Lecture 8: RECURSIVE SQUARE-ROOT \& QR UPDATING FOR LEAST SQUARES

 AND

 AND KALMAN FILTERING

 KALMAN FILTERING}

Prof. Krishna R. Pattipati
Dept. of Electrical and Computer Engineering University of Connecticut
Contact: krishna@engr.uconn.edu (860) 486-2890

ECE 6435

Fall 2008
Adv Numerical Methods in Sci Comp October 15, 2008

Lecture Outline

\square Recursive (sequential) Least Squares
\square Sequential $L D L^{T}$ Factorization updates
\square Sequential $Q R$ updates
\square Application to Kalman filtering

Recursive Least Squares（RLS）

Suppose we have measurements $b_{i}=\underline{a}_{i}^{T} \underline{x}, b_{i}$ scalar for $i=1,2, \ldots, k, \underline{x} \in R^{n}$ unknowns（occurs in many applications，e．g．，fitting an $n^{\text {th }}$ order Polynomial

$$
\left[\begin{array}{c}
\leftarrow \underline{a}_{1}^{T} \rightarrow \\
\leftarrow \underline{a}_{2}^{T} \rightarrow \\
\cdot \\
\cdot \\
\leftarrow \underline{a}_{k}^{T} \rightarrow
\end{array}\right] \underline{x}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\cdot \\
\cdot \\
b_{k}
\end{array}\right] \text { assume } k>n \text { and } A \text { has full column rank } n
$$

－Objective is to find $\underline{x}_{\mathrm{LS}}$ to minimize the mean－squared error（MMSE）
MSE：$\left\|A_{k} \underline{x}-\underline{b}_{k}\right\|_{2}^{2}$
MMSE：Find $\underline{x}_{\text {LS }} \ni\left\|A_{k} \underline{x}-\underline{b}_{k}\right\|_{2}^{2}$ is a minimum
Know $\underline{\hat{x}}_{\mathrm{LS}}=A_{k}^{\dagger} \underline{b}_{k}=\left(A_{k}^{T} A_{k}\right)^{-1} A_{k}^{T} \underline{b}_{k} \triangleq \underline{\hat{x}}_{k}$

Setting the Stage

\square Suppose now we make a $(k+1)^{\text {st }}$ measurement $b_{k+1}=\underline{a}_{k+1}^{T} \underline{x}$
Q: Can we update our previous estimates in light of b_{k+1} without recomputing $A_{k+1}^{T} A_{k+1}$ or Householder or Givens or Gram-Schmidt?

A: Yes! This is precisely what is done in RLS, Kalman filtering, etc.
\square How does recursive least-squares (RLS) work?

- Let $\underline{\hat{x}}_{k}$ be an estimate of \underline{x} using $b_{1}, b_{2}, \ldots, b_{k}=\left(A_{k}^{T} A_{k}\right)^{-1} A_{k}^{T} \underline{b}_{k}$
- Let $\hat{\underline{x}}_{k+1}$ be an estimate of \underline{x} using $b_{1}, b_{2}, \ldots, b_{k+1}$

$$
\hat{\underline{x}}_{k+1}=\left(A_{k+1}^{T} A_{k+1}\right)^{-1} A_{k+1}^{T} \underline{b}_{k+1}
$$

- Define $P_{k+1}=\left(A_{k+1}^{T} A_{k+1}\right)^{-1}$ and $P_{k}=\left(A_{k}^{T} A_{k}\right)^{-1}$
- In RLS, we estimate $\hat{\underline{x}}_{k+1}$ from $\underline{\hat{x}}_{k}$ and b_{k+1}, and P_{k+1} from P_{k} and \underline{a}_{k+1}

-Sequential Update of Covariance Matrix

Mechanics of RLS process

- Consider $A_{k+1} A_{k+1}^{T}$:

$$
A_{k+1}^{T} A_{k+1}=A_{k}^{T} A_{k}+\underline{a}_{k+1} \underline{a}_{k+1}^{T}
$$

$\Rightarrow P_{k+1}^{-1}=P_{k}^{-1}+\underline{a}_{k+1} \underline{a}_{k+1}^{T} ; P_{k}^{-1} \sim$ is the so called information matrix so, every succesive measurement adds "INFORMATION"

- Key: Sherman-Morrison-Woodbury Formula
$\square \quad$ Consider three matrices: A is $n \mathrm{x} n, \mathrm{~B}$ is $n \times m \mathrm{C}=n \times m$
- Then Sherman-Morrison-Woodbury Formula gives:

$$
\begin{aligned}
& \left(A+B C^{T}\right)^{-1}=A^{-1}-A^{-1} B\left(I+C^{T} A^{-1} B\right)^{-1} C^{T} A^{-1} \\
& \Rightarrow P_{k+1}=P_{k}-P_{k} \underline{a}_{k+1}\left(\underline{a}_{k+1}^{T} P_{k} \underline{a}_{k+1}+1\right)^{-1} \underline{a}_{k+1}^{T} P_{k} \\
& \Rightarrow \text { Requires scalar inversion } \\
& \Rightarrow P_{k+1}=P_{k}-P_{k} \underline{a}_{k+1} \underline{a}_{k+1}^{T} P_{k} /\left(1+\underline{a}_{k+1}^{T} P_{k} \underline{a}_{k+1}\right)
\end{aligned}
$$

Sequential Update of Estimate

- To compute $\hat{\underline{x}}_{k+1}$

$$
\begin{aligned}
\hat{\underline{x}}_{k+1} & =P_{k+1}\left[\begin{array}{ll}
A_{k}^{T} & \underline{a}_{k+1}
\end{array}\right]\left[\begin{array}{c}
\underline{b}_{k} \\
b_{k+1}
\end{array}\right]=P_{k+1}\left[A_{k}^{T} \underline{b}_{k}+b_{k+1} \underline{a}_{k+1}\right] \\
\hat{\underline{x}}_{k+1} & =\left[P_{k}-\frac{P_{k} \underline{a}_{k+1} a_{k+1}^{T} P_{k}}{1+\underline{a}_{k+1}^{T} P_{k} \underline{a}_{k+1}}\right]\left[A_{k}^{T} \underline{b}_{k}+b_{k+1} a_{k+1}\right] \\
& =\underline{\hat{x}}_{k}+P_{k} \underline{a}_{k+1} b_{k+1}-\frac{P_{k} \underline{a}_{k+1} a_{k+1}^{T} P_{k} \underline{a}_{k+1}}{1+\underline{a}_{k+1}^{T} P_{k} \underline{a}_{k+1}-\frac{P_{k} \underline{a}_{k+1}}{1+\underline{a}_{k+1}^{T}} \overbrace{P_{k} A_{k} A_{k}^{T} \underline{\underline{b}}_{k}}^{\hat{a}_{k}}} \\
& =\underline{\hat{x}}_{k}+\underbrace{\frac{P_{k} a_{k+1}}{1+\underline{a}_{k+1}^{T} P_{k} a_{k+1}}}\left[\underline{b}_{k+1}-\underline{a}_{k+1}^{T} \hat{\underline{x}}_{k}\right]
\end{aligned}
$$

