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Outline of Lecture 7

 Givens Transformations

 Weighted Least Squares Problem and its Solutions via

Householder Transformation

 Computation of Pseudo (Generalized) Inverse
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 Selective zeroing of elements and selective revision of R

How do Given’s Rotations Work? - 1

x x x x x x x x x x x x

x x x 0 x x 0 x x 0 x x

(1,2) (1,3) (2,3)x x x x x x 0 x x 0 0 x

x x x x x x x x x x x x
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x x x

0 x x

(1,4) (2,40 0 x

0 x x

x x x
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3,5 2,5 1,5 3,4 2,4 1,4 2,3 1,3 1,2

T

3,5 2,5 1,5 3,4 2,4 1,4

x x x x x x

0 x x 0 x x
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0 0 0 0 0 0
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 Zig-zag pattern of zeroed-out elements 

x x x

x x x

x x x

x x x

x x x

 
 
 
 
 
 
  

How do Given’s Rotations Work? - 2

Zero out elements

j  min(i-1,n) in row i
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 What are these Givens rotations ?
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Given’s Transformation (Rotations)
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 To motivate Givens rotations, consider the two-dimensional case:

1X

2X

2x

1x

1Y

1y

2Y

2y




 

 

1 2

1 2

,

,

P x x

P y y

r
1 1 2 1

2 1 2 2

x cx sx yc s

x sx cx ys c

      
                

 

 

1 2

1

2

cos , sin

cos cos cos sin sin

sin sin cos cos sin

x r x r

y r r r

y r r r

 

     

     

 

   

   

Why is Givens Transformation a Rotation?



Copyright © 2008 by K. Pattipati7

 

 

1 1

2 2

1 1

2 2

cos sin
Rotation of X-Y axis through an angle 

sin cos

                   1, 2,  matrix

cos sin
Also, 

sin cos

                          1, 2,  

y x

y x

J

x y

x y

J

 


 



 

 



    
     

    

    
    
    

 matrix

 So, we have the important result that

• In general,                rotates i-k coordinates by an angle     in a 

counter-clockwise direction.

     1 1,2, 1,2, 1,2,TJ J J     

 , ,J i k  

 , ,

,   ,   ,i i k k i k j j

J i k x y

y cx sx y sx cx y x j i k

 

        

Why is Givens Transformation a Rotation?



Copyright © 2008 by K. Pattipati8

• Also, note in 2 by 2 case, if

• For a 2 by 2 case

• Coming back to the general case, we can force yk ↑ to 0 by letting

 Any specified element can be zeroed out by appropriate choice of 
c and s

 Since the effect is local, the procedure is well-suited for parallel 
processing

 1 2 1 2,  where, sin ,  cos
T

v v v v v    

2

1 1 2

2

1 2 2

cos2 sin 21 2 2
2

sin 2 cos22 1 2

T v v v
W I vv

v v v

 

 

    
             

 is a Householder (or reflection)

 or  is a rotation

c s
Q

s c

c s c s
Q

s c s c

 
   

   
       

2 2 2 2
    i k

i k i k

x x
c s

x x x x
 

 

Householder versus Givens



Copyright © 2008 by K. Pattipati9

 Implementation

 

 

1/2
2

1/2
2

,  write / ; 1 ,

,  write / ; 1 ,

k i i k

i k k i

x x t x x s t c st

x x t x x c t s ct





    

    

 

 

1/ 2
2

1/ 2
2

if   0

       1

       0

else if 

             / ; 1 ,

else

            / ; 1 ,

end if

k

k i

i k

k i

x

c

s

x x

t x x s t c st

t x x c t s ct













   

   

Implementation Issues
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 What is    , ,  and , , ?J i k A AJ i k 

 

 

   

, ,  affects only rows  and  of 
Local effect

, ,  affects only columns  and  of 

 , ,                                             , ,

For =1,2,...,   DO                          

J i k A i k A

A J i k i k A

J i k A A J i k

j n





 





