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(I Outline of Lecture 7 |

a Givens Transformations

FlR OO L.

d Weighted Least Squares Problem and its Solutions via
Householder Transformation

d Computation of Pseudo (Generalized) Inverse

kL
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Jasdzsdwsdeadeadeadesdngde AR

= Q" =JagdegdusIoadieades
O Zig-zag pattern of zeroed-out elements

X
X

Zero out elements
] £ min(i-1,n) in row i

\X X
X X X X X
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Given’s Transformation (Rotations)
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O
. | . .
n O What are these Givens rotations ?
a 1 0 .. 0 O]
|
0O 1 O O
. _ _ c=cos®
1 J(i,k,@)=i|.. .. ¢ s O .
. ki.. .. =s ¢ O s=sing
0 . 1]
1 Kk
=1+(v,—g)el +(v, —e)ex
-0 .
0 0
C S ;
where, v,=| |andyv,=| Note: v,V, =
—S C
43
. . o o
0 0 .
= J (i, k,0) is a rank two correction to an identity matrix a
L
L
L



Why is Givens Transformation a Rotation?

&

d To motivate Givens rotations, consider the two-dimensional case:

[ N N N NS .

X, =rC0S¢@, X, =rsing
y, =rcos(¢—0)=rcosgcosd+rsingsind
y, =rsin(¢—0)=rsingcosd—rcosgsin g
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Why is Givens Transformation a Rotation?

&

cosgd sind
{yl} :{ ! Mxi} = Rotation of X-Y axis through an angle &

Y, —siné@ cosa || X,
\—/
J(1,2,0) matrix

cosd —sind
Also, % _ Vi
X, sin@d cosé ||V,
\_/ -
J(1,2,-0) matrix

O So, we have the important result that
J‘l(l, 2,0) =J' (1, 2,0) =J (1, 2,—9)

[ N N N NS .

* Ingeneral, J (i, k,9) rotates i-k coordinates by an angle @ ina
counter-clockwise direction.

J(i,k,0)x=y

= Y, =C% +SX, Y, =—SX +CX, Y; =X;V] #l,K
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@ ‘ Householder versus Givens l

o
. |
: * Also, note in 2 by 2 case, If v = [V1’V2 ]T where, v, =—sin@, v, =cosd
4 1-2v2 —2vyv, | [cos26 sin26
& W:I:I—Z!MT:I: 1 13 = .
. -2V, 1-2v, sin28 —cos26
. - Fora2 by 2 case

C S |. :

Q= < e Is @ Householder (or reflection)

[ Cc S| c -s|. _
Q= or IS a rotation
|—S C| S ¢

« Coming back to the general case, we can force y, 1 to 0 by letting

\/x + X2 «/x + X2

= Any specified element can be zeroed out by appropriate choice of
c ands

= Since the effect is local, the procedure is well-suited for parallel
processing
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r| Implementation Issues l

% | > [%], write t = x /xk;s:(l+t2)_1/2,c:st

%] > x|, write t = x, /xi;c:(l+t2)_1/2,s:ct

FlR OO L.

O Implementation

if x, =0
c=1
s =0

else if |x, |>|x]

t:xi/xk;s:(1+t2)_1/2,c:st

else 43

2 \~1/2 <

t=x /x;c=(1+t?) " s=ct r

_ J

end If a

J
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(I Local Effect of Givens l

O Whatis J(i,k,0)Aand Ad (i,k,0)?
J(i,k,0) A affects only rows i and k of A
AJ (i,k,0) affects only columns i and k of A
3(i,k,0)A AJ(ik,6)
Forj=12,..,.n DO Fori=L12,...m DO
v=a, v=a,

[ N N N NS .

} Local effect

W=, W =gy

a; = CV +SW a, =CV+Sw

8, =—SV+CW a, =—SV+CwW
End DO End DO
O(2n) operations O(2m) operations a3
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Algorithm: Givens
Fork=2,...m DO
Fori=1,2,...min(k -1n) DO

[ N N N NS .

Find c and s >
C S| a X
{'S C}lej:{O}
A< J(i,k,0)A
End DO

End DO
« Number of operations: 2n’ m—g)

« |f you want to solve LS problem, insert b <« J (i,k,@)Q and
solve Rx=Dh
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Iterative Improvement of LS Solution

Q Assume Full Column Rank. Suppose we have an initial solution x?
Can we improve it ? YES !!