Gain vector, \underline{g}_{k} Residual or innovation, r_{k}

$$
=\underline{\hat{x}}_{k}+\underline{g}_{k} r_{k}=\left[I-\underline{g}_{k} \underline{a}_{k+1}^{T}\right] \underline{\hat{x}}_{k}+\underline{g}_{k} b_{k+1}
$$

$\Rightarrow \hat{\underline{x}}_{k+1}$ is a weighted sum of previous estimate and current measurement
\Rightarrow This is similar to the measurement update of a Kalman filter

RLS is Simple to Implement

Round-off Error Issues

\square Major problem: Negative sign in P_{k} equation causes P_{k} to go indefinite due to round-off errors (e.g., negative diagonals)

Other formulae to overcome indefiniteness

1. Joseph's form:

$$
P_{k+1}=\left(I-\underline{g}_{k} \underline{a}_{k+1}^{T}\right) P_{k+1}\left(I-\underline{g}_{k} \underline{a}_{k+1}^{T}\right)^{T}+\underline{g}_{k} \underline{g}_{k}^{T}
$$

This transformation requires twice the number of operations over the ordinary RLS
2. Square-root or $\mathrm{LDL}^{\mathrm{T}}$ update

- Idea: force P_{k} and P_{k+1} to be PD
i.e., write $P_{k}=L_{k} D_{k} L_{k}^{T}$ via " $\mathrm{LDL}^{\mathrm{T}}$ " factorization
$L_{k}=$ unit lower Δ;

$$
D_{k}=\operatorname{diag}\left(d_{i}\right), d_{i}>0
$$

Setting the Stage for $L D L^{T}$ Update

$\square \quad Q$: Can we go from $\left[\begin{array}{c}L_{k} \\ D_{k}\end{array}\right] \rightarrow\left[\begin{array}{c}L_{k+1} \\ D_{k+1}\end{array}\right]$ recursively?
$\square \quad A$: Yes, but slightly complicated
\square Simplicity of notation, let

$$
\begin{aligned}
& P_{k}=L D L^{T}, \quad P_{k+1}=\bar{L} \bar{D} \bar{L}^{T}, \quad \underline{a}_{k+1}=\underline{a}, \text { then } \\
& P_{k+1}=L D L^{T}-\left(L D L^{T} \underline{a} \underline{a}^{T} L D L^{T}\right) /\left(1+\underline{a}^{T} L D L^{T} \underline{a}\right)
\end{aligned}
$$

- To simplify the expression for P_{k+1}, let $\underline{f}=L^{T} \underline{a}$, then

$$
P_{k+1}=L\left[D-\frac{\underline{v} \underline{v}^{T}}{1+\underline{f}^{T} D \underline{f}}\right] L^{T} ; \underline{v}=D \underline{f} \text { or } v_{i}=d_{i} f_{i}
$$

- So, if we can find $\tilde{L} \tilde{D} \tilde{L}^{T}$ of the terms in brackets, then we have solved the problem:

$$
\bar{L}=L \tilde{L} \text { and } D=\tilde{D}
$$

LDL ${ }^{T}$ Update with Rank 1 Correction

This is a special case of the following more general problem:
"Given $A=L D L^{T}$, find $\bar{L} \bar{D} \bar{L}^{T}$ factorization of $A+\sigma \underline{v} \underline{v}^{T}$ "
\Rightarrow This is basically a problem of updating $L D L^{T}$ factorizations of a rank-one corrected matrix

- Problem: updating $L D L^{T}$ factorizations of a rank-one corrected matrix
- Starting with

$$
\begin{aligned}
& \text { tarting with } \\
& A=\sum_{i=1}^{n} d_{i} \underline{l}_{i} \underline{l}_{i}^{T} \text { with } \underline{l}_{i}=\left[\begin{array}{c}
0 \\
0 \\
1 \\
l_{i+1, i} \\
l_{\mathrm{n}, \mathrm{i}}
\end{array}\right] \leftarrow l_{i i} .
\end{aligned}
$$

we want to obtain factorization of $A+\sigma \underline{v} \underline{v}^{T}=\sum_{i=1}^{n} \bar{d}_{i} \bar{L}_{i} \underline{l}_{-i}^{T}$

$$
\text { i.e., }\binom{\underline{l}_{i}}{d_{i}} \rightarrow\binom{\overline{\underline{l}}_{i}}{\bar{d}_{i}}
$$

Four Cases for $\operatorname{LDL} L^{T}$ Updates

Consider 4 cases: From general \rightarrow specific to RLS

1) $\sigma>0$ arbitrary
2) $\sigma<0 ; \sigma=-1 / \alpha ; \alpha>0$ arbitrary
3) $A=$ Diag $\Rightarrow L=I$
4) $\sigma=-1 / \alpha ; \alpha=1+\underline{f}^{T} \underline{D} \underline{f} ; \underline{f}=L^{T} \underline{a}$; special α

Case 1: $\sigma>0$ arbitrary

- Develop algorithm one column at a time
(- Let $\sigma_{1}=\sigma ; \underline{v}_{1}=\underline{v}$. Then

$$
\sum_{i=1}^{n} \underline{l} \underline{i}_{i} \underline{l}_{i}^{T} d_{i}+\sigma_{1} \underline{v}_{1} \underline{v}_{1}^{T}=\underline{l}_{1} \underline{l}_{1}^{T} d_{1}+\sigma_{1} \underline{v}_{1} \underline{v}_{1}^{T}+\sum_{i=2}^{n} d_{i} l_{i} \underline{l}_{i}^{T}
$$