     For =1,2,...,  DO

                                                            

                                                          

                              

ij li

kj lk

ij

i m

v a v a

w a w a

a cv sw

 

 

 

 

                  

                                             

End DO                                                End DO

O 2  operations                                O 2

li

kj lk

a cv sw

a sv cw a sv cw

n

 

     

   operationsm

Local Effect of Givens
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Givens Orthogonalization Procedure

Algorithm: Givens

• Number of operations:

• If you want to solve LS problem, insert  

 

 

For =2,...,   DO

       For =1,2,...,min -1,n  DO

              Find  and 

                       
- 0

                       , ,

       End DO

End DO

ii

ki

k m

i k

c s

ac s x

as c

A J i k A



    
    

    



22
3

n
n m
 

 
 

 , ,  and b J i k b

solve Rx b
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 Assume Full Column Rank.  Suppose we have an initial solution

Can we improve it ? YES !!  

Iteration k=0

0

LSx

( )

( ) ( )

LS

2
( ) ( )

2

( )

1

( )

(

LS

 Compute residual  in double precision

|         Solve LS problem min

|         solve R

|         where  is given by

|
         

|

|         

k

k k

k k

z

k

C

C

n

CT k

d m n

k

r b Ax

Az r

z r

r

r
Q r

r

x



   



 

 
  
 

1) ( ) ( )

LS

LS

2

|         If  has converged, stop.

|         else

|                1

+   endif

Computational load: ( / 2)

k kx z

x

k k

O mn n

  

 





Iterative Improvement of LS Solution
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Weighted Least Squares (WLS) Problem

 Suppose measurements are noisy and noise process is correlated.

 One way:

• If S is ill-conditioned,         is bad !!

 

     
2

1 1

2x

zero mean stochastic process with ;

Cholesky triangle

Solve weighted least squares (WLS) problem:

min                   (1)

T T

T

b Ax v

v E vv V SS

S

Ax b V Ax b S Ax b 

 

  



   

-1 -1

2

2

Form S  and S  and solve ordinary least squares

problem. min
x

A A b b

Ax b

 



0

 LSx
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 Better way:  What are the necessary conditions of optimality ?

To derive an efficient method, let us look at an alternate problem:

 

 

     

1 1

1
1 1

 LS

1
-1 1 -1 -1

  when  is full rank

      = S S S

T T

T T

T T

A V A x A V b

x A V A A V b A

A S A A b

 


 








 
  

1
min

2

s.t.                                                (2)

Tv v

b Ax Sv 

Optimality Conditions of WLS Problem

1 1 1( )T TV SS V S S    
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Necessary Conditions of Optimality

 

 
 LS

1

 LS  LS

1
      

2

 L/ 0 0

      L/ 0 0

      L/ 0

 or,

T T

T

T

T

L v v Ax Sv b

v v S

x A

b Ax Sv

b Ax SS V Ax b









  

   

      

    

     

    

 

 

1

 LS

1
1 1

 LS

and  weighted residual or "whitened residual"

using 0,  we have

       

  Problems 1 and 2 are equivalent

  Valid for rank deficient case as well 

T

T T

v S b Ax

A

x A V A A V b






 

 









1 1 1( )T TV SS V S S    
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Geometric Interpretation

 LSAx Pb
Ax

Sv

b
 r I P b 

  LSA x x

  LS  A x x r Sv  

 

 LS

1
1 1

 LS

 LS

2

  

      ( )

       Projection matrix ( )

T T

b Ax Sv

Ax r

Ax A A V A A V b Pb

r b Ax I P b

P P P
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Solution via Householder

• Do Householder on A

• Form           and find orthogonal transformation P such that 

 What does                      mean ?

