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Lecture Outline

&

 Recursive (sequential) Least Squares

FlR OO L.

O Sequential LDLT Factorization updates
1 Sequential QR updates

d Application to Kalman filtering

kL
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Recursive Least Squares (RLS)

O Suppose we have measurements b = a X, b scalar fori=12,....k,x eR"
unknowns (occurs in many appllcatlons e.g., fitting an nt order

FlR OO L.

Polynomial
—a —>| [b
—a - b,
X= assume k > n and A has full column rank n
«—a, —>| |b

d Objective is to find X, to minimize the mean-squared error (MMSE)

2
MSE: [|Ax-b,[,
MMSE: Find x s > |Ax—b, [ is a minimum 2%
o d
Know 2,5 = A'b, =(ATA )" A'b, £% .
r
a
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(I Setting the Stage |

t Al
d  Suppose now we make a (k+1)st measurement b, , =a,,X

d  Q: Can we update our previous estimates in light of b, , without
recomputing A, A ., or Householder or Givens or Gram-Schmidt?

FlR OO L.

O A:Yes! This is precisely what is done in RLS, Kalman filtering, etc.

O How does recursive least-squares (RLS) work ?
- Let % be an estimate of x using b,,b,,...,b, = (A{Ak)_l A'b,
* Let X, be an estimate of x using b,,b,,...,b, ,
R =(AlaAL) Alib,
« Define P, = (ALlAm)_l and B, = (AyT A&)

1 4
o

d

. R N d

* InRLS, we estimate X, ., fromX_and b, ,, andR_, fromP, and a, , n
d

a

[
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d  Mechanics of RLS process
« Consider A A :

T T T
Ak+1 1 Ak Ak +Q‘k+1§k+1

[ N N N NS .

S0, every succesive measurement adds "INFORMATION"

» Key: Sherman-Morrison-Woodbury Formula

 Consider three matrices: Aisnxn,BisnxmC=nxm
« Then Sherman-Morrison-Woodbury Formula gives:

(A+BCT) =A'-A7B(1+CTAB) CTA"
-1

= R =hR - Pk§k+1(él-<r+lpk§k+1 +1) 3. P

—> Requires scalar inversion

T T
= Ru = B —Ba.a, R /(1"' §k+1pk§k+1)

5 Copyright ©2008 by K. Pattipati

=P =P *'+a,a , ;P ~istheso called information matrix

Sequential Update of Covariance Matri




1Y Sequential Update of Estimate
4
: * To compute X,
, b
: K = Pk+1|:A11 §k+1:||:b ‘ } = Pk+1[AJQk +bk+1§k+1:|
N k+1
R Pa_.a P
Xk+1:|:Pk l_ik__akkjll:l; ;k+1:||:Akb +bk+1 k+1:|
T T f_)jzkb
),Z P a, b Pk§k+1§k+lpk§k+l b _ Pk§k+1§k+1 I:)kAk Qk
_k Sk + Q‘k+1 I:)k§k+l ! 1+ Q‘I-(rJrl Pk§k+1

P& T o
1 T F: [Qkﬂ — 1 X :'
%

Gain vector, g, Residual or innovation,r,

~ T ~
=X+ Ol = [I - Qk§k+1}§k T kak+1
= X.., IS a weighted sum of previous estimate and current measurement

= This is similar to the measurement update of a Kalman filter
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@% RLS is Simple to Implement l

k =0; X, =0 or X some known mean

P, =10°1 or some known value

GEt bk+1’ Q‘ILl
Compute g, and r,
X =X + 9kl
Update P,

[ N N N NS .