- Q : can we write

$$
\begin{equation*}
\underline{l}_{1} \underline{l}_{1}^{T} d_{1}+\sigma_{1} \underline{v}_{1} \underline{v}_{1}^{T}=\underline{\underline{l}}_{1} \underline{\underline{l}}_{1}^{T} \bar{d}_{1}+\sigma_{2} \underline{v}_{2} \underline{v}_{2}^{T} \tag{*}
\end{equation*}
$$

where

$$
\underline{l}_{1}=\left[\begin{array}{c}
1 \\
* \\
* \\
\cdot \\
\cdot \\
*
\end{array}\right] \text { and } \quad \underline{v}_{2}=\left[\begin{array}{c}
0 \\
\times \\
\times \\
. \\
\cdot \\
\times
\end{array}\right] \Rightarrow \text { first component of } \underline{v}_{2}, v_{21}=0
$$

Case 1 (contd.)

\square If so, we can generate a recursive scheme to update $\binom{\underline{l}_{i}}{d_{i}} \rightarrow\binom{\bar{l}_{i}}{\bar{d}_{i}}$

- Matrix on LHS has at most rank 2 and range space spanned by \underline{l}_{1} and \underline{v}_{1} $\Rightarrow \underline{l}_{1}$ and \underline{v}_{2} must be linear combinations of \underline{l}_{1} and \underline{v}_{1}
- Let

$$
\begin{aligned}
& \underline{v}_{2}=\underline{v}_{1}-v_{11} \underline{l}_{1} \text { since } \underline{v}_{21}=0 \text { and } l_{11}=1 \\
& \underline{l}_{1}=\underline{l}_{1}+\beta_{1} \underline{v}_{2}=\left(1-\beta_{1} v_{11}\right) \underline{l}_{1}+\beta_{1} \underline{v}_{1}
\end{aligned}
$$

where β_{1} is arbitrary and is to be determined

- Must solve for "unknowns" \bar{d}_{1}, σ_{2} and $\beta_{1} \ni$ Eqn.($*$) is satisfied

Need 3 eqns. Since we have 3 unknowns: \bar{d}_{1}, σ_{2} and β_{1}

- Substitute for v_{2} and $\underline{\underline{l}}_{1}$ into $*$ and equate coefficients.

$$
\begin{aligned}
& d_{1} \underline{l}_{1} \underline{1}_{1}^{T}+\sigma_{1} \underline{v}_{1} \underline{v}_{1}^{T}=\left[\left(1-\beta_{1} v_{11}\right) \underline{l}_{1}+\beta_{1} \underline{v}_{1}\right] \bar{d}_{1}\left[\left(1-\beta_{1} v_{11}\right) \underline{l}_{1}+\beta_{1} \underline{v}_{1}\right]^{T} \\
&+\sigma_{2}\left(\underline{v}_{1}-v_{11} \underline{l}_{1}\right)\left(\underline{v}_{1}-v_{11} \underline{l}_{1}\right)^{T}
\end{aligned}
$$

Case 1 (contd.)

coeff. of $\underline{v}_{1} \underline{v}_{1}^{T}: \sigma_{1}=\bar{d}_{1} \beta_{1}^{2}+\sigma_{2} \Rightarrow \sigma_{2}=\sigma_{1}-\bar{d}_{1} \beta_{1}^{2}$ coeff. of $\underline{\underline{l}} \underline{1}_{1}^{T}: 0=2 \bar{d}_{1}\left(1-\beta_{1} v_{11}\right) \beta_{1}-2 \sigma_{2} v_{11}=0 \Rightarrow \beta_{1}=\sigma_{1} v_{11} / \bar{d}_{1}$ coeff. of $\underline{\underline{l}} \underline{l}_{1}^{T}: d_{1}=\left(1-\beta_{1} v_{11}\right)^{2} \bar{d}_{1}+\sigma_{2} v_{11}^{2}$

$$
\begin{aligned}
& =\left(1-\beta_{1} v_{11}\right)^{2} \bar{d}_{1}+\sigma_{1} v_{11}^{2}-\bar{d}_{1} v_{11}^{2} \beta_{1}^{2} \\
& =\bar{d}_{1}-2 \beta_{1} v_{11} \bar{d}_{1}+\sigma_{1} v_{11}^{2} \\
& =\bar{d}_{1}-2 \sigma_{1} v_{11}^{2}+\sigma_{1} v_{11}^{2}
\end{aligned}
$$

$\Rightarrow \bar{d}_{1}=d_{1}+\sigma_{1} v_{11}^{2}$. Also, note $\sigma_{2}=\sigma_{1}-\bar{d}_{1} \beta_{1}^{2}=\sigma_{1}\left(1-\frac{\sigma_{1} v_{11}^{2}}{\bar{d}_{1}}\right)=\sigma_{1} \frac{d_{1}}{\bar{d}_{1}}$
\Rightarrow So, we compute \bar{d}_{1}, σ_{2} and β_{1} in that order

- Next, repeat with $\underline{l}_{2} \underline{l}_{2}^{T} d_{2}+\sigma_{2} \underline{v}_{2} \underline{v}_{2}^{T} \rightarrow \underline{\underline{l}}_{2} \underline{\underline{I}}_{2}^{T} d_{2}+\sigma_{3} \underline{v}_{3} \underline{v}_{3}^{T}$
where $v_{31}=v_{32}=0$

Update Algorithm for Case 1

Initialize $\sigma_{1}=\sigma ; \underline{v}_{1}=\underline{v}$
For $k=1,2, \ldots, n-1 \mathrm{DO}$

1) $\bar{d}_{k}=d_{k}+\sigma_{k} v_{k k}^{2}$
2) $\beta_{k}=\sigma_{k} v_{k k} / \bar{d}_{k}$
3) $\sigma_{k+1}=\sigma_{k} \frac{d_{k}}{\bar{d}_{k}}$
4) $\underline{v}_{k+1}=\underline{v}_{k}-v_{k k} \underline{l}_{k} \quad$ note $: \underline{v}_{k+1}=\left[\begin{array}{c}0 \\ \cdot \\ 0 \\ \times \\ \times\end{array}\right] \leftarrow k$.

