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 What is Linear Programming (LP)?

 Why do we need to solve Linear-Programming problems?

• L1 and L∞ curve fitting (i.e., parameter estimation using 1-and ∞-norms)

• Sample LP applications

• Transportation Problems, Shortest Path Problems, Optimal Control, Diet Problem

 Methods for solving LP problems

• Revised Simplex method

• Ellipsoid method….not practical 

• Karmarkar’s projective scaling (interior point method)

 Implementation issues of the Least-Squares subproblem of Karmarkar’s
method ….. More in Linear Programming and Network Flows course

 Comparison of Simplex and projective methods

Lecture Outline
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 One of the most celebrated problems since 1951

What is Linear Programming?

 LP Problem Definition

• Major breakthroughs:

• Dantzig: Simplex method (1947-1949)

• Khachian: Ellipsoid method (1979)

- Polynomial complexity, but not competitive with the Simplex → not practical.

• Karmarkar: Projective Interior point algorithm (1984)

- Polynomial complexity and competitive (especially for large problems)
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 We impose two restrictions on :x
      We want nonnegative solutions of   0 (or) 0iAx b x x   

 such that  & 0 are said to be x Ax b x feasible 

*
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    Among all those feasible { },  we want  such that 

      ...  is a minimumT

n n
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• This leads to the so-called “standard form of LP”
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• Claim:  Any LP problem can be converted into standard form.

Standard form of LP
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 Inequality Constraints 

 
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How to Convert Constraints into a SLP? - 1 
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 xi is a free variable 

ˆ ˆ      Define  with 0 & 0i i i i ix x x x x   
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this problem solves the 
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 Example of LP Problems 

• L1 – curve fitting
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How to Convert Constraints into a SLP? - 2 
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 In the vector case, we want  such that:x

• L1 – curve fitting → an LP

1
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• L∞ – curve fitting
1
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• L∞ – curve fitting → an LP
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Transportation Problem - 1

• Since the number of constraints is large (2m) and the number 

of variables (n) is small, typically the dual problem with (n+1) 

constraints and 2m variables is solved instead.

 Transportation or Hitchcock problem (special LP)
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j
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c

  
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

− Problem: How much commodity to be shipped from source i to 

destination j to minimize the total cost of transportation?
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 BIPARTITE GRAPHS: Special LP Problem

1  Assignment problem or weighted bipartite matching problem.i ia b  

Transportation Problem - 2
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 Shortest-path problem

• We formulate it as an LP for conceptual reasons only

 

t s 

u 

v 

1 

2 5 

3 4 
source 

- s, u, v, t are computers, edge lengths 

are costs of sending a message between 

pairs of nodes denoting computers

- Q: What is the cheapest way to 

send a message from s to t?

    Intuitively, 0,  i.e., no messages are sent from 

       to  & from  to .

    Shortest path - - -   1

    Shortest path length = 2 1 3 6
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   
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Shortest Path Problem - 1
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 LP problem formulation

• Add all constraints  xsu + xsv = 1, which it must be!!

• Only 3 independent constraints (although 4 nodes)

      Let  be the fraction of messages sent from  to 

       min 2 4 5 3

            s.t.  0;  0;  0;  0;  0

            0  (message not lost at )
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 
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    In matrix notation:
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 
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Shortest Path Problem - 2
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 Shortest path problem as a standard LP

• Consider a linear time-invariant discrete-time system

min

s.t. 

0

Te x

Ax b

x




 
 

-   is called the incidence matrix

-   is a special vector

-   is a unimodular matrix and so are all invertible submatrices  of  

  det 1 or 1

  NOTE:

A
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A  
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 Optimal Control
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n max ,

       we can formulate various versions of LP.

ku u 

Optimal Control Problem - 1
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 Versions of LP 
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 

 
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Optimal Control Problem - 2
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 Versions of LP 

1 1

1

min max

 min max = min max  -norm of error

     Define max    min

     s.t.  1 1,     0,     0

b) T

Ni i i
i n i n
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e c d z
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   
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• Proof of equivalence for (a)
* * * * *

* * * *

* * * *

Suppose , ,& z  are optimal solutions.  Claim:  &  can not 

simultaneously be non-zero.

