s}$ add up

Algorithm: Two-Step Gram-Schmidt
$R \leftarrow 0$
For $k=1,2, \ldots, n$ DO
For $l=1,2, \ldots$ DO
For $i=1, k-1$

$$
s=\underline{a}_{i}^{T} \underline{a}_{k}
$$

$$
\underline{a}_{k} \leftarrow \underline{a}_{k}-s \underline{a}_{i}
$$

$$
r_{i k} \leftarrow r_{i k}+s
$$

end DO
end DO

$$
\begin{aligned}
& r_{k k} \leftarrow\left(\underline{a}_{k}^{T} \underline{a}_{k}\right)^{\frac{1}{2}} \\
& \underline{a}_{k} \leftarrow \frac{\underline{a}_{k}}{r_{k k}}
\end{aligned}
$$

- end DO

However \exists a better method called: Modified Gram-Schmidt (MGS) ..(also called parallel Gram-Schmidt)

Motivating Parallel Gram-Schmidt

- To motivate the procedure, consider Serial (classical) Gram-Schmidt

$$
\begin{aligned}
& \underline{q}_{1}=\underline{a}_{1} ; \underline{q}_{1}=\frac{\underline{q}_{1}}{\left\|q_{1}\right\|} ;\left\|\underline{q_{1}}\right\|=r_{11} \\
& \underline{q}_{2}=\underline{a}_{2}-\underline{-a}_{2}^{T} \underline{q}_{1} ; \underline{q}_{2}=\frac{\underline{q}_{2}}{\| \underline{q}_{2}} ;\left\|\underline{q_{2}}\right\|=r_{22} ; \underline{a}_{2}^{T} \underline{q}_{1}=r_{12} \\
& \underline{q}_{3}=\underline{a}_{3}-\underline{a}_{3}^{T} q_{1}-\underline{a}_{3}^{T} \underline{q}_{2} ; \underline{q}_{3}=\frac{\underline{q}_{3}}{\| q_{3}} ;\left\|\underline{q}_{3}\right\|=r_{3} ; \underline{a}_{3}^{T} \underline{q}_{1}=r_{13} ; \underline{a}_{3}^{T} \underline{q}_{2}=r_{23}
\end{aligned}
$$

\Rightarrow Determine R one column at a time and orthogonalize q_{k} w.r.t.
$q_{1}, q_{2}, \ldots, q_{k-1}$, etc.

Result: $\left(\underline{a}_{1} \underline{a}_{2} \ldots \underline{a}_{n}\right)=\left[Q \underline{r}_{1} Q \underline{r}_{2} \ldots Q \underline{r}_{n}\right]$ Backward looking

Parallel Gram-Schmidt - 1

\square In Parallel or modified Gram-Schmidt, we determine $k^{\text {th }}$ column of Q and $k^{\text {th }}$ row of R at the $k^{\text {th }}$ step
\Rightarrow The procedure essentially writes A as a dyadic (or outerproduct) sum

Consider step $k=1$
We have

Set $r_{11}=\left\|\underline{a}_{1}\right\|_{2}=\left(\underline{a}_{1} \underline{a}_{1}\right)^{1 / 2}$

$$
q_{1}=\underline{a}_{1} / r_{11}
$$

recalling that $q_{i}^{T} q_{j}=\delta_{i j}$, we have

$$
\begin{aligned}
& q_{1}{ }^{T}\left[a_{1} B\right]=\boldsymbol{r}_{1}{ }^{T}=\left(r_{11} \ldots r_{1 n}\right) \\
& \left(q_{1} \underline{a}_{1} q_{1} q_{1} B\right)=\underline{r}_{1}^{T} \Rightarrow q_{1}{ }^{T} B=\left(r_{12} \ldots r_{1 n}\right)
\end{aligned}
$$

Parallel Gram-Schmidt - 2

Consequently, $r_{1 k}=q_{1}^{T} \underline{a}_{k}, k=2, \ldots, n$

$$
A-\underline{q}_{1} \underline{r}_{1}^{T}=\left[\underline{a}_{1} \mid B\right]-\underline{q}_{1} \underline{r}_{1}^{T}=\left[0 \mid B-\underline{q}_{1}\left(r_{12} \ldots r_{1 n}\right)\right]
$$

\Rightarrow So, at step 2 we have

$$
\left[\begin{array}{cc}
0 & A^{(2)}
\end{array}\right]=A-\underline{q}_{1} \underline{r}_{1}^{T}=\sum_{i=2}^{n} q_{i} \underline{V}_{i}^{T}
$$

$A^{(2)}=[\underline{z} B] ; \underline{z}=$ new $\underline{a}_{1} ; B=$ new B
$r_{22}=\|\underline{z}\|_{2} ; q_{2}=\underline{z} / r_{22} ;$
As before, $\left(r_{23} \ldots r_{2 n}\right)=q_{2}{ }^{T} B$
and $A^{(3)}=B-q_{2}\left(r_{23} \ldots r_{2 n}\right)$ since $q_{2} r_{22}=\underline{z}$
Next step, do with $\left[\begin{array}{lll}0 & 0 & A^{(3)}\end{array}\right]=\sum_{i=3}^{n} \underline{q}_{\underline{+}}^{r^{T}}$

- Note:
- Can store Q in A
- Do orthogonalization twice $\Rightarrow r_{k i}$ from each iteration add up

Parallel Gram-Schmidt Algorithm

```
\(R=0\)
For \(k=1,2, \ldots, n\) Do
\(r_{k k}=\left(\underline{a}_{k}{ }^{T} \underline{a}_{k}\right)^{1 / 2}\)
        For \(i=1, \ldots, m\) Do
            \(a_{i k}=a_{i k} / r_{k k}\)
        end DO
        For \(l=1,2 \mathrm{DO}\)
            For \(j=k+1, \ldots, n\) Do
                \(\alpha=\sum_{i=1}^{m} a_{i k} a_{i j} \Rightarrow \mathrm{computing} \underline{q}_{k}^{T} \underline{a}_{j}\)
            For \(i=1, \ldots, m\) Do
            \(a_{i j}=a_{i j}-a_{i k} \alpha \Rightarrow\) computing \(\underline{a}_{j}=\underline{a}_{j}-\left(\underline{q}_{k}^{T} \underline{a}_{j}\right) \underline{a}_{j}\)
            end DO
            \(r_{k j}=r_{k j}+\alpha\)
            end DO
        end DO
end DO
```

\square Requires $\mathrm{O}\left(m n^{2}\right)$ operations per iteration. Do it twice
\square Householder $2\left(m n^{2}-n^{3} / 3\right)$ to get Q and R, but Householder has better accuracy

Summary

\square Why orthogonalization methods ?
\square Least Squares Problem and its properties
\square Householder transformation
\square Gram-Schmidt orthogonalization

- Serial (classical) Gram-Schmidt
- Parallel (modified) Gram-Schmidt