So, we need to compute elements $(k+1, \ldots n)$ only
5) $\underline{\underline{l}}_{k}=\underline{l}_{k}+\beta_{k} \underline{v}_{k+1}$

End DO
$\bar{d}_{n}=d_{n}+\sigma_{n} v_{n n}^{2}$

Case 2: $\sigma<0$ (as in RLS)

- In this case, we may end up in a situation where $\bar{d}_{k}<0$ in step 1.
- This may be due to round-off or near rank degeneracy of P_{k}

Need slightly different formulae:
Let $\sigma_{k}=-1 / \alpha_{k}$;assume $\alpha_{k}>0$ with $\alpha_{1}=\alpha=-1 / \sigma$

- Step 3 of algorithm implies

$$
\bar{d}_{k}=\frac{\alpha_{k+1}}{\alpha_{k}} d_{k} \quad(\operatorname{step} 3 \mathrm{a})
$$

maintains positivity of \bar{d}_{k} if $d_{k}>0$

- Substitute in step 1: $\bar{d}_{k}=d_{k}+\sigma_{k} v_{k k}^{2}=d_{k}-\frac{v_{k k}^{2}}{\alpha_{k}}$

$$
\begin{aligned}
& \frac{\alpha_{k+1}}{\alpha_{k}} d_{k}=d_{k}-\frac{v_{k k}^{2}}{\alpha_{k}} \\
& \Rightarrow \alpha_{k+1}=\alpha_{k}-\frac{v_{k k}^{2}}{d_{k}}
\end{aligned}
$$

Case 2 (contd.)

or $\alpha_{k}=\alpha_{k+1}+\frac{v_{k k}^{2}}{d_{k}}$
(Step 1a)
α_{k}^{S} are postive provided that α_{k}^{S} are computed backwards. Need α_{n+1} to initialize recursion and all $v_{k k}$ It is easy to initialize α_{n+1} in RLS (e.g., $\alpha_{n+1}=1$ or c)

$$
\text { if } \alpha=\underline{f}^{T} D \underline{f}+c \Rightarrow \alpha_{n+1}=c
$$

- Also, have

$$
\beta_{k}=-\frac{v_{k k}}{\alpha_{k} \bar{d}_{k}}=-\frac{v_{k k}}{\alpha_{k+1} d_{k}} \quad \text { (Step 2a) }
$$

- Key: when A is a diagonal matrix as in case 3 , we can compute $v_{k k}$ a priori

Case 3 : $A 1=\operatorname{Diag}\left(d_{i}\right)$

- $A=\operatorname{Diag}\left(d_{i}\right) \Rightarrow \underline{l}_{i}=\underline{e}_{i}=$ unit vectors
- Note that $\underline{v}_{k+1}=\underline{v}_{k}-v_{k k} \underline{\boldsymbol{e}}_{k}$

$$
=\underline{v}_{k} \text { with } k^{\text {th }} \text { element set to } 0
$$

- So, if $\underline{v}=\underline{v}_{1}=\left[\begin{array}{c}v_{1} \\ v_{2} \\ \cdot \\ \cdot \\ v_{n}\end{array}\right]$, then $\underline{v}_{k}=\left[\begin{array}{c}0 \\ \cdot \\ v_{k} \\ \cdot \\ v_{n}\end{array}\right]=\underline{v}_{k}^{(k)} ;\left(\underline{v}^{(1)}=\underline{v} ; \underline{v}^{(n+1)}=\underline{0}\right)$
- Thus, the $v_{k k}$ in the above case are known a priori

$$
\Rightarrow \underline{\underline{l}}_{k}=\underline{e}_{k}+\beta_{k} \underline{v}^{(k+1)} \text { or } \bar{l}_{i k}=\beta_{k} v_{i} ; i>k
$$

Case 4 : Finally RLS

- Special case for RLS $\underline{v}=D \underline{f} ; \underline{f}=L^{T} \underline{a}$ arbitrary since \underline{a} is arbitrary
- $\alpha=\underline{f}^{T} D \underline{f}+c ; c=$ scalar
- So, here $\alpha=c+\sum_{i=1}^{n} f_{i}^{2} d_{i}=\alpha_{1}$ and $v_{k}=v_{k k}=d_{k} f_{k}$
- But from (1a): $\alpha_{k}=\alpha_{k+1}+f_{k}^{2} d_{k}$

$$
\Rightarrow \alpha_{n+1}=c
$$

\Rightarrow can get α_{k} via a backward recursion.

- So, if $c \geq 0, \alpha_{k} \geq 0 \Rightarrow \bar{d}_{k}>0$ (see step 3a)
- Also, note $\beta_{k}=-v_{k} /\left(d_{k} \alpha_{k+1}\right)=-f_{k} / \alpha_{k+1}$
- Since all α_{k}, \bar{d}_{k} and β_{k} can be computed a priori, we can get L (i.e., $\overline{\bar{l}}_{i}$) either forward or backward. But backward is preferred, since we don't have to store α_{k} and β_{k}.

Algorithm for RLS

Due to Agee-Turner (1972); Gill, Golub, Murray \& Saunders (1974)

$$
\text { Initialize } \alpha_{n+1}=c
$$

$$
\begin{aligned}
& \alpha_{n}=c+f_{n}^{2} d_{n} \\
& \bar{d}_{n}=\left(\alpha_{n+1} / \alpha_{n}\right) d_{n}
\end{aligned}
$$

$$
\text { For } k=n-1, \ldots, 1 \mathrm{DO}
$$

$$
\begin{equation*}
\beta_{k}=-f_{k} / \alpha_{k+1} \tag{2a}
\end{equation*}
$$

$$
\begin{equation*}
\alpha_{k}=\alpha_{k+1}+d_{k} f_{k}^{2} \tag{1a}
\end{equation*}
$$

$$
\begin{equation*}
\bar{d}_{k}=d_{k} \cdot \alpha_{k+1} / \alpha_{k} \tag{3a}
\end{equation*}
$$

$$
\underline{\underline{l}}_{k}=\underline{l}_{k}+\beta_{k} \underline{v}^{(k+1)}
$$

