

Actuators

- Actuator
 - A mechanical device for moving or controlling something
 - Converts electrical/fluid/pneumatic/fuel energy into mechanical energy
- Continuous- and Incremental-Drive Actuators
 - DC Motors used in precision position control applications
 - Stepper Motors Digital actuator used in position control applications
 - Induction Motors (done in Lecture 1) used in high-power applications

(Not discussed)

- Synchronous Motors
- Hydraulic Actuators
- Fluidics (Not discussed)
- Piezo Actuators (Not discussed)

- Motors convert electrical energy to mechanical energy
- Motors make things move

Linear Motor

DC Brush Motor

Induction Motor

Electrostatic Moto

Stepper Motor

Universal Motor

- DC Motor
 - Most common actuator
 - Converts electrical energy into mechanical energy
 - Motors require more battery power (i.e., current) than electronics (e.g., CPU)
 - e.g., 5 milliamps for the 68HC11 processor vs. 100 milliamps 1 amp for a small DC motor.
 - Recall Torque ∞ armature current and steady-state torque-speed characteristics of an armature controlled DC motor (constant field current, separately excited)

$$\dot{\theta} = \omega = \frac{v_i - R_A i_A}{K_v}$$

$$T_m = K_T i_A = K i_f i_A$$

$$K_T = K_v = K i_f$$

$$\Rightarrow \omega = \frac{v_i}{K i_f} - \frac{R_A}{\left(K i_f\right)^2} T_m$$

$$T_{m} = 0 \Rightarrow No - load \ speed \Rightarrow \omega_{0} = \frac{v_{i}}{Ki_{f}}$$
$$\omega = 0 \Rightarrow stalling \ torque \Rightarrow T_{S} = \frac{Ki_{f}v_{i}}{R_{A}} \Rightarrow \frac{\omega}{\omega_{0}} + \frac{T_{m}}{T_{S}} = \frac{Ki_{f}v_{i}}{R_{A}} \Rightarrow \frac{\omega}{\omega_{0}} + \frac{Ki_{f}v_{i}}{R_{A}} \Rightarrow \frac{\omega}{\omega_{0}} \Rightarrow \frac{\omega}{\omega_{0}} + \frac{Ki_{f}v_{i}}{R_{A}} \Rightarrow \frac{\omega}{\omega_{0}} \Rightarrow \frac{\omega}{\omega} \Rightarrow$$

DC Motors

- Positioning ("Servo") Applications
 - Disk-drives, X-Y recorders, instruments, robots, sensor-pointing, fly-by-wire/drive-by-wire inputs, fuel management, sunroof,...
- Speed Control Applications
 - Fans, Drills, CNC machines, window wipers, lifts,...
- Power Range: Few Watts to a few kW
- Speed Range: few rpm to 10000rpm (use gear boxes)
- Time Constant: milli-seconds
- Often in-built encoders for position or tacho for speed
- Digital Control: Pulse-width-modulated (PWM) or Pulse-rate-modulated (PRM)
- When to use a DC Motor?
 - Accurate position/velocity control
 - Low noise
- Limitations: expensive, regular maintenance, heavy

DC Motor Data - 1

Mechanical data

- Peak torque (e.g., 65 N.m)
- Continuous stall torque (e.g., 25 N.m)
- Friction torque (e.g., 0.4 N.m)
- Maximum acceleration at peak torque (e.g., $33'103 \text{ rad/s}^2$)
- Maximum speed or no-load speed (e.g., 3,000 rpm.)
- Rated speed or speed at rated load (e.g., 2,400 rpm.)
- Rated output power (e.g., 5100 W)
- Rotor moment of inertia (e.g., 0.002 kg/m^2)
- Dimensions and weight (e.g., 14 cm diameter, 30 cm length, 20 kg)
- Allowable axial load or thrust (e.g., 230 N)
- Allowable radial load (e.g., 700 N)
- Mechanical (viscous) damping constant (e.g., 0.12 N.m/krpm)
- Mechanical time constant (e.g., 100 ms)