Measurements ?
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(I Round-off Error Issues l

O Major problem: Negative sign in P, equation causes P, to go
Indefinite due to round-off errors (e.g., negative diagonals)

[ N N N NS .

d Other formulae to overcome indefiniteness
1. Joseph’s form:

.
P = ( | - ng-lLl) B ( | - gkgljﬂ) + ngl

This transformation requires twice the number of
operations over the ordinary RLS

2. Square-root or LDL" update
— Idea: force P, and P,,, to be PD

i.e., write P =L D, L via"LDL"" factorization
k k =k =k

L. = unit lower A; e
D, = diag(d,),d, >0 D

g Copyright ©2008 by K. Pattipati



Setting the Stage for LDLT Update

I—k I—k+1 -
Q: Can we go from 5 > recursively ?

k k+1

FlR OO L.

d
O A:Yes, but slightly complicated
M

Simplicity of notation, let
P=LDL', P,=LDL", a, =a, then
R..=LDL —(LDL'aa"LDL")/(1+a"LDL a)

O Tosimplify the expression forR,, letf = L"a, then

vv' .
P.=L D-——= L;v=Df orv, =d.f.
1+i Dj -
O So, if we can find LDL" of the terms in brackets, then we have solved .
the problem:

L=LLandD=D

9 Copyright ©2008 by K. Pattipati
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@ LDLT Update with Rank 1 Correction

d This is a special case of the following more general problem:
"Given A= LDL', find LDL" factorization of A+ovv'"

= This is basically a problem of updating LDL' factorizations of

a rank-one corrected matrix

[ Problem: updating LDLT factorizations of a rank-one corrected matrix

Starting with T 0
n 0
A:Zdi!il_Ti withl; =| 1 |«
- I i+1,i
I n,i
n — = =
we want to obtain factorization of A+ ovv' = dil_ilTi .
i=1 «d

-



@q Four Cases for LDLT Updates l

 Consider 4 cases: From general — specific to RLS

1) o > 0 arbitrary

FlR OO L.

2) 0 <0;0=-1/a; a>0 arbitrary

3)A=Diag = L =|

4) o =-1la; a=1+f'Df; f =L a; special &

kL
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Case 1: o >0 arbitrary

 Develop algorithm one column at a time
d Let o,=0;v,=V.Then
n n
Z!i!Tidi +Gl¥1¥-|1- :!1!T1d1+o-1¥1¥I + > dl
i=1 i=2

FlR OO L.

O Q:can we write

12 Copyright ©2008 by K. Pattipati

] 1!T1d1 + O'1¥1¥I = [ 1[T1CT1 + (72!2!; (*)
where
oR o
* X
* X
I, = and v,=| |= firstcomponentofv,,v, =0.

kL
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Doo
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r| Case 1 (contd.) |

If so, we can generate a recursive scheme to update(l i j N (l i]

d ) \q

Matrix on LHS has at most rank 2 and range space spanned byl , and v,

=1, and v, must be linear combinations of | ; and v,

Let :
V,=V,—V,l,sincev,, =0and |, =1

I =+ By, = (1_181\/11)! AV,
where g, is arbitrary and is to be determined

Must solve for “unknowns” d,, o, and 3, > Eqn.(*) is satisfied
Need 3 egns. Since we have 3 unknowns: d,, o, and g,
Substitute for v, and |, into * and equate coefficients.

dll 1!T1 + Glyly-ll- — [(1_ ﬂlvll)! 1t 181!1161 [(l_ 181\/11)'_ 1 T ﬂlyl:IT

+ 0, (Ml - vyl 1)(!1 - vyl 1)T




Vo5 r| Case 1 (contd.) |

coeff. of v,v; 10, =d, 8 + 0, = 0, =0, —d,

coeff. of I ,v] :0=2d,(1- BV, ) B —20,V;;, =0= B, = oV, / d,
coeff. of 1", :d, =(1- Av,,)" d, + o,V2

(1_ﬁ1V11) d, + oy, —dyvy B

d, —2pv,d, + oV,

d1 - O-1V11 + O-1V11

[ N N N NS .