Iteration k=0
+—> Compute residual r™® =b — Ax¥ in double precision

[ N N N NS .

. 2
| Solve LS problem m(l)n”A;(") —L(")”Z
z

| = solve R, 2% =r,
| where r. Is given by

n
,
k) C
Q'r® =
rd
m—n

(k+1) _ (k) (k)
Xs =Xg t+Z

If X, has converged, stop.

else .
k =k +1 Jd'd
o o
+ — endif

Computational load: O(mn +n?/2)
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Weighted Least Squares (WLS) Problem

L Suppose measurements are noisy and noise process is correlated.
b=Ax+v

[ N N N NS .

Vv —zero mean stochastic process with E {ny} —V =557

S —Cholesky triangle
Solve weighted least squares (WLS) problem:

min(Ax-b)'V*(Ax—b)=[s*(Ax-b)|] (1)
d Oneway: Form S*A=A and S'b =b and solve ordinary least squares

problem. min |Ax - EHE

o IfSisill-conditioned, X{. isbad!!
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@ Optimality Conditions of WIS Problem

0 Better way: What are the necessary conditions of optimality ?

(ATV _1A)X — ATV —1@ V — SST :>V_1 — (S—l)T S—l

FlR OO L.

Xis

(AVA)T ATV b when A is full rank

(s*A) s7A] (sA) (s'b)

To derive an efficient method, let us look at an alternate problem:

s.t. b=Ax+Sv (2)

kL

14 Copyright ©2008 by K. Pattipati

YO L



&

[ N N N NS .

= oL/Iov=0=>v+S"'1=0
oLIox =0= AT 1 =0
OLIOA=0=> b= AX, . + SV

using A" 1 =0, we have

X.s =(AVIA) T AV D

Problems 1 and 2 are equivalent
Valid for rank deficient case as well

U
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Necessary Conditions of Optimality

L:%MTM+/IT[A5+SM—Q]

V=55 =V 1i=(S?)'s™

or,b = AX s _SSTi =4 :V_l(AﬁLs _b)

and v =S""(b— Ax, ) weighted residual or “whitened residual"




[ N N N NS .

r=b-Ax,s=(1-P)b

P = Projection matrix (P? = P)
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(l Solution via Householder l

Do Householder on A

=Q'A= " {Rl} ;Q=m[Q, Q,] ;R, upperA
m-n| O

n n m-n
« Form Q,S and find orthogonal transformation P such that
—QISP=m-n[0 U];P=m[P, P];U upperA=Q]SP,
nm-n n m-n
O  What does AXx+Sv =Db mean ?

[ab _mH QISP QI'SP, [ Ry
Qbl 0] o U |Pv

so solve:
Uz=Q,b and v=P,z
Rx=Q/b—(Q/SPR'V + QSRR v)

-Qb-

17 Copyright ©2008 by K. Pattipati



&

A': Computation of Pseudo Inverse

Solution of Ax=b for any m x n matrix of any rank r
 When m > n and rank(A) =n

x5 =(ATA) ATb= A’

[ N N N NS .

« We can always consider m > n. Otherwise, use AT and note
(AT)" = (A7)

 More generally, x, =ATh ; AT~ Moore-Penrose Inverse, annxm
matrix. Variously referred to as pseudo-inverse or generalized inverse

O Afsatisfies the following four conditions, termed the
Moore-Penrose conditions:

. AATA=A

ii. ATAAF=AT7

iii. (A7A) = (A’A)T = projection on to R(AT)

iv. (AA") = (AAP)T=projection on to R(A)

18 Copyright ©2008 by K. Pattipati



@ (l Moore-Penrose Conditions l

 Note that ordinary inverse satisfies Moore-Penrose conditions
(ATA)LAT satisfies conditions

A full column rank = A = QR and A" = R-1QT

We can show that all four conditions are satisfied by A7 = R-1QT
— QRRIQTQR=0QR =A

_ R—lQT QRRIQT=RIQ"= Af

~ QRRIQT=1,=1,"

~RIQTQR=1,=1]

[ N N N NS .
[ ]

d Gram-Schmidt procedure to compute At
 Suppose A has rank r. Further suppose that A is partitioned as follows:
A=[R T]=[R RS] where S =t x (n—r) matrix
R has r independent columns, T has (n-r) dependent columns
=>t.=Rs,,1=12,..n-r

. ; i o d

=> Since R has linearly independent columns a2

R”= (RTR)'RT an r x n generalized inverse matrix 44

. . . < 'd

Also, R’R = I an r x r identity matrix n

a

19 Copyright ©2008 by K. Pattipati T LLLL]
LL L L]



Gram-Schmidt Procedure for Computing A’

&

 Fact: Generalized inverse of a general A is similar to the generalized
Inverse of [ R|RS], since [ R|RS] can be obtained by the
permutation of the columns of A. That is,

[ N N N NS .