- Once done, we have

$$
\tilde{L}=I+\left[\begin{array}{ccccc}
\mid & \mid & . . & \mid & \mid \\
\beta_{1} \underline{v}^{(2)} & \beta_{2} \underline{v}^{(3)} & . & \beta_{n-1} \underline{v}^{(n)} & 0 \\
\mid & \mid & . . & \mid & \mid
\end{array}\right]
$$

Algorithm for RLS - Details - 1

- For Least Squares, we need

$$
\begin{aligned}
& L\left[D-\underline{v} \underline{v}^{T} /\left(c+\underline{f}^{T} D \underline{f}\right)\right] L^{T}=\bar{L} \bar{D} \bar{L}^{T} \text { where } \underline{v}=D \underline{f} \\
& \text { so factor }\left[D-\underline{v}^{T} /\left(c+\underline{f}^{T} D \underline{f}\right)\right] \rightarrow \tilde{L}_{1} \tilde{D}_{1} \tilde{L}_{1}^{T} \Rightarrow \bar{L}=L \tilde{L}_{1}
\end{aligned}
$$

- But can get \bar{L} directly. From above multiply by L :

$$
\begin{gathered}
\bar{L}=L+\left[\begin{array}{ccccc}
\mid & \mid & . . & \mid & \mid \\
\beta_{1} L \underline{L}^{(2)} & \beta_{2} L \underline{v}^{(3)} & . . & \beta_{n-1} L \underline{v}^{(n)} & 0 \\
\mid & \mid & . . & \mid & \mid
\end{array}\right] \\
\text { Define } L \underline{v}^{(k)}=\underline{\xi}_{k}, \text { since } l_{i i}=1 \Rightarrow \underline{\xi}_{k}=\left[\begin{array}{c}
0 \\
\cdot \\
v_{k k} \\
\times \\
\times
\end{array}\right] ; \underline{\xi}_{n}=\left[\begin{array}{llll}
0 & \ldots & 0 & v_{n}
\end{array}\right]
\end{gathered}
$$

Algorithm for RLS - Details - 2

$$
\begin{aligned}
& \Rightarrow \operatorname{So}, \underline{\tilde{l}}_{k}=\underline{l}_{k}+\beta_{k} \xi_{k+1} \\
& \Rightarrow \underline{\xi}_{k}=L \underline{v}^{(k)}=L \underline{v}^{(k+1)}+\underline{l}_{k} v_{k k} \operatorname{since} \underline{v}^{(k+1)}=\underline{v}^{k}-\underline{e}_{k} v_{k k} \\
& \Rightarrow \underline{\xi}_{k}=\underline{\xi}_{k+1}+v_{k k} \underline{l}_{k}=\left(1-\beta_{k} v_{k k}\right) \underline{\xi}_{k+1}+\underline{\tilde{l}}_{k} v_{k k}
\end{aligned}
$$

- Note 1: $\quad \underline{\xi}_{1}=L \underline{v_{1}}$

$$
\begin{aligned}
& \text { the gain vector, } \begin{aligned}
& \underline{g}=P \underline{a} /\left(c+\underline{a}^{T} P \underline{a}\right) \\
&=L D L^{T} \underline{a} /\left(f^{T} D f+c\right)=\underline{\xi}_{1} / \alpha_{1} \\
& \Rightarrow \underline{g}=\frac{1}{\alpha_{1}} \cdot \underline{\xi_{1}}
\end{aligned}
\end{aligned}
$$

- Note 2: Start the entire process with $L=I, D=10^{5} I$ Computational load $=\mathrm{O}\left(1.5 n^{2}+2.5 n\right)$

Sequential QR - Add a Measurement - 1

Adding a new measurement \Rightarrow add a new row to A

- Suppose added new row as row 1

$$
\begin{aligned}
& A_{k+1}=\left[\begin{array}{c}
a_{k+1}^{T} \\
A_{k}
\end{array}\right] \text { where } A_{k}=Q_{k} R_{k}, Q_{k} \rightarrow k \times n \text { and } R_{k} \rightarrow n \times n \\
& \operatorname{diag}\left(1, Q_{k}^{T}\right) A_{k+1}=\left[\begin{array}{c}
a_{k+1}^{T} \\
R_{k}
\end{array}\right]=H_{k} \Rightarrow \text { Upper Hessenberg matrix }
\end{aligned}
$$

- For $k=4$ and $n=3, H_{k}$ looks like:

$$
\left[\begin{array}{ccc}
\times & \times & \times \\
\times & \times & \times \\
0 & \times & \times \\
0 & 0 & 0
\end{array}\right]
$$

- $H_{k}=$ upper Hessenberg (upper $\Delta+$ sub diagonal)

Sequential QR - Add a Measurement - 2

- Apply Givens transformations to upper triangularize H_{k}

$$
\begin{aligned}
& J^{T}(n, n+1) \ldots J^{T}(2,3) J^{T}(1,2) H_{k}=R_{k+1} \\
& \Rightarrow J_{n}^{T} \ldots J_{2}^{T} J_{1}^{T} H_{k}=R_{k+1} \\
& \Rightarrow A_{k+1}=Q_{k+1} R_{k+1} \\
& \text { where } Q_{k+1}=\operatorname{diag}(1, Q) J_{1} J_{2} \ldots J_{n}
\end{aligned}
$$

- But want to add a row $k+1$ at the end

$$
A_{k+1}=\left[\begin{array}{c}
A_{k} \\
\underline{a}_{k+1}^{T}
\end{array}\right]
$$

- Use exchange matrix $E_{k}=\left[\begin{array}{cccc}0 & . & . . & 1 \\ 0 & . . & 1 & 0 \\ 1 & . . & . & 0\end{array}\right] k$ by k matrix; $E_{k}^{2}=I_{k}$ and define $\bar{A}=\left[\begin{array}{c}a_{k+1}^{T} \\ E_{k} A_{k}\end{array}\right], \bar{Q}_{k}=E_{k} Q_{k}$ $\Rightarrow \operatorname{diag}\left(1, \bar{Q}_{k}^{T}\right) \bar{A}=\left[\begin{array}{c}\underline{a}_{k+1}^{T} \\ R_{k}\end{array}\right]=H_{k}$

