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Lecture Outline

 Recursive (sequential) Least Squares

 Sequential LDLT Factorization updates

 Sequential QR updates

 Application to Kalman filtering
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 Suppose we have measurements

unknowns (occurs in many applications, e.g., fitting an nth order 

Polynomial

 Objective is to find        to minimize the mean-squared error (MMSE) 

Recursive Least Squares (RLS)
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 Suppose now we make a (k+1)st measurement

 Q: Can we update our previous estimates in light of        without 

recomputing               or Householder or Givens or Gram-Schmidt?

 A: Yes! This is precisely what is done in RLS, Kalman filtering, etc. 

 How does recursive least-squares (RLS) work ?

• Let

• Let

• Define

• In RLS, we estimate    
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Sequential Update of Covariance Matrix

 Mechanics of RLS process
• Consider 

• Key: Sherman-Morrison-Woodbury Formula

 Consider three matrices: A is n X n, B is n X m C = n X m
• Then Sherman-Morrison-Woodbury Formula gives:
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Sequential Update of Estimate

• To compute 
1

ˆ
kx 
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ate and current measurement

This is similar to the measurement update of a Kalman filter
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RLS is Simple  to Implement

k = k + 1

More 
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Round-off Error Issues

 Major problem: Negative sign in Pk equation causes Pk to go 

indefinite due to round-off errors (e.g., negative diagonals)

 Other formulae to overcome indefiniteness
1. Joseph’s form:

2. Square-root or LDLT update
– Idea: force Pk and Pk+1 to be PD 

   1 1 1 1

This transformation requires twice the number of

operations over the ordinary RLS
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 Q: Can we go from

 A: Yes, but slightly complicated

 Simplicity of notation, let

 To simplify the expression for

 So, if we can find         of the terms in brackets, then we have solved 

the problem:
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 This is a special case of the following more general problem:

 Problem: updating LDLT factorizations of a rank-one corrected matrix
– Starting with

This is basically a problem of updating 

"Given , find  factorization o

 factorizati

f "

ons of

     a rank-one corrected matrix
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LDLT Update with Rank 1 Correction 
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 Consider 4 cases: From general → specific to RLS

1) 0 arbitrary

2) 0; 1/ ;  0 arbitrary

3) 

4) 1/ ;  1 ; ;  special T T

A Diag L I

f Df f L a



   

   



   

  

    

Four Cases for LDLT Updates
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Case 1:                        0 arbitrary

 Develop algorithm one column at a time

 Let

 Q: can we write 
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Case 1 (contd.)

 If so, we can generate a recursive scheme to update 

 Matrix on LHS has at most rank 2 and range space spanned by 

 Let

 Must solve for “unknowns”

 Need 3 eqns. Since we have 3 unknowns:

 Substitute for                  into * and equate coefficients.
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Update Algorithm for Case 1
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Case 2:                         0 (as in RLS)

 In this case, we may end up in a situation where              in step 1. 

 This may be due to round-off or near rank degeneracy of Pk

 Need slightly different formulae:

• Step 3 of algorithm implies

• Substitute in step 1:

0kd 
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2

1
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or                 (Step 1a)
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Case 2 (contd.)
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Case 3 : A = Diag (di)

 A=     unit vectorsii iDiag d l e  

• Note that

• So, if

• Thus, the vkk in the above case are known a priori 
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 Special case for RLS ;   arbitrary since  is arbitraryTv Df f L a a 

• α

• So, here

• But from (1a):
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• Also, note

• Since all                       can be computed a priori, we can get L
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Algorithm for RLS

 Due to Agee-Turner (1972); Gill, Golub, Murray & Saunders (1974)
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Algorithm for RLS – Details - 1

 For Least Squares, we need

 But can get     directly.  From above multiply by L:
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Algorithm for RLS - Details - 2
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 Note 2: Start the entire process with L = I, D = 105 I

Computational load = O (1.5n2 + 2.5n)
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Sequential QR – Add a Measurement - 1

 Adding a new measurement  add a new row to A

• Suppose added new row as row 1

• For k = 4 and n = 3, Hk looks like:

• Hk = upper Hessenberg (upper Δ + sub diagonal)
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• Apply Givens transformations to upper triangularize Hk

• But want to add a row k+1 at the end

• Use exchange matrix 
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Sequential QR – Add a Measurement - 2
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• So apply Givens transformations as before to obtain:

• O(m n) operations
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Sequential QR – Add a Measurement - 3
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 Suppose we want to delete a measurement (e.g., found to be an outlier 
after it was incorporated into Least Squares estimate)

• For simplicity, assume it is 1st measurement

• Let      be the first row of Q

• Compute Givens rotations

• Note that 
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Sequential QR – Drop a Measurement
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• It must be of this form, since it is orthogonal

• So,   1

1 1 1 1
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0
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 Adding a new column => increase number of parameters by 1

• So,
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Sequential QR – Add a Parameter
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• Apply

 Delete column k  remove xk (or kth factor)  reduce the number of 
parameters by 1

1 1

1 1

0

... 1    0 0
0

0 0 0
.