2
Vll) o dl
1

d, 'd,

= d, =d, +o,v’,. Also, note o, =, —d, =0, (1-

— S0, we compute d,, o, and S, in that order

_ T T 10" T
* Next, repeat with [.150, +o,v,v, =15l ,d, +o3v,v,

where v,, =v,, =0 4 d
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' r| Update Algorithm for Case 1 l

Initialize o, =o;v, =V
Fork=12,...n—=1 DO
1) Jk =d, +O—kvl§k
2) B = oV /Jk

dk

3) O-k+1 = Gk dT
k

FlR OO L.

4) Vi =V =Vl notety,,, =1 0|« k.

X

So, we need to compute elements (k +1,...n) only

- «d o
S5 I =1+ BV <

End DO .

an — dn + O-nvr?n ‘

L
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Case 2: 0 <0 (asin RLS)

In this case, we may end up in a situation where d, <0 in step 1.
This may be due to round-off or near rank degeneracy of P,
Need slightly different formulae:

DOoU

Let o, =—1/¢,;assume o, >0 with oy =a=-1/c
 Step 3 of algorithm implies
d = ﬂdk (step 3a)

Ay

maintains positivity of d, ifd, >0
* Substitute instep 1: d, =d, +ov; =d, ——&
2 Xy
Vie




Case 2 (contd.)

(Step 1a)

[ N N N NS .
(@)
-
)
2
Il
)
2
N
_|_

o are postive provided that o, are computed

backwards. Need ¢, ,, to initialize recursion and all v,,

n+1

It is easy to initialize «,,, INn RLS (e.g., «,,, =10rc)

n+1

ifa:ETDi+C:>an+1=C

* Also, have

V V
B, =— k(kT = _Ld (Step 2a)
a, U, 1Yy

« Key: when A is a diagonal matrix as in case 3, we can compute V,,
a priori

17 Copyright ©2008 by K. Pattipati



O A=Diag(d;)=1; =&, =unit vectors
* Notethat Vv, =V, —V,&

[ N N N NS .

=v, with k™ element set to 0

v o
vV,

« So,if v=v,=| . | theny, =|yv, :Mﬁk);(ym =y; v :Q)
| Vi _ Vi

 Thus, the v, in the above case are known a priori

:>lk=§k+,6’ky‘k”’ or lik =V.; 1>K d'a

18 Copyright ©2008 by K. Pattipati



[ N N N NS .

| Cased: Finally RLS |

O Special case for RLS v=Df; T = L" a arbitrary since a is arbitrary

a = f'Df +c; ¢c=scalar
So, here a=c +Zn: f°d =, andv, =v, =d, f,
i=1
But from (1a): «, =, + f2d,
=a,,=C
—> can get ¢, Via a backward recursion.

So, if ¢>0,a, >0=d, >0 (see step 3a)
Also, note B, =—v, /(dye..)=—Tf, /s

Since all o, ,d, and S, can be computed a priori, we can get L (i.e., ) [[44
either forward or backward. But backward is preferred, since we

«d 'd

don’t have to store ¢, and g, . a%

o

L
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(l Algorithm for RLS |

O  Due to Agee-Turner (1972); Gill, Golub, Murray & Saunders (1974)
Initialize o, , =C

FlR OO L.

a,=c+ fd
an :(an+1/an)dn
Fork=n-1,...,1 DO

pe=—Tla, (2a)
a, = o,y +d, 7 (1a)
d, =d.o, /o (3a)
| =L+ Bu"

end DO

d Once done, we have

kL

| . | |
El{ﬂlv@ J/ A MATA
| | |

20 Copyright © 2008 by K. Pattipati
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Y J—|Algor~ithm for RLS - Details - 1|

O For Least Squares, we need

L[ D-wy"/(c+f7Df ) |L = LDL" where v = DFf

[ N N N NS .

so factor [D—MMT /(c+ jTDj)] —>LDL =L=LL
O ButcangetL directly. From above multiply by L:
| | . | ||
L=L+| gLY® pLv® .. gLy 0
| | . | |