Sequential QR - Add a Measurement - 3

- So apply Givens transformations as before to obtain:

$$
\begin{aligned}
& J_{n}^{T} \ldots J_{2}^{T} J_{1}^{T} H_{k}=R_{k+1} \\
& J_{n}^{T} \ldots J_{2}^{T} J_{1}^{T} \operatorname{diag}\left(1, \bar{Q}_{k}^{T}\right) E_{k+1} A_{k+1}=R_{k+1} \\
& \bar{A} \\
& \Rightarrow Q_{k+1}
\end{aligned}=E_{k+1} \operatorname{diag}\left(1, \bar{Q}_{k}^{T}\right) J_{1} \ldots J_{n} .
$$

- $\mathrm{O}(m n)$ operations

Sequential QR - Drop a Measurement

Suppose we want to delete a measurement (e.g., found to be an outlier after it was incorporated into Least Squares estimate)

- For simplicity, assume it is $1^{\text {st }}$ measurement

$$
A_{k}=\left[\begin{array}{l}
\underline{a}_{1}^{T} \\
A_{1}
\end{array}\right]
$$

- Let \underline{q}_{1}^{T} be the first row of Q
- Compute Givens rotations $J_{m-1} \ldots J_{1}$

$$
\begin{aligned}
& J_{m-1} \ldots J_{1} \underline{q}_{1}=\alpha \underline{e} \text { where } \alpha= \pm 1 \\
& H=J_{1}^{T} \ldots J_{m-1}^{T} R=\left[\begin{array}{c}
\underline{v}^{T} \\
R_{1}
\end{array}\right]
\end{aligned}
$$

where $H=$ upper Hessenberg matrix

- Note that

$$
Q J_{m-1} \ldots J_{1}=\left[\begin{array}{cc}
\alpha & 0 \\
0 & Q_{1}
\end{array}\right]
$$

Sequential QR - Add a Parameter

- It must be of this form, since it is orthogonal
- So, $A=\left[\begin{array}{c}\underline{a}_{1}^{T} \\ A_{1}\end{array}\right]=\left(Q J_{m-1} \ldots J_{1}\right) J_{1}^{T} \ldots J_{m-1}^{T} R$

$$
=\left[\begin{array}{cc}
\alpha & 0 \\
0 & Q_{1}
\end{array}\right]\left[\begin{array}{l}
\underline{v}^{T} \\
R_{1}
\end{array}\right]
$$

$$
\Rightarrow A_{1}=Q_{1} R_{1} \text { is the desired Q-R factorization }
$$

- Adding a new column $=>$ increase number of parameters by 1

$$
\bar{A}=\left[\begin{array}{lllll}
\underline{a}_{1} & \underline{a}_{2} & \cdots & \underline{a}_{n} & \underline{a}_{n+1}
\end{array}\right]
$$

- So, $Q^{T} \bar{A}=[R \underline{w}] ; \underline{w}=Q^{T} \underline{a}_{n+1}$

Sequential QR - Drop a Parameter - 1

- Apply $J_{n+1}^{T} \ldots J_{m-1}^{T} w=$

$$
\left[\begin{array}{cccc}
\times & \times & \times & \times \\
0 & \times & \times & \times \\
0 & 0 & \times & \times \\
0 & 0 & 0 & \times \\
0 & 0 & 0 & \times
\end{array}\right]
$$

\Rightarrow does not change R and $Q=Q J_{m-1} \ldots J_{n+1}$
\Rightarrow computational load: $\mathrm{O}(\mathrm{mn})$ operations
$\square \quad$ Delete column $k \Rightarrow$ remove x_{k} (or $k^{\text {th }}$ factor) \Rightarrow reduce the number of parameters by 1

- $\bar{A}=\left[\begin{array}{llllll}\underline{a}_{1} & \cdots & \underline{a}_{k-1} & \underline{a}_{k+1} & \cdots & \underline{a}_{n}\end{array}\right]$

Sequential QR - Drop a Parameter - 2

- Write $Q^{T} A=\left[\begin{array}{ccc}0 & r_{k k} & \underline{w}^{T} \\ 0 & 0 & R_{33}\end{array}\right] \begin{gathered}1 \\ m-k\end{gathered}$

$$
k-1 \quad 1 \quad n-k
$$

$$
Q^{T} \bar{A}=\left[\begin{array}{cc}
R_{11} & R_{12} \\
0 & \underline{w}^{T} \\
0 & R_{33}
\end{array}\right] \begin{gathered}
k-1 \\
1 \\
m-k
\end{gathered}=H \Rightarrow \text { Upper Hessenberg from columns }(k+1) \text { to } n
$$

- Consider $m=5, n=4, k=2$

$$
\left[\begin{array}{ccc}
\times & \times & \times \\
0 & \times & \times \\
0 & \times & \times \\
0 & 0 & \times \\
0 & 0 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& \Rightarrow J_{n-1}^{T} \ldots J_{k+1}^{T} J_{k}^{T} H=R_{1} \\
& \Rightarrow Q=Q J_{k} J_{k+1} \ldots J_{n-1}
\end{aligned}
$$

Computational load: $\mathrm{O}\left(n^{2}\right)$

- Zero out unwanted sub diagonals $h_{k+1, k} \ldots h_{n, n-1}$

Application to Kalman Filtering - 1

- Consider the LTI dynamic model of a stochastic system:

$$
\begin{array}{ll}
\text { Dynamics: } & \underline{x}_{k+1}=\Phi \underline{x}_{k}+E \underline{w}_{k} \\
\text { Measurement: } & \underline{y}_{k}=H \underline{x}_{k}+\underline{v}_{k}
\end{array}
$$

- Note that Φ, G, and H can be time-varying
- But, we will assume that they are time-invariant for simplicity of notation
- $\left\{\underline{w}_{k}\right\}$ process noise sequence. Assumed to be zero-mean white, Gaussian noise sequence with covariance matrix, W_{d}
- $\left\{\underline{v}_{l}\right\}$ measurement noise sequence. Assumed to be zero-mean, white Gaussian noise sequence with covariance matrix R
- Without loss of generality, assume that W_{d} and R are diagonal

Application to Kalman Filtering - 2

- If not:

Form $W_{d}=L_{w} D_{w} L_{w}^{T}$
and define: $\left.\begin{array}{l}\text { new } E=E L_{w} \\ \text { new } W_{d}=D_{w} \\ \text { new } \underline{w}_{k}=L_{w}^{-1} \underline{w}_{k}\end{array}\right\}$ called whitening of process noise
\square Similarly, if R is not diagonal
Form $R=L_{r} D_{r} L_{r}^{T}$

$$
\text { and define: } \left.\begin{array}{l}
\text { new } \underline{y}_{k}=L_{r}^{-1} \underline{y}_{k} \\
\text { new } H=L_{r}^{-1} H \\
\text { new } R=D_{r} \\
\text { new } \underline{v}_{k}=L_{r}^{-1} v_{k}
\end{array}\right\} \text { called whitening of observation errors }
$$

- Kalman filter provides the minimum mean-square error (MMSE) estimate (also called maximum a posteriori (MAP) estimate).
- If the initial state \underline{x}_{0} is Gaussian with mean $\underline{\bar{x}}_{0}$ and covariance matrix P_{0}, define:
- $\underline{\hat{x}}_{k l k}=$ best estimate of \underline{x}_{k} based on measurements $\left\{\underline{y}_{1}, \ldots \underline{y}_{k}\right\}$
- $\underline{\underline{x}}_{k+1 / k}=$ best estimate of \underline{x}_{k+1} based on measurements $\left\{\underline{y}_{1}, \ldots \underline{y}_{k}\right\}$

Kalman Filter Equations

- The Kalman filter equations are:

$$
\begin{aligned}
& \hat{\underline{x}}_{k+1 / k}=\Phi \hat{\underline{x}}_{k / k} \ldots \text {... (PROPAGATE or PREDICTION STEP) } \\
& \hat{x}_{k / k}=\hat{x}_{k / k-1}+\underbrace{G_{k}}_{\substack{\text { Kalman } \\
\text { Gain }}} \underbrace{\left(y_{k}-H \hat{x}_{k / k-1}\right)}_{\text {imnovation }} \ldots \text { (UPDATE STEP) }
\end{aligned}
$$

\square Different filter algorithms differ in the way they compute the Kalman gains $\left\{G_{k}\right\}$

- Conventional Kalman filter:

$$
\begin{aligned}
& G_{k}=P_{k / k-1} H^{T}\left(H P_{k / k-1} H^{T}+R\right)^{-1} \\
& \text { - update step: } P_{k / k}=\left(1-G_{k} H\right) P_{k / k} \\
& \text { - propagate step: } P_{k+1 / k}=\Phi P_{k / k} \Phi^{T}+E W_{d} E^{T} \\
& \quad \text { where } P_{k / k}=E\left[\left(\underline{x}_{k}-\underline{\hat{x}}_{k / k}\right)\left(\underline{x}_{k}-\underline{\hat{x}}_{k / k}\right)^{T}\right] \\
& \quad P_{k+1 / k}=E\left[\left(\underline{x}_{k+1}-\underline{\hat{x}}_{k+1 / k}\right)\left(\underline{x}_{k+1}-\underline{\hat{x}}_{k+1 / k}\right)^{T}\right]
\end{aligned}
$$

Round-off Error Problems

- Remarks on the conventional Kalman filter:

- The update step can be implemented recursively one measurement at a time. This is because:
$P_{k / k}^{-1}=P_{k / k-1}^{-1}+H^{T} R^{-1} H=P_{k / k-1}^{-1}+\sum_{i=1}^{m} r_{i} \underline{h}_{i} \underline{h}_{i}^{T}$
$\underline{h}_{i}^{T}=i^{\text {th }}$ row of H
$r_{i}=i^{\text {th }}$ diagonal element of R
$m=$ number of measurements = \# of rows in H
- Need to compute only $n(n+1) / 2$ elements of P, since P is symmetric.
- Could get negative diagonal elements in P (if r_{i} and/or $w_{d i}$ are small).
\square Joseph's stabilized measurement update:

$$
\begin{aligned}
P_{k / k} & =\left(1-G_{k} H\right) P_{k / k-1}\left(1-G_{k} H\right)^{T}+G_{k} R G_{k}^{T} \\
& =\left(1-G_{k} H\right) P_{k / k-1}\left(1-G_{k} H\right)^{T}+\sum_{i=1}^{m} r_{i} \underline{g}_{k i} \underline{g}_{k i}^{T}, \quad \underline{g_{k i}}=i^{t h} \text { column of } G_{k}
\end{aligned}
$$

Solution Approaches

- Conventional Kalman filter with lower bounding:
- Compute:

$$
\begin{aligned}
& \bar{P}=\left(1-G_{k} H\right) P_{k / k-1} \\
& \left(P_{k / k}\right)_{j j}=\max \left(\bar{P}_{j j}, \sigma_{\min , j}^{2}\right) ; j=1,2, \ldots, n \\
& \left(P_{k / k}\right)_{i j}=\left\{\begin{array}{l}
\bar{P}_{i j} \text { if } \bar{P}_{i j}^{2}<M_{i j} \\
\operatorname{sign}\left(\bar{P}_{i j}\right) \sqrt{M_{i j}} \text { otherwise }
\end{array}\right. \\
& \text { where } M_{i j}=\rho_{\min }^{2}\left(P_{k / k}\right)_{i i}\left(P_{k / k}\right)_{j j}
\end{aligned}
$$

- Selection of $\rho_{\min }$ and $\sigma_{\min }$ is an art
- Does not guarantee positive definiteness of $P_{k / k}$ (see Kerr, IEEE T-AES, Nov. 1990)
- LDL ${ }^{\top}$ Factorization:
- We will present the algorithm in two steps:

1. update step
2. propagation step

Kalman Filter via LDLL ${ }^{\text {T }}$ Updates

\square LDLT Factorization: Measurement update step

- Trivial application of previous Least-squares update algorithm
- We know that $P_{k \mid k}^{-1}=P_{k \mid k-1}^{-1}+\sum_{i=1}^{m} r_{i} h_{i} h_{i}^{T}$
- So, implement via: DO $i=1, m$
call previous Agee-Tumer algorithm with $\left(r_{i}, \underline{h}_{i}\right)$ and current L and \underline{d} end DO
- Factorization problem associated with propagation step:
$-\quad$ Recall that: $P_{k+1 / k}=\Phi P_{k / k} \Phi^{T}+E W_{d} E^{T}$
- Problem: Given $P_{k / k}=L D L^{T}$, we seek \bar{L}, \bar{D} such that $P_{k+1 / k}=\bar{L} \bar{D} \bar{L}^{T}$