Electrical data

- Electrical time constant (e.g., 2 ms)
- Torque constant (e.g., 0.9 N.m/A for peak current or 1.2 N.m/A rms current)
- Back emf constant (e.g., 0.95 V/rad/s for peak voltage)
- Armature/field resistance and inductance (e.g., 1.0Ω , 2 mH)
- Compatible drive unit data (voltage, current, etc.)
- General data
 - Brush life and motor life (e.g., $5x10^8$ revolutions at maximum speed)
 - Operating temperature and other environmental conditions (e.g., 0 to 40 °C)
 - Thermal resistance (e.g., 1.5 °C/W)
 - Thermal time constant (e.g., 70 minutes)
 - Mounting configuration

DC Motor Data - 2

Motor Data

Line No.	Parameter	Symbol	Units	8X22	8X23	8X24	
17	Continuous Torque (Max.) ³	T _C	oz∙in (N•m)	1.6 (11.2 X 10 ⁻³)	2.0 (14.1 X 10 ⁻³)	2.6 (18.5 X 10 ⁻³)	\triangleright
18	Peak Torque (Stall)	Т _{РК}	oz∙in (N•m)	7.4 (52.0 X 10 ⁻³)	10.5 (74.2 X 10 ⁻³)	16.8 (118.6 X 10 ⁻³)	
19	Motor Constant	К _М	oz∙in/√W (N•m/√W)	1.12 (7.9 X 10 ⁻³)	1.30 (9.2 X 10 ⁻³)	1.49 (710.5 X 10 ⁻³)	\triangleright
20	No-Load Speed	S ₀	rpm (rad/s)	7847 (822)	8298 (869)	10158 (1064)	\triangleright
21	21 Friction Torque T _F		oz∙in (N•m)	0.35 (2.5 X 10 ⁻³)	0.35 (2.5 X 10 ⁻³)	0.35 (2.5 X 10 ⁻³)	
22	Rotor Inertia	J _M	oz·in·s² (kg·m²)	1.4 X 10 ⁻⁴ (9.89 X 10 ⁻⁷)	1.7 X 10 ⁻⁴ (1.20 X 10 ⁻⁶)	2.3 X 10 ⁻⁴ (1.62 X 10 ⁻⁶)	

Model GM8XX2 Winding Data (Other windings available upon request)

Line No.	Parameter	Symbol	Units	GM8X22				
34	Reference Voltage	E	v	12.0	19.1	24.0	30.3	
35	Torque Constant	κ _τ	oz∙in/A (N•m/A)	1.94 (13.7 X 10 ⁻³)	3.07 (21.7 X 10 ⁻³)	3.88 (27.4 X 10 ⁻³)	4.88 (34.5 X 10 ⁻³)	
36	Back-EMF Constant	ĸ _E	V/krpm (V/rad/s)	1.43 (13.7 X 10 ⁻³)	2.27 (21.7 X 10 ⁻³)	2.87 (27.4 X 10 ⁻³)	3.61 (34.5 X 10 ⁻³)	
37	Resistance	R _T	Ω	3.10	7.61	12.1	19.1	
38	Inductance	L	mH	1.57	3.93	6.27	9.92	
39	No-Load Current	I _{NL}	A	0.25	0.16	0.12	0.10	
40	Peak Current (Stall) ⁴	l _P	A	3.88	2.51	1.99	1.59	

Drive Amplifier and Power Supply Selection

- Suppose want to select ratings (current, voltage, power) of PWM amplifier and power supply
- Process
 - Required motor torque:

 $T_m = J_m (\dot{\omega})_{max} + T_L + T_f + T_d$; For pure inertial loads, $T_L = J_L (\dot{\omega})_{max}$

- T_L = worst case load torque; T_f = static friction torque; T_d = damping torque
- Required current

$$I_A = \frac{T_m}{K_T}$$
; $K_T =$ Torque constant of the motor

- Required voltage

 $v_{i,required} = K_e \omega_{max} + R_A i_A; K_e = Motor EMF constant; R_A = Armature resistance$

- Voltage Rating

 $v_{i,rating} = \frac{v_{i,required}}{\text{Max duty cycle of PWM Amplifier}}$

DC Motor Analysis Example

For a GR12 C motor, determine the terminal voltage (v_i) for GR12C DC

motor to produce a torque of 75 Ncm at 2000 rpm.