 1

1 2 1   ;   ;  upper 
0

                                                  

T
n R

Q A Q m Q Q R
m n

n n m n

 
      



2

TQ S

   2 1 2 2 20  ;  ;  upper 

                                            

T TQ SP m n U P m P P U Q SP

n m n n m n

     

 

Ax Sv b 

 

   

11 11 1 1 2

2 2

2 2

1 1 1 1 1 1 2 2

1 1 1 2

0 0

so solve:

                   and          

       

            

T TT T

T T

T

T T T T T

T T T

RQ b P vQ SP Q SP
x

Q b P vU

Uz Q b v P z

R x Q b Q SPP v Q SP P v

Q b Q Sv Q b SP z
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A†: Computation of Pseudo Inverse

Solution of                 for any m X n matrix of any rank r

• When m > n and rank(A) = n

• We can always consider m > n. Otherwise, use AT and note  

(AT)† = (A† )T

• More generally,      =A†      ; A† ~ Moore-Penrose Inverse, an n X m

matrix. Variously referred to as pseudo-inverse or generalized inverse 

 A† satisfies the following four conditions, termed the 

Moore-Penrose conditions:

i. A A† A = A

ii. A† A A† = A†

iii. (A†A) = (A†A)T   projection on to R(AT)

iv. (AA†) = (AA†)T  projection on to R(A)

Ax b

 
1

†

 LS

T Tx A A A b A b


 

 LSx b
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• Note that ordinary inverse satisfies Moore-Penrose conditions

• (ATA)-1AT satisfies conditions

• A full column rank  A = QR and A† = R-1QT

• We can show that all four conditions are satisfied by A† = R-1QT

– QRR-1 QT QR = QR = A

– R-1QT QR R-1QT = R-1QT = A†

– QR R-1 QT = Im = Im
T

– R-1 QT QR = In = In
T

 Gram-Schmidt procedure to compute A†

• Suppose A has rank r. Further suppose that A is partitioned as follows:

A = [R  T] = [R  RS]  where S = t X (n – r) matrix

R has r independent columns, T has (n-r) dependent columns

=>

=> Since R has linearly independent columns

R† = (RTR)-1RT an r X n generalized inverse matrix

Also, R†R = Ir an r X r identity matrix

   ,   =1,2,...,i it Rs i n r 

Moore-Penrose Conditions
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 Fact: Generalized inverse of a general A is similar to the generalized 

inverse of  [ R | RS ], since  [ R | RS ] can be obtained by the 

permutation of the columns of A. That is,

A P1 P2 ... Pr = A P = [ R | RS ]

(AP)† = P-1 A† = PT A† = Pr Pr-1 ... P1 [ R | RS ] †

 A† = P1 P2 ... Pr [ R | RS ] † i.e., do a row permutation on the pseudo-

inverse of [R | RS]  in reverse order to obtain the pseudo-inverse of A.

 How to compute [ R | RS ] †

 
1 †

††

1 †

( )
claim: ( )  |  RS

( )

T

r

T T

r

r I SS R
AP R

n r S I SS R





 
   

  

Gram-Schmidt Procedure for Computing A†
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Why is this true? Look at LS Problem  

 When rank(A) = r < n  underdetermined system

 Less number of independent equations than unknowns.

Infinite number of solutions satisfying 



 So, among these infinite number of      , let us pick one that has minimum 

norm            minimum Euclidean length. 

 That is, solve

Ax b

1 2

1 2

1

4 4 4

x x

x x

 

 

    0 for infinite number of 
T

J Ax b Ax b x   

{ }x

 
1/ 2

Tx x

1min    

s.t.   

T

x
J x x

APx b





1

1

1x

2x
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 This is a convex programming problem and has a unique 

minimizing solution

• Define the Lagrangian function,

• From Karush-Kuhn-Tucker’s necessary and sufficient conditions of 

optimality for convex problems

1 1 2 2 1 2

1 2

,     

where  and  are of dimensions  and ( ), respectively.