LDL ${ }^{\text {T }}$ Update Methods for Kalman Filters

- There are basically 3 methods to obtain \bar{L}, \bar{D} of $P_{k+1 / k}$:
- Method 1
- Let $E W_{d} E^{T}=L_{e} D_{e} L_{e}^{T}$ be the factorization of $E W_{d} E^{T}$
- Further, let $\underline{l}_{i}=\underline{\gamma}_{i}$ for $i=1,2, \ldots, n$, where $\underline{l}_{i}=$ column i of L
- Then:

$$
P_{k+1 / k}=L_{e} D_{e} L_{e}^{T}+\underbrace{\sum_{i=1}^{m} d_{i} \underline{\gamma}_{i} \underline{\gamma}_{i}^{T}}_{\substack{\text { modifying rank-one } \\ \text { corrections }}}
$$

- So, the algorithm is:

$$
\begin{aligned}
& \text { DO } i=1, n \\
& \quad \text { call case } 1 \text { of general algorithm with }\left(d_{i}, \underline{\gamma}_{i}\right) \\
& \text { end DO }
\end{aligned}
$$

- Probem: $E W_{d} E^{T}$ is typically positive semi-definite

Gram-Schmidt for Propagation Step - 1

- Method 2: Weighted Gram-Schmidt
- Recall that $P_{k+1 / k}=\left[\begin{array}{ll}\Phi L & E\end{array}\right]\left[\begin{array}{cc}D & 0 \\ 0 & W_{d}\end{array}\right]\left[\begin{array}{ll}\Phi L & E\end{array}\right]^{T}=A^{T} \tilde{D} A=\bar{L} \bar{D} \bar{L}^{T}$ where $A=\left[\begin{array}{c}L^{T} \Phi^{T} \\ E^{T}\end{array}\right], \tilde{D}=\left[\begin{array}{cc}D & 0 \\ 0 & W_{d}\end{array}\right]$
- Obtain $\bar{L} \bar{D} \bar{L}^{T}$ via parallel weighted Gram-Schmidt orthogonalization procedure.
- Idea: Obtain a set of orthogonal directions $\left(\underline{q_{1}}, \underline{q}_{2}, \ldots, \underline{q}_{n}\right)$ where $\underline{q}_{i} \in R^{n+n_{w}}$
$A=\left[\begin{array}{c}L^{T} \Phi^{T} \\ E^{T}\end{array}\right]=\left(\underline{a}_{1}, \underline{a}_{2}, \ldots, \underline{a}_{n}\right)=\left[\underline{q}_{1}, \underline{q}_{2}, \ldots, \underline{q}_{n}\right] \bar{L}^{T}=Q \bar{L}^{T}=Q R$
where $\bar{L}=$ unit lower $\Delta, R=$ unit upper Δ
and $\underline{q}_{i}^{T} \tilde{D} \underline{q}_{j}=0 \forall i \neq j \Rightarrow\left\{\underline{q}_{i}\right\}$ are \tilde{D}-orthogonal.
- Once \underline{q}_{i}^{T} are known, we can obtain $\bar{D}=\operatorname{diag}\left(\bar{d}_{1}, \bar{d}_{2}, \ldots, \bar{d}_{n}\right)$ via:
$\bar{d}_{i}=\underline{q}_{i}^{T} \tilde{D} \underline{q}_{i} ; i=1,2, \ldots, n$
- After D-orthogonalization, $P_{k+1 / k}=A^{T} \tilde{D} A=\bar{L} Q^{T} \tilde{D} Q \bar{L}^{T}=\bar{L} \bar{D} \bar{L}^{T}$

Gram-Schmidt for Propagation Step - 2

- Method 2 cont...
- The algorithm for \tilde{D}-orthogonalization of A is a minor variation of parallel Gram-Schmidt.
- The matrix A is replaced by Q
- Algorithm:

$$
\begin{aligned}
& \text { For } k=1,2, \ldots, n \text { DO } \\
& \qquad \begin{array}{l}
\bar{d}_{k}=\underline{a}_{k}^{T} \tilde{D} \underline{a}_{k} \\
r_{k k}=1 \quad \rightarrow l_{k k}=1 \\
\text { For } j=k+1, \ldots, n \text { DO } \\
\qquad r_{k j}=\frac{\underline{a}_{j}^{T} \tilde{D} \underline{a}_{k}}{\bar{d}_{k}} \rightarrow \text { obtained } l_{j k} \\
\quad \underline{a}_{j} \leftarrow \underline{a}_{j}-r_{k j} \underline{a}_{k} \\
\text { end DO } \\
\text { end DO }
\end{array}
\end{aligned}
$$

- Method 3: Householder or Givens Transformations
- Recall that we can find transformation Q such that

$$
\begin{aligned}
& \tilde{D}^{1 / 2} A=Q \bar{D}^{1 / 2} \bar{L}^{T} \\
\rightarrow & P_{k+1 / k}=\mathrm{A}^{T} \tilde{\mathrm{D}} \mathrm{~A}=\overline{\mathrm{L}} \overline{\mathrm{D}} \overline{\mathrm{~L}}^{T}
\end{aligned}
$$

Other Applications of Sqrt Updates

\square Other applications of square-root updates

- Probabilistic data association filter (PDAF) to track targets in clutter - additional m rank-one corrections in the measurement update equations
- Quasi-Newton methods in non-linear programming
- rank-two or rank-three corrections
- References:
1.) G.J. Bierman, Factorization Methods for Discrete Sequential Estimation, Academic Press, 1977.
2.) P.E. Gill, G.H. Golub, W. Murray and M.A. Saunders, "Methods for Modifying Matrix Factorizations," Mathematics of Computation, Vol. 28, No. 126, April 1974, pp. 505-535.
3.) "Special Issue on Factorized Estimation Applications, IEEE Trans. On Automatic Control, Dec. 1990.
4.) V. Raghavan, K.R. Pattipati and Y. Bar-Shalom, "Efficient L-D Factorization Algorithms for PDA, IMM, and IMM-PDA Filters," IEEE Transactions on Aerospace and Electronic Systems, Vol. 29, October 1993, pp. 1297-1310.