Motor Constants		GR12C	GR12CH	GR16C	GR16CH	GR19CH
Torque	K _t Ncm/Amp	10.8	17.0	23.7	37.3	24.0
EMF	K _e V/krpm	11.3	17.8	24.8	39.0	25.0
Damping	K _d Ncm/krpm	1.16	1.95	3.57	6.44	7.76
Friction Torque	T _f Ncm	4.2	4.2	7.7	7.7	9.8
Terminal Resistance @ 5A	R _m Ohm	0.95	0.95	0.95	0.95	0.65
Rotor Moment of Inertia	J kg.cm ²	1.2	1.2	5.93	5.93	12.71

$$\begin{split} T_{Load} &= 75Ncm; T_d = 1.16 * 2 = 2.32Ncm; T_f = 4.2Ncm \\ T_m &= T_{Load} + T_d + T_f = 81.52Ncm \\ T_m &= K_T i_A \Longrightarrow i_A = \frac{81.52}{10.8} = 7.55A \\ \omega &= 209.33 = \frac{v_i - 0.95 * 7.55}{(11.3/104.67)} \Longrightarrow v_i = 29.77V \end{split}$$

Series DC Motors - 1

 $+R_F$

ω

Series DC motors have armature and field winding in series

– Field current = Armature current

$$\dot{\theta} = \omega = \frac{v_i - (R_A + R_F)i_A}{K'i_A} = \frac{v_i}{K'i_A} - \frac{(R_A + R_F)i_A}{K'}$$
$$T_m = Ki_A^2 \Longrightarrow i_A = \sqrt{\frac{T_m}{K}}$$
$$\Longrightarrow \omega = \frac{v_i}{K'} \sqrt{\frac{K}{T_m}} - \frac{(R_A + R_F)}{K'}$$

Speed of a series motor is inversely proportional to the square root of Torque. Nearly constant power is possible.

 T_m

- No load speed is infinite
- Speed regulation is poor
- Starting torque and low speed operation are satisfactory

Series DC Motors - 2

- 30kW mechanical power and 250 V supply. Speed is 800 rpm.
- If load torque is reduced to 200 Nm, what is the new speed?

Motor current, $I_A = \frac{Power}{Voltage} = \frac{30,000}{250} = 120Amps$ $Torque = \frac{Power}{Speed in \ rad \ / \sec} = \frac{30,000}{(800 \ / \ 60).2\pi} = 358.1Nm$ *Torque* = $K I_A^2 \implies K = \frac{358.1}{(120)^2} = 0.0249 Nm / A^2$ With the new load torque of 200Nm, $I_A = \sqrt{\frac{T_m}{\kappa}} = 89.62 \text{ Amps}$ Input power = $VI_A = 22.406kW$ Speed in rad / sec = $\frac{Power}{Torque} = \frac{22,406}{200} = 112.03 \text{ rad / sec}$ Speed in $rpm = 112.03 * 2\pi = 1070.3 rad / sec$

Shunt DC Motors

In shunt DC motors, both field and armature circuits are connected to the

$$i_{f} = \frac{v_{i}}{R_{f}}$$

$$\dot{\theta} = \omega = \frac{v_{i} - R_{A}i_{A}}{K'i_{f}} = \frac{R_{f}}{K'} - \frac{R_{f}R_{A}i_{A}}{K'v_{i}}$$

$$T_{m} = Ki_{f}i_{A} \Rightarrow i_{A} = \frac{T_{m}R_{f}}{Kv_{i}}$$

$$\Rightarrow \omega = \frac{R_{f}}{K'} - \frac{R_{f}^{2}R_{A}}{K'Kv_{i}^{2}}T_{m}$$

$$(i)i_{f} = \frac{v_{i}}{R_{f}} = \frac{500}{500} = 1A; i_{A} = 21 - 1 = 20A$$

$$v_{b} = v_{i} - R_{A}i_{A} = 480V; Power = T_{m}\omega = 480*20 = 9600W$$

$$\omega = 96rad / \sec \Rightarrow 916.7rpm$$

$$(i)Ki_{f} = K = \frac{100}{20} = 5Nm / A \Rightarrow i_{A} = \frac{120}{5} = 24A$$

$$v_{b} = v_{i} - R_{A}i_{A} = 476V; Power = T_{m}\omega = 476*24 = 9600W$$

starting torque

 $\omega = 95.2 rad / \sec \Rightarrow 909.6 rpm$

• Example: Shunt DC motor with 500V supply, $R_A = 1 \Omega$, $R_F = 500 \Omega$. Find the \uparrow speed when the motor draws 21A current and load torque is 100 Nm. If load torque is changed to 120Nm, what is the new speed?