Define Lv" =&, since l; =1=¢& =| v, [;£,=[0 ... 0 v,]

21 Copyright © 2008 by K. Pattipati
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Algorithm for RLS - Details - 2

=So, [, =1 « + B
= & =Lv® = Lv* P +1,v, since v =v  —e v,

— é:k é:k+1 +V |\ = (1 ﬁkvkk)é:kﬂ—'—l k Vi

FlR OO L.

d Notel: &=Ly
the gain vector, g = Pa/(c+a'"Pa)

=LDL'a/(f'Df +¢c)=¢ /a

 Note 2: Start the entire process with L =1, D = 10° |
Computational load = O (1.5n2 + 2.5n)

kL
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Sequential QR — Add a Measurement

d Adding a new measurement = add a new row to A

&

« Suppose added new row as row 1

[ N N N NS .

)
Am:{a;;l} where A =Q,R, Q. > kxnandR, —nxn

)
diag(LQ( )A.; = {aé“} = H, = Upper Hessenberg matrix

k

* Fork=4and n= 3, H, looks like:
X X X
X X X
0 x x
0 0 0O
* H, = upper Hessenberg (upper A + sub diagonal)

23 Copyright © 2008 by K. Pattipati
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@ Sequential QR — Add a Measurement - 2

» Apply Givens transformations to upper triangularize H,
J' (n,n+1)...JT (2,3)‘3T (L2)H, =R,
=J ..JJJH =R,
= At = QR
where Q,,, =diag(1,Q)J,J,...J,

« But want to add a row k+1 at the end A .. ={ A }

[ N N N NS .

_ - Q‘l-(r+1
0 1
« Use exchange matrix E, ={0 .. 1 0]k byk matrix; E’ =1,

_ a’ _

and define A = {E_kjﬁﬂ « = EQ,
k

_«— |a'

= diag (LQ; )A= {—Fﬂ —H,
K

24  Copyright © 2008 by K. Pattipati
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Sequential QR — Add a Measurement

« So apply Givens transformations as before to obtain:
JrT"'J;JIHk =R

‘]r-:- ‘J;‘]Idlag (1’ QII ) Ek+1A1<+l = Rk+l
A

(LQ7)3,.
Jo Ek[l 0 }J ,
o 1***n

[ N N N NS .

1 0|0 EQ
0 o

|0 3.,
1 0

e O(m n) operations

o5 Copyright © 2008 by K. Pattipati
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@ Sequential QR — Drop a Measurement

O Suppose we want to delete a measurement (e.g., found to be an outlier
after it was incorporated into Least Squares estimate)

[ N N N NS .

 For simplicity, assume it is 15t measurement

Q:LT
A
» Let g be the first row of Q

- Compute Givens rotations J_ ,...J,
Jng-di0 =g where o =+1

T
H =J1T...J;1R=ﬁj,

where H = upper Hessenberg matrix

0
- Note that QJml...ler }

26 Copyright © 2008 by K. Pattipati
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Sequential QR — Add a Parameter

* It must be of this form, since it is orthogonal

. S0, A:Fd (QJ,,..3,) 3] .31 R

1H4H

= A =Q,R, is the desired Q-R factorization

FlR OO L.

O Adding a new column => increase number of parameters by 1

A=[a a .. a, a.,]
- So, Q'A=[Rw];w=Q'a,

27 Copyright © 2008 by K. Pattipati
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. Sequential QR — Drop a Parameter - 1
: _X_ _>< X X ><_
. X
: 0 x x X
3 « Apply J7..J] w= ; «~n+l |0 0 x x
0 0 0 x
' 0 0 0 x
) _ _

— does not change R and Q=QJ_ ,...J, ,
— computational load: O(mn) operations

O Delete column k = remove x, (or k™ factor) = reduce the number of
parameters by 1