ˆ ˆIf they are and ,define = , =0

ˆ ˆ .... a contradiction. 
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i i i i i i

i i i i i i

v u v u

v u v v u u
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 
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Only one of the two can be non-zero.
• Proof of equivalence for (b)

* * *Let ,  be optimal for revised problem, but  is not optimal 

for original problem.

ˆSuppose  is optimal solution of original problem.

ˆDefine max   feasible for revised pr

        

        T

i i

z v z

z

v d z c  





*

oblem

      Contradi t n o .c iv v  

Optimal Control Problem - 3
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 Diet Problem 

• We want to find the most economical diet that meets minimum daily requirements 

for calories and such nutrients as proteins, calcium, iron, and vitamins.

• The problem is an LP:

We have  different food items:

         cost of food item 

         units of food item  (in grams) included in our economic diet

There are  minimum nutritional requirements

        

    

    

j

j

i

n

c j

x j

m

b











minimum daily requirement of  nutrient

        amount of nutrient  provided by a unit of food item 

th

ij

i

a i j

1

1

min

s.t.  ;    1, 2,...,   

       0;   1, 2,...,

n

j j

j

n

ij j i

j

j

c x

a x b i m

x j n










  

 







min

s.t.     

      0

Tc x

Ax b

x





Diet  Problem
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 Fundamental Property of LP 

• Since we don’t know the zeros a priori, the chief task of every algorithm is to

discover where they belong.

*Optimal solution  is such that ( ) of its components are zero.

If we know the  components that are zero, we can immediately 

       compute the optimal solution (i.e., remaining  nonze

    

    

x n m

n m

m









ro components) from  Ax b

 Three Classes of Algorithms for LP 

• Simplex

• Ellipsoid

• Projective Transformation (scaling) Algorithm

 Key Ideas of Simplex Algorithm 

   Find a vector  that has ( ) zero components, with  

                       and 0.  This is a feasible ,  not necessarily opti

P

mal.

  Allow one of the zero comp

hase 1:

: onentsPhase 2

    

    

x n m Ax b

x x

 





  to become positive and force 

                       one of the positive components to become zero.

Classes of Algorihtms for LP
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 Simplex Algorithm 
• Q: How to pick “entering” and “leaving” components?

A: cost  and ,  0 must be satisfied.        Tc x Ax b x  

• Another Key Property: Need to look at only extreme (corner) points of the feasible set.

1 2

1 2

1 2

 min

s.t.  2 4  

0,  0

Example: x x

x x

x x



 

  1 2

Minimum occurs at one of the corners

       (vertices) of the fesible set:  

        0, 2  corner point Q

In -dimensions, feasible set lies in 

       -dimensions and so do the cost plan

    

    

x x

n

n

  





1 2 1 2

es const.

Inequality constraints: 

       2 4,  and 0,  0

    

Tc x

x x x x



   



0 defines a positive cone in .

0 defines a half space on or below the plane 0 

Feasible set = positive cone  half spaces defined by  

       polyhedron (polygon in 2

    

    

    

n

T T

i i

T

i i

x R

a x a x

a x b



 

 









1 2 1 2

 dimensions). 

Feasible set is : ,  feasible  (1 )

       is also feasible  [0,1].  Line segment is also in feasible

c

 s

o

t

vex

e .

n    x x x x 



  

 



 x2 
 

x1 
 

feasible 
set 

 

1     2     3     4 

3 
 

2 
 

1 

Q 

P 

feasible 
set 

 

x2 

x1 

Geometry of LP - 1
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 An LP may not have a solution 

 An LP may have an unbounded solution 

 

-4    -3    -2    -1 

x2 

x1 -1 
 

-2 

 1 2

1 2

1 2

min

such that 2 4

 opt.  , ( , )

 opt. cost value 

Example:

x x

x x

x x

 

 

   

  

1 2

1 2

1 2

min

such that 2 4

, 0

feasible set is empty

Example:

x x

x x

x x



  



 

x1 

x2 

4 

• So, an algorithm must decide whether an optimal solution exists 

and find the corner where the optimum occurs.