Compound DC Motors

In compound DC motors, part of field winding is in series (R_{fl}) and the rest is in parallel (R_{f2})

$$\begin{split} \dot{i_{f}} &= i_{f1} + i_{f2} = i_{A} + \frac{v_{i}}{R_{f2}} \\ \dot{\theta} &= \omega = \frac{v_{i} - (R_{A} + R_{f1})i_{A}}{K'i_{f}} = \frac{R_{f}}{K'} - \frac{R_{f}R_{A}i_{A}}{K'v_{i}} \\ T_{m} &= Ki_{f}i_{A} \Rightarrow T_{m} = Ki_{A}^{2} + K \frac{v_{i}}{R_{f2}}i_{A} \\ \Rightarrow i_{A}^{2} + \frac{v_{i}}{R_{f2}}i_{A} - \frac{T_{m}}{K} = 0 \Rightarrow i_{A} = \frac{1}{2} \left(-\frac{v_{i}}{R_{f2}} + \sqrt{\left(\frac{v_{i}}{R_{f2}}\right)^{2} + 4\frac{T_{m}}{K}} \right) \\ \Rightarrow \omega = \frac{2v_{i} - (R_{A} + R_{f1}) \left(-\frac{v_{i}}{R_{f2}} + \sqrt{\left(\frac{v_{i}}{R_{f2}}\right)^{2} + 4\frac{T_{m}}{K}} \right)}{K' \left(\frac{v_{i}}{R_{f2}} + \sqrt{\left(\frac{v_{i}}{R_{f2}}\right)^{2} + 4\frac{T_{m}}{K}} \right)} \end{split}$$

Provides trade-off in Performance between series and shunt DC motor s

15

- Stepper motors are accurate pulse-driven motors that change their angular position in steps, in response to input pulses from digitally controlled systems
- The stepper motor makes a step for each applied pulse
- The size of the step (step angle) depends on the type and design of the stepper motor
- The input pulses to the stepper motor must be in a proper sequence with acceptable frequency and must provide the phase windings with sufficient current
- Typical applications of stepper motors requiring incremental motion are printers, disk drives, robotics, X-Y plotters.

- So, Stepper Motors
 - Are driven in fixed angular steps
- Each rotation step = rotor response to an input pulse (or a digital command)
- Three Basic Types
 - Variable reluctance stepper motors (have soft iron core; single/multi-stack)
 - Permanent Magnet stepper motors (have magnetized rotors)
 - Hybrid stepper motors (have two stacks of rotor teeth forming the two poles of a permanent magnet located along the rotor axis).

3-stack VR stepper motor

2-pole PM stepper motor

When do you use which Stepper Motor?

- VR Stepper Motor
 - Small step sizes
 - Typically smaller torque
- PM Stepper Motor
 - Larger step sizes (30-90 degrees)
 - Have higher inertia and slower acceleration
 - More torque per ampere of stator current than VR stepper motor
- Hybrid Stepper Motor
 - Smaller step sizes
 - More torque than VR stepper motor
 - Natural choice for applications requiring small step length and high torque
 - More expensive than a VR stepper motor

4 wires

Basic Stepper Motor Concepts

- Rotor is a magnetic bar that pivots about its center
- Each loop forms an electromagnet with different polarity
- If we apply a voltage to loop 2 such that
 pole piece A is South and B is North (it
 must be because of the way they are
 wound), the rotor magnet will line up as
 shown. This is called holding position
- If we remove the voltage from the second loop and apply it to the first loop, pole pieces A and B will have no magnetic attraction and pole pieces C and D will have
- The rotor will turn, so the magnet will take up a new position and be rotated 90 degrees clock wise

Half-stepping Sequence for a 2-\$ Stepper Motor

If the stator has N_s poles, stator pole pitch is 360/ N_s degrees

- $N_s = 12 \Rightarrow$ stator pitch = 30°

- If number of rotor poles is N_r , rotor pitch is 360/ N_r degrees
 - $N_r = 16 \Rightarrow$ rotor pitch = 22.5^o
- Step angle = $360 (1/N_s 1/N_r)$
- Number of phases = m; (N_s/m even)
- Need : $\pm 360/m N_r = 360 (1/N_s 1/N_r)$