0 0 0
0

does not change  and ...

computational load: O( ) operations
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Sequential QR – Drop a Parameter - 1
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11 12
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Application to Kalman Filtering - 1

 Consider the LTI dynamic model of a stochastic system:

1

 

Dynamics:                    

Measurement:              

k k k

k k k

x x Ew

y Hx v

   

 

• Note that Ф, G, and H can be time-varying

• But, we will assume that they are time-invariant for simplicity of 
notation

• process noise sequence. Assumed to be zero-mean white, 
Gaussian noise sequence with covariance matrix, Wd

• measurement noise sequence. Assumed to be zero-mean, white
Gaussian noise sequence with covariance matrix R

• Without loss of generality, assume that Wd and R are diagonal

 kw

 kv
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 If not:

1

Form  

new 

and define:  new   called whitening of process noise
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   If the initial state  is Gaussian with mean  and covariance matrix ,  define:

ˆ   best estimate of based on measurements ,...

ˆ   best estimate of based on measurements 

k k k k

k k k

x x P

x x y y

x x 









  1,... ky y

 Similarly, if R is not diagonal

• Kalman filter provides the minimum mean-square error (MMSE) estimate 

(also called maximum a posteriori (MAP) estimate).

Application to Kalman Filtering - 2
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 The Kalman filter equations are:
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 Different filter algorithms differ in the way they 

compute the Kalman gains {Gk }

• Conventional Kalman filter:

Kalman Filter Equations
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 Remarks on the conventional Kalman filter:

1 1 1 1

/ / 1 / 1

1

 row of 

diagonal element of 

number of measurements #of rows in 

    Need to compute only ( 1) 2 elements of , since  is symmetric.
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  Could get negative diagonal elements in   if  and/or are small .i diP r w

• The update step can be implemented recursively one 

measurement at a time.  This is because:

 Joseph’s stabilized measurement update:
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Round-off Error Problems 



Copyright © 2008 by K. Pattipati34

 Conventional Kalman filter with lower bounding:
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(see Kerr, IEEE T-AES, Nov. 1990)

   Does not guarantee positive definiteness of 

            

k kP

• We will present the algorithm in two steps:

1.      update step

2.      propagation step

 LDLT Factorization:

Solution Approaches
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 LDLT Factorization: Measurement update step

• Trivial application of previous Least-squares update algorithm

 

1 1

/ / 1

1

   We know that   

    So, implement via:

      DO 1,

           call previous Agee-Tumer algorithm with , and current  and 

      end DO
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• Factorization problem associated with propagation step:

1/ /

/ 1/

    Recall that: 

    Problem:  Given , we seek ,  such that 
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Kalman Filter via LDLT Updates
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 There are basically 3 methods to obtain 

• Method 1

1/

1

modifying rank-one
corrections

    Let  be the factorization of 

    Further, let  for 1,2,..., ,  where column  of 

    Then:
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   So, the algorithm is:

           DO 1,

                  call case 1 of general algo

Probem: 

rithm wit

is typically positive semi-definit

h ,

           end DO
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LDLT Update Methods for Kalman Filters
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 Method 2: Weighted Gram-Schmidt

   1/

0
     Recall that 

0

0
       where     ,       

0

       Obtain  via parallel  Gram-Schmidt orthogonalization procedure.
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1 2

1 2 1 2

 Obtain a set of orthogonal directions , ,..., where 

           , ,..., , ,...,

           where unit lower , unit upper  

           and 
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1/

0    are -orthogonal.

       Once are known, we can obtain , ,...,  via:

           ;  1, 2,..,

       After -orthogonalization, 
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Gram-Schmidt for Propagation Step - 1
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 Method 2 cont… 
      

      

The a

 The 

lgorithm f

matri

or -orthog

x  is 

onalization of  is

replaced by 

   

           For 1,2,...,  DO

                 

 a minor variation of parallel Gram-Schmidt.

    Algorithm:
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                 For 1,...,  DO

                          obtained 
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d DO

 Method 3: Householder or Givens Transformations 

1/2 1/2

1/

      Recall that we can find transformation  such th  
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Gram-Schmidt for Propagation Step - 2
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 Other applications of square-root updates

• Probabilistic data association filter (PDAF) to track 

targets in   clutter – additional m rank-one corrections 

in the measurement update equations

• Quasi-Newton methods in non-linear programming

- rank-two or rank-three corrections
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Copyright © 2008 by K. Pattipati40

Summary

 Recursive (sequential) Least Squares

 Sequential LDLT Factorization updates

 Sequential QR updates

 Application to Kalman filtering