T T Tx x x x x x APx b Rx RSx b

x x r n r

     



 1 1 2 2 1 2

T T TL x x x x Rx RSx b    

 

 

 

1

1 1 1

2 2

1 2

1
†

2 1 1

1
†

†

 1
†

/ 0 2 0 2( )

/ 0 2 0

/ 0

  

Thus, minimum norm satisfying  is given by:

( )

T T

T T

T T

r

T

r

LS
T T

r

L x x R R x

L x x S R

L Rx RSx b

x S x x I SS R b

Ax b

I SS R
x b AP b

S I SS R

 













        

     

     

   



 
  
 

  

Optimality Conditions
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Pseudo Inverse Mechanization - 1

 Suppose we have done the Gram-Schmidt procedure on AP

   i.e.,  |      |    0R RS m Q U
r n-r

1

1

-1 11

1

where       =
0-

Compute  
0

n r

n r

U Wr
U

In r

U X
U X U W

I









 
 
 

 
    
 

r n-r

   
1

1 11

1

† 1

1 1

1

Since ( ) 0
0

                   ( )

         =

         last ( ) columns of  are  at the point we hit dependency

Apply G-S to th

n r

T

n r

U X
AP U Q R RS RU RX RS

I

R QU R U Q

X S

S
n r U

I



 









 
       

 

   

 

 
   

 

ese last ( ) columns

           |     |   T T T T T

n r

n r

Z S I Z S Z
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 Note that the transformation automatically gets stored 

 Also, using Sherman-Morrison-Woodbury formula

 
1

1 1

or 

Since ( )  (Columns are orthogonal)

     ( )

n r

T T T T T

n r n r

T T T T

n r n r

S r SZ
Z

I n r Z

SZ
Z S Z Z I S S Z I

Z

I S S Z Z I S S ZZ



 


 

 

    
      

 
       

 

     

   

   

 

1 1

1 1

1

1
†

†

†

( )( )

. [ ]

                        = ( )

( )( )
Recall    ( )

( )

              

T T T T

r r n r r

T T T T T T T T T

r n r n r

T T T T T

n r

T

r

T

I SS I S I S S S I SZ SZ

S I SS S S S ZZ S I S S I S S S

S S I S ZZ S Z SZ

I SZ SZ R
AP

Z SZ R

 



 

 







     

     

  

    
  

1

1

1

1

           =
( )0

T

T T

r QU SZ

n r SZ U QZ





  
  

    

Pseudo Inverse Mechanization - 2
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Summary of Procedure

GS
GS 1 1

1 1

1

1

1 1

1 1

1

1

1

1

1

1

0 0

0

0 0 0

( )0

( ) 0

Finally, 
( )0

S

I

r

n

n r

T
T T

T

T

T T

R S Q Q
AP

I U S U SZ
I

I I Z

Q SZ U QQ

U SZ U SZ

SZ U Z Z

QU SZ

SZ U QZ

 
 

  





 







     
                  
 

         

      
     
   
    

 

 
 

  

†

†

1

1

†

† † †

1 2

( )

Note that we can store  in ,i.e., in the space occupied by

              |  (( ) )

Finally, we can permute rows to obtain 

             ( ) ... ( )

             sw

T T T

r

AP

A A

Q SZ U Q

A

A P AP PP P AP








  

 

 1ap row  with ,...., row 1 with rr c c
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Householder Method to compute A† - 1

 Householder on AP gives

 Zero out W via Householder again

1
   rank(A)

0 0

T
r U W

Q AP r
m r

 
    

r n-r

21 1

1

1

1

1

1 2

Consider  ...   can do it in ( ) flops.
0

0
                       ...

0 0

0
                       ( )     where ...