- Rotor stack misalignment (1/4 pitch) in a hybrid stepper motor
- Schematically shows the state where phase 1 is off and phase 2 is on with N polarity

- Rotor stack misalignment (1/4 pitch) in a hybrid stepper motor
- Schematically shows the state where phase 1 is off and phase 2 is on with N polarity

• Equivalent Inertia at Rotor of the Motor via overall Kinetic Energy

$$KE = \frac{1}{2} (J_m + J_{g1}) \omega_m^2 + \frac{1}{2} (J_{g2} + J_d + J_s) \left(\frac{\omega_m}{p}\right)^2 + \frac{1}{2} (m_c + m_L) \left(\frac{r\omega_m}{p}\right)^2 = \frac{1}{2} J_e \omega_m^2$$
$$\Rightarrow J_e = J_m + J_{g1} + \left(\frac{1}{p}\right)^2 (J_{g2} + J_d + J_s) + \left(\frac{r}{p}\right)^2 (m_c + m_L)$$

• From triangular speed profile:

$$d = \frac{1}{2} v_{\text{max}} T \Longrightarrow v_{\text{max}} = \frac{2d}{T} = \frac{0.2}{0.2} = 1 \, m \, / \sec \theta$$

• Max acceleration/deceleration

$$a_{\rm max} = \frac{v_{\rm max}}{(T/2)} = 10 \, m/\sec^2$$

• Maximum angular acceleration/deceleration and max. velocity of motor

$$\dot{\omega}_{\text{max}} = \frac{pa_{\text{max}}}{r} = 100 p \ rad \ / \sec^2; \quad \omega_{\text{max}} = \frac{pv_{\text{max}}}{r} = 10 p \ rad \ / \sec^2$$

• Maximum Torque needed with a motor of efficiency, η

$$\eta T_m = \left(J_m + J_{g1} + \left(\frac{1}{p}\right)^2 (J_{g2} + J_d + J_s) + \left(\frac{r}{p}\right)^2 (m_c + m_L)\right) \frac{pa_{\max}}{r} \quad p = 1 \text{ when no gears}$$

Stepper Motor Selection Example - 3

Stepper Motor Specifications

MODEL		50SM	101SM	310SM	1010SM
NEMA Motor Frame Size	2	3	34	42	
Full Step Angle	degrees	1.8			2048
Accuracy	percent	±3 (noncumulative)			
Holding Tassue	oz-in	38	90	370	1050
Holding fordue	N-m	0,27	0,64	2,61	7,42
Destruct Teamure	az-in	6	18	25	20
Detent Torque	N-m	0,04	0,13	0,18	0,14
Rated Phase Current	Amps	1	5	6	8.6
Data la site	oz-in-sec ²	1.66 x 10 ⁻³	5 x 10 ³	26.5 x 10 ⁻³	114 x 10 ⁻³
Hotor Inertia	kg-m ²	11,8 x 10 ⁻⁶	35 x 10 ⁻⁶	187 x 10 ⁻⁶	805 x 10 ⁴
Having up Dadial Land	h	15		35	40
Maximum Hadiai Load	N	67		156	178
Maximum Through Land	ľb	25		60	125
Maximum Thrust Load	N	111		267	556
Maria ha	lb	1.4	2.8	7.8	20
weight	kg	0,6	1,3	3,5	9,1
Operating Temperature	°C	-55 to +50			
Storage Temperature	°C	-55 to + 130			

No gear case (p = 1), Efficiency $\eta = 0.8$

$$\eta T_m = \left(J_m + J_d + J_s\right) + \left(r\right)^2 \left(m_c + m_L\right) \frac{a_{\max}}{r} = \left(J_m + 0.002 + 0.002 + \left(0.1\right)^2 \left(5 + 5\right)\right) 100$$

 $\Rightarrow T_m = 125((J_m + 0.104)N.m; \omega_{max} = 10 \ rad \ / \sec = 95.5 \ rpm \Rightarrow \text{operating speed range: } 0.95.5 \ rpm$

- Note: Torque at 95.5 rpm is < starting torque for first two motors (see speed-torque curves)
- In motor selection use the weakest point (i.e., lowest torque) in the operating speed range
- Form the following table:

Motor	Available	Motor	Required
Model	Model Torque		Torque
	at ω_{max}	Inertia	(N.m)
	(N.m)	$(kg.m^2)$	
50 SM	0.26	11.8×10^{-6}	13.0
101 SM	0.60	35.0×10^{-6}	13.0
310 SM	2.58	187.0×10^{-6}	13.0
1010	7.41	805.0×10^{-6}	13.1
SM			

Note: Without a gear unit, available motors cannot meet system requirements.