- A=[a .. a, &, - a]

kL
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@ Sequential QR — Drop a Parameter - 2

o
. |
J —_
1 Ry, v R, k-1
. « Write. Q"A=| 0 r, w| 1
: ' 0 0 Ry |m-k
k-1 1 n-k
Ry Ry]k-1
Q"A=| 0 w' | 1 =H = UpperHessenberg from columns (k +1) to n
| 0 Ry |m-KkK
« Considerm=5,n=4,k=2
0 x x :JrT—l'"JILlJIIH:Rl
8 ; g = Q=Q)J,,;-Jy
0 0 0] Computational load: O(n?)

« Zero out unwanted sub diagonals h,,, ..., .,

29 Copyright © 2008 by K. Pattipati



1Y Application to Kalman Filtering - 1
o
:  Consider the LTI dynamic model of a stochastic system:
1
: Dynamics: X, = DX, + Ew,
Measurement: Y = HX +V,

Note that @, G, and H can be time-varying

But, we will assume that they are time-invariant for simplicity of
notation

w, | process noise sequence. Assumed to be zero-mean white,
aussian noise sequence with covariance matrix, W,

{V, } measurement noise sequence. Assumed to be zero-mean, white
Gaussian noise sequence with covariance matrix R

Without loss of generality, assume that W, and R are diagonal

30 Copyright ©2008 by K. Pattipati



new E =EL,
and define: newW, =D,  called whitening of process noise

[ N N N NS .

new w, = Lw,_
Q Similarly, if Ris not diagonal
FormR=LD L

newy, = L'y,
newH = L'H
new R =D,

and define: > called whitening of observation errors

new vy, = L', |
» Kalman filter provides the minimum mean-square error (MMSE) estimate
(also called maximum a posteriori (MAP) estimate).

X = best estimate of x, based on measurements { Xv-"Xk}

R = best estimate of x, . based on measurements {y,....y, |

31 Copyright © 2008 by K. Pattipati

2

Ve Application to Kalman Filtering -
d If not:
FormW, =L,D,L,

- If the initial state x, is Gaussian with mean X, and covariance matrix P,, define:



FlR OO L.

32

@J_l Kalman Filter Equations l

d The Kalman filter equations are:

a =PX . ... (PROPAGATE or PREDICTION STEP)
=X T EL \(Yk - H)_A(k/k—l)J ... (UPDATE STEP)

—
Kalman innovation
Gain

O Different filter algorithms differ in the way they
compute the Kalman gains {G, }

Lo 1o

« Conventional Kalman filter:
G, =P, H (HR,HT +R)"
— update step: B, =(1-G,H)PR,,
— propagate step: P, = ®P, ®" + EW,E'

where B, = E|:(_k Zk/k)(lk _Xk/k)Ti| : :

Pou =E |:(_k+1 Xk )(Xkﬂ — Rk )T} :

o

d

Copyright ©2008 by K. Pattipati LR L LR
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] J—l Round-off Error Problems l

d Remarks on the conventional Kalman filter:

* The update step can be implemented recursively one
measurement at a time. This is because:

Pi=P. +H'R'H=P,; 1+ZrhhT

-

h" =i" row of H

25

r =i"diagonal element of R

m = number of measurements = #of rows in H
« Need to compute only n(n+1)/2 elements of P, since P is symmetric.

- Could get negative diagonal elements in P (if r, and/or w,, are small).

O Joseph’s stabilized measurement update:

Py =(1-GH)P, ,(1-GH) +G,RG] 42

o o

=(1-G,H)PR,,(1-G,H) +ngk,gk,, g, =i"column of G, :

=

|

Copyright © 2008 by K. Pattipati TLLLL
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: J—l Solution Approaches l

O Conventional Kalman filter with lower bounding:
- Compute:

P= (1—GkH ) P
(P ) = max(ﬁ o

i min,j

P, if P’ <M,
(P ). = _
" Isign (P, )M, otherwise
where M = Prir (Pk/k )ii (Pk/k )jj
— Selection of p_.. and o, IS an art

— Does not guarantee positive definiteness of P, ,,
(see Kerr, IEEE T-AES, Nov. 1990)

O LDLT Factorization:

FlR OO L.