AP,P,..P,.=AP=[R|RS]
(AP)" =P1A*=PTA*=P. P, ..P,[R|RS]"

—A"=P,P,..P,[R|RS] Ti.e., do arow permutation on the pseudo-
iInverse of [R | RS] in reverse order to obtain the pseudo-inverse of A.

d Howtocompute[R|RS]T

claim: (AP)' =[R| RS = ' [('f+SST)1 RT}

n-r|S"(I. +SS")" R’
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Wiy is this true? Look at LS Problem

O When rank(A) = r < n = underdetermined system

0O Less number of independent equations than unknowns.

= Infinite number of solutions satisfying Ax=Db
X +X,=1

[ N N N NS .

X

1

4%, +4X, =4

= J :(AX—Q)T (Ax —b) =0 for infinite number of x

norm(x x) = minimum Euclidean length.

Q Thatis, solve
m|n J, = X

s.t. APx =D

21 Copyright © 2008 by K. Pattipati

QO So, among these infinite number of {x}, let us pick one that has minimum




[ N N N NS .
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' (l Optimality Conditions l

O This is a convex programming problem and has a unique

minimizing solution
X' X=X X +X% %, APx=b = Rx +RSX, =b
where x, and x, are of dimensions r and (n—r), respectively.
 Define the Lagrangian function,
L=X X% +X X% +A" [Rx, +RSX, —b]
« From Karush-Kuhn-Tucker’s necessary and sufficient conditions of

optimality for convex problems
OL/ox,=0=2x +R'A=0=1=-2(R")"x

oL/ox,=0=2x,+S'"R"A=0
oL/0A=0=Rx +RSx,=Db

%=5"% =x=(1,+587) R'b

Thus, minimum norm satisfying Ax = b is given by: J
1 o

(1,+SST) R 1

Xis = b= (AP)TQ d

ST(1,+5S7) R



[ N N N NS .

23

Pseudo Inverse Mechanization - 1

O Suppose we have done the Gram-Schmidt procedure on AP
rn-r

ie [R|RS]=m[Q | OU
rfu Ww
where U= ' }
n-r| 0 I,
SN
U-
Compute U'lz{ 5 | = X =-U;W

Since (AP)U ™ =[Q 0]=[R Rs]{ucl) |x }:[Ruf RX +RS |
= R= Qul = R'= (Ul)_lQT
= X=-S

= last (n—r) columns of U ™" are { } at the point we hit dependency

n-r

Apply G-S to these last (n—r) columns

z'|-S" | 1 |=|-Z"s" | 2]
Copyright © 2008 by K. Pattipati
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-S r |-SZ
or /=
I, n-r| Z

Since (-2'S" ZT){_;Z} =7"|1,,+S'S|Z =1, (Columns are orthogonal)
= 1,,+8'8=(2")'2"=(1,,+8'S) =22
 Also, using Sherman-Morrison-Woodbury formula
(1,+887) =1,-5(1,,+87S) ST =1, —(SZ)(SZ)"
ST(1,+5S") =8T-s78.zZ"S" =[I, , ~S"S(l,, +5"S) IS"
=(S"S+1,.,) ST =22"S" =Z(S2)'

Recall (AP)' = |1, -(s2)(82)" ]_l R'
Z(SZ)'R'

_ r Ut -8z Q'
n-rl 0 Z | (S2)'Uu;/'Q’
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a0 4 (I Summary of Procedure l
o
. T | °3 s Q_l ; ol Q_l ;
1 {I }—) I 0 | ——>|U~ -S|———>|U~ -5Z
: ' _O In—r_ L 0 I _ L 0 Z —

— Q 0 i Q [(SZ)Tul—lQT]T—

u'  -SZ|->|U* -SzZ
(sZ)y'ut z | | o Z

_ Ut -Sz Q' P
Finally, { 0 . M(SZ)TUfQT}_(AP)

Note that we can store A" in Aji.e., in the space occupied by

Q1 ((52)'u; Q") ]