Stepper Motor Selection Example - 6
Gear case (
$$p = 2$$
), Assume same efficiency $\eta = 0.8$
 $\eta T_m = \frac{pa_{max}}{r} \cdot \left(J_m + J_{g1} + \left(\frac{1}{p}\right)^2 (J_{g2} + J_d + J_s) + \left(\frac{r}{p}\right)^2 (m_c + m_L)\right)$
 $= 200 \cdot \left(J_m + 50.10^{-6} + \left(\frac{1}{4}\right) (200.10^{-6} + 0.002 + 0.002) + \left(\frac{0.1}{2}\right)^2 (5+5)\right)$
 $= 200 \cdot (J_m + 0.0261) \Rightarrow T_m = 250 \cdot (J_m + 0.0261)$
 $\omega_{max} = 191 rpm$

• Form the following table:

Motor	Available	Motor Rotor	Required	
Model	Torque	Inertia (kg.m ²)	Torque	
	at wmax (N.m)		(N.m)	
50 SM	0.25	11.8×10^{-6}	6.53	
101 SM	0.58	35.0×10^{-6}	6.53	
310 SM	2.63	187.0×10^{-6}	6.57	Select this motor.
1010 SM	7.41	805.0×10^{-6}	6.73 ←	Has 200 steps

• With full stepping, step angle = 1.8° . Corresponding step in conveyor motion = positioning resolution = $(1.8/2)x(\pi/180)x0.1 = 1.57x10^{-3}$ m

Hydraulic Control System - 1

- Typical hydraulic control system
 - Hydraulic fluid (mineral oil or oil in water emulsions) is pressurized using a pump driven by an AC motor
 - The oils have the desirable properties of self-lubrication, corrosion resistance, good thermal properties, fire resistance, environmental friendliness, low compressibility (high stiffness for good bandwidth)
 - Power conversions (typically $\eta_m = 0.9$; $\eta_h = 0.6$)

 $(i,v) \xrightarrow{\eta_m} (T,\omega) \xrightarrow{\eta_h} (Q,P)$

- Flow rates in the range of 1,000 to 50,000 gal/min (Note: 1 gal/min = 3.76 L/min) and pressures from 500 to 5000 psi (Note: 1kPa=0.145 psi)
- Pressure from the pump is regulated and stabilized by a relief valve and an accumulator
- A hydraulic valve provides a controlled supply of fluid into the actuator, controlling both the flow rate (including direction) and the pressure

Hydraulic Control System - 2

- Main components of a hydraulic control system
 - Serve valve
 - Hydraulic actuator
 - Load
 - Feedback control elements (sensors and compensation circuitry, servo amplifier, valve actuator
- Valve (incremental changes)

$$q = k_q u - k_c p$$

• Hydraulic Actuator

$$q = A\frac{dy}{dt} + \frac{V}{2\beta}\frac{dp}{dt}$$

• Load

$$m\frac{d^2y}{dt^2} + b\frac{dy}{dt} = Ap - f_L$$

Advantages /Disdvantages of Hydraulic Actuators

- Advantages over Electric Motor Systems
 - High pressures (e.g., 5,000 psi) → Can provide very high forces (torques) at high power levels simultaneously to several actuating locations (flexible)
 - Quite stiff when viewed from load side (because a hydraulic medium is mechanically stiffer than an electromagnetic medium)
 - Heat generated at the load can be quickly transferred to another location away from the load by the hydraulic fluid itself
 - Self-lubricating → Low friction in valves, cylinders, pumps, hydraulic motors, etc.
 - Safety considerations will be less (e.g., no possibility of spark generations unlike motors with brush mechanisms)
- Disadvantages
 - More nonlinear
 - Noisier
 - Synchronization of multi-actuator operations may be difficult
 - More expensive and less portable