)i i=12,..n

: . : od

« We will present the algorithm in two steps: I

1. update step a

2.  propagation step :

L

34 Copyright © 2008 by K. Pattipati . L LR L L
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Kalman Filter via LDLT Updates

d LDLT Factorization: Measurement update step

FlR OO L.

« Trivial application of previous Least-squares update algorithm

— We know that P, =R, +> rhh'

i=1
— So, implement via:
DOi=1m
call previous Agee-Tumer algorithm with (ri,hi )and current L and d
end DO

« Factorization problem associated with propagation step:

— Recall that: P, = ®P,®" + EW,E’

o

—  Problem: GivenP,, = LDL",we seek L, D suchthat R, =LDL" {3

35 Copyright ©2008 by K. Pattipati L L LR
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@

d There are basically 3 methods to obtainL,D of P, :
* Method 1
« LetEW,E" =L,D,L] be the factorization of EW,E'

e e e

- Further, let]; =y, fori=12,...,n, where |; =column i of L
« Then:

Rk = I—eDeLTe + ZdiZiZiT
i—1

modifying rank-one
corrections

« S0, the algorithm is:
DOi=1n

call case 1 of general algorithm with (d,, 7, )

end DO
« Probem: EW,Eis typically positive semi-definite

Copyright © 2008 by K. Pattipati

LDLT Update Methods for Kalman Filters
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¥ 7. |Gram-Schimidt for Propagation Step - 1

d Method 2: Weighted Gram-Schmidt

D 0 .
. Recall that B, =[®L E]{O }[@L E]' = ATDA=LDL

d

T T . D O
where A= Lo ., D=
E' 0 W,

— Obtain LDL" via parallel weighted Gram-Schmidt orthogonalization procedure.

—  Idea: Obtain a set of orthogonal directions (g, d,,..., g, ) where g; € R™™

L'’
A {

ET
where L = unit lower A, R = unit upper A

}=(@1,§2,---,@n)=[91,92,---,9n]U =QL" =QR

andg/Dg, =0Vizj = {gi}are D-orthogonal.
—  Once g/ are known, we can obtain D = diag (d,,d,,...,d, ) via:
d :gfljgi; i=12..n

—  After D-orthogonalization, P, = A'DA=LQ"DQL" = LDL'

Copyright © 2008 by K. Pattipati
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Gram-Schmidt for Propagation Step - 2

@

d Method 2 cont...

«  The algorithm for D-orthogonalization of A is a minor variation of parallel Gram-Schmidit.
— The matrix A is replaced by Q

—  Algorithm:
Fork=12,..,n DO
ak = ékT f)@k

r,=1 -1, =1
Forj=k+1,..,n DO
;=
= D&, sptained L
dk
a; < g;—Ia,
end DO
end DO

d Method 3: Householder or Givens Transformations

« Recall that we can find transformation Q such that d'd

[31/2A — Q[_)1/2|j|' . | :

— P, =A'DA=LDL a

o

L

Copyright © 2008 by K. Pattipati LTLTLLL]
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Y Other Applications of Sqrt Updates

0 Other applications of square-root updates

* Probabilistic data association filter (PDAF) to track
targets in clutter — additional m rank-one corrections
In the measurement update equations

* Quasi-Newton methods in non-linear programming

- rank-two or rank-three corrections

[ N N N NS .
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(| Summary |

 Recursive (sequential) Least Squares
O Sequential LDLT Factorization updates

1 Sequential QR updates

d Application to Kalman filtering

40 Copyright ©2008 by K. Pattipati
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