Finally, we can permute rows to obtain A : :

A" =P(AP)" =PP,..P.(AP)’ iy

o 'd

= swap row r with c_,....,row 1 with c, o

L

o5 Copyright © 2008 by K. Pattipati LR L LR
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2 S Householder Method to compute AT - 1
: O Householder on AP gives rnr

: QAP = r {Ul W} r = rank(A)

a m-r/ 0 0

w

O Zero out W via Householder again

n—r|{wW' 0

LJ 0
TAPZ,..Z, =

r T A
Consider Z....Z, [Ul }: [Ul } can do it in r’(n—r) flops.
n—r

Q' (AP)Z = {L(J)l 8} whereZ =2,7,..Z,

O, ~ = T
— AP = |:Q11 Q12 |:U1 O:| le Z12:|
Q21 Q22 _ 0O O _Zzl Zzz
-~ - T
(AP)" = [Zli 212} u" o |:Q11 le}
ZZl Z22 L O O Q21 sz
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4 « Swap rows to get At
: « Can solve LS problem easily
- |Ax-bl; =@ APZZ'P"x-Q"b),
W _ Ulw_gHE +HC—IH§ ; ZTPTX:[V_VTXT}T ; QTQZ[ETQT]T
~ w
= Solve Uw=c :>X:PZ{O}
Sety=0 =(PZ), w
= X s=weighted sum of first r columns of PZ
d  Example: i o
4 2 3 8
0 15 2
A: b u—
0 0O — |5
0 0 0 7
: : u, wj| . 4 2 3
A is already in the form with U, = and W =
0 O 0 1 5

27 Copyright © 2008 by K. Pattipati




28 Copyright © 2008 by K. Pattipati

O\ )
d
4 4 0
d ] U,/
- Consider L1=12 1
WT
L 3 5
: 4+ /29 .
. 2U, U
91 = 2 y Zl :|:I _—T:| =
3 uy,
. —-5.3852 —-3.1568
U
Zl[ lT}: 0 0.3273
W
0 3.9909
. —5.3852 —-3.1568
U
ZZZ{ ﬂ}z 0 —4.0043 | =
W
0 0]
- .[8] [—1.4856
W:Ul —
2 0.6717
1.4968
w
gLszzlzz[an 0.5806
0.2839

—0.7428
—0.3714
—0.5571

.

—0.3714
0.9209
—0.1187

—0.5571
—0.1187
0.8219




1Y A' Via SVD: Best Method - 1

o

: * Best method yet to come...... Lecture 12

N » Reduce A to upper A form via Householder

L | ] R

3 A=
QA= |

* Reduce R to bi-diagonal form via Householder
d, f, 0 0 . 0]
0d, f, 0 . 0
QiRS, =B, =|. . . . . .

0 . . .d, f
0o . . . . d]

Zero the super-diagonal elements via a symmetric
QR algorithm for Eigen values (Lecture 11[) A=UzV' = A'=VI'U
Bl

Q!BS, == =diag(c,0,..0,), and B= ;

Q: (Qglnn)QrASES, =% ; U =Qq(Qgl,,1)Q; i V =SS,
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Iterative Improvement of Inverse

O Given X, = A, ~ A1, find X, better than X,
O The method is based on Newton’s method for solving f(x) =0
== Xpe1 = Xp— f(X n)/f’(x n)
O Applying the formula to f(x) = a — 1/x (scalar) to get
X0, = X, —[a—1/ xn]/[ll x,f] =X, + X, (1—-ax, ) =X, +(1-x,a)X,

[ N N N NS .

So, X, =X, +€.X

1 M+l T n*n

Extending to matrices
Xoa =X, +(1=X,A)X,=E X, ; X,= intial estimate

n n ?

e =error at iteration n.

E . =1—X_A=1— X A= X A+(X.A)?=(l-X A
En+1 =1 - Xn+1A; En =1 - XnA
— En+1:Er?

= Rapid convergence provided || — X A <1.
Quadratic convergence

d Typically requires 2n* MADDS / iteration (expensive)
O The procedure is valid for AT as well
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(I Summary |

a Givens Transformations
— local effect
— parallelization

FlR OO L.

d Weighted Least Squares Problem and its Solutions via
Householder Transformation

d Computation of Pseudo (Generalized) Inverse
— Gram-Schmidt
— Householder
— SVD

kL
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