0 0

             

T T

r T

T

r

T

r

r rU U
Z Z r n r

n r n rW

U
Q APZ Z

U
Q AP Z Z Z Z Z

  
   

    

 
  
 

 
  
 







11 12 11 121

21 22 21 22

1
11 12 11 12† 1

21 22 21 22

1 1

11 1 11 11 1 21

1

21 1 11 21

0
    

0 0

0
                  ( )

0 0

                            =

T

T

T T

T

Q Q Z ZU
AP

Q Q Z Z

Z Z Q QU
AP

Z Z Q Q

Z U Q Z U Q

Z U Q Z



 



    
      

    

    
     
    





 

 1

1 22

       

TU Q
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• Swap rows to get A† 

• Can solve LS problem easily

 Example:

22

2 2

2 2

1 22

1

 LS

(

 ;  ; 

 Solve                       
0

              Set 0                               ( )

=weighted sum of

T T T T

T T
T T T T T T T

r

Ax b Q APZZ P x Q b

U w c d Z P x w y Q b c d

w
U w c x PZ

y PZ w

x

  

          

 
     

 

 







 first  columns of r PZ

1

1

4 2 3 8

0 1 5 2
A       

0 0 0 5

0 0 0 7

4 2 3
A is already in the form   with  and 

0 0 0 1 5

b

U W
U W

   
   
    
   
   
   

     
      

     

Householder Method to compute A† - 2
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1

1 1
1 1

1 1

1

1

4 0

Consider 2 1

3 5

4 29 0.7428 0.3714 0.5571
2

2  ; 0.3714 0.9209 0.1187

3 0.5571 0.1187 0.8219

5.3852 3.1568

0 0.3273

0 3.9909

T

T

T

T

T

T

U

W

u u
u Z I

u u

U
Z

W

 
      
    

     
             
       

 
    
  

1 1

2 1

1

1

 LS 1 2

5.3852 3.1568

0 4.0043
0

0 0

8 1.4856

2 0.6717

1.4968

0.5806
0

0.2839

T T

T

U U
Z Z

W

w U

w
x Z Z








  
           

     

   
    

   

 
       
 

  





Example via Householder
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A†  Via SVD: Best Method - 1

• Best method yet to come……Lecture 12

• Reduce A to upper Δ form via Householder

• Reduce R to bi-diagonal form via Householder

• Zero the super-diagonal elements via a symmetric 

QR algorithm for Eigen values  (Lecture 11)

0

T

R

R
Q A

 
  
 

1 1

2 2

1

1

0 0 .. 0

0 0 .. 0

.. .. .. .. .. ..

0 .. .. ..

0 .. .. .. ..

T

B B

n n

n

d f

d f

Q RS B

d f

d



 
 
 
  
 
 
  

1

1 2( ... ),  and    
0

( )  ; ( )  ; 

T

n

T T T

B m n R B R B m n B

B
Q BS diag B

Q Q I Q AS S U Q Q I Q V S S

   

     

 
     

 

   

† †

†

1

T T

Tn
i i

i i

A U V A V U

v u
A
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Iterative Improvement of Inverse

 Given X0 = A0 ~ A-1, find X1 better than X0

 The method is based on Newton’s method for solving  f(x) = 0

=>  xn+1 = x n – f(x n)/f ’(x n)

 Applying the formula to f(x) = a – 1/x (scalar) to get

 Typically requires 2n3 MADDS / iteration (expensive)

 The procedure is valid for A† as well

     

 

2

1

1

1 0

2

1 1

1/ / 1/ 1 1

So,  ;  =error at iteration .

Extending to matrices

     =   ;  = intial estimate

        ( ) (

n n n n n n n n n n

n n n n n

n n n n n n

n n n n n

x x a x x x x ax x x a x

x x e x e n

X X I X A X E X X

E I X A I X A X A X A I







 

          

 

  

       2

1 1

2

1

0

)

    ;     

   

    Rapid convergence provided 1.

          Quadratic convergence

n

n n n n

n n

X A

E I X A E I X A

E E

I X A
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Summary

 Givens Transformations 

− local effect

− parallelization

 Weighted Least Squares Problem and its Solutions via

Householder Transformation

 Computation of Pseudo (Generalized) Inverse

− Gram-Schmidt

− Householder

− SVD