Geometry of LP - 2



Copyright ©2004 by K. Pattipati 19

 Revised Simplex Algorithm 

     Assume ( ) .  Then, we can partition | ,  where  ~  

             linearly independent columns.

    Assume first  columns for conv

Consider SLP: min   s.t.  and 0      

    

    

T

rank A m A B N B m

m

z c x Ax b x

 

  







1

enience

               [ | ]           ;    

    If 0,  is said to be the basic solution and the columns of  form t

We know  components  of  are zer o    

    

B

m n m

B N

N

N B

x

B N b x R x R

x

x x B b B

n m x





 
 
     
 
  

 







1 1

he basis

    If, in addition, 0,  then  is called the .

    In terms of  and ,  the cost function is

                

basic

  

    Using

 feasible solu

 

tion    

    

    

B B

B N

T T

B B N N

B N

x x

x x

z c x c x

x B b B Nx B 



 

  





  

 

1 1

1 1

1 1

0

0 1 1

...

             

                    ...

m m n n

T T T T

B N B N N

m n m n

b B a x a x

z c B b c c B N x z p x

z p x p x

 

 

 

 

  

     

   

Revised Simplex Algorithm - 1
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 Revised Simplex Algorithm 

             

         or ;

 is called vector of 

         is called th

1)   

2)   

simplex multipliers

relative cost vece 

       

Solve:

Compute:

to

   

r

Compute  in two step s   :  

T

B

T T T

N N

T

B c

p c N p c N

p

p



 





   





 forms the basis fo exchanging basis variables.

    If 0,  then the corner is optimal, since 0 and 0,  

       it doesn't pay to increase .

    If a component 0,  then the cost can be decreased by increasing the 

      corresponding compo

T

N

N

k

p p x x

x

p

   

 

 nent of ,  that is, : 1 .N kx x m k n  

• Simplex method chooses one entering variable 

• One with the most negative pk (or)

• The first negative pk  (avoids cycling)

• Simplex allows the component xk to increase from zero.

Revised Simplex Algorithm - 2
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 Revised Simplex Algorithm 

Revised Simplex Algorithm - 3

1

    A:  It will be the first to reach zero.  

: Which compon

  is

 

 

ent  should leav

satisfied again at the new point.

   e?Q

Ax

x

b 





1 1

0

      

        Let  initial feasible solution

    

Assume 0,  and consider what happens when 

              

we increase  from zer

                

o.

  

old

B

new old

B k Nk B

new

B

N

N

k

k

k

x

x B a x B b x x

x x

p x

y B

 





 

   

  



 

1

0

1

0

1

,  where 

         component of  will be zero when the  component of 

       , and  =  are equal.  This happens when

         component of /  componen

k

th new th

B

Nk i Nk ii

th th

Nk

b x By a

i x i

yx y x B b x

x i B b i





 





  0

So, among all s such that 0,  the smallest of these ratios determines 

       

t of /

      

        If the  ratio is the s

how large  can 

mallest, then the leaving variable wi

beco

l

me.

l 

i i

th

i i

Nk

y x

l

y y

y

x







be .

                      At the new corner, 0 and 0.

                        nonbasic set & column  joins the nonbasic matrix .

                        basic set & column  joins 

l

Nk l

Bl l

k

x

x x

x a N

x k

  

 

 

0 0

1

the basic matrix .

        

min :Thu   s,  0          l i

i m
l i

i

x x

y y

B

y
 

 
 
 

  
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 One Iteration of Revised Simplex Algorithm 

• Step 1: Given is the basis B such that

• Step 2:

• Step 3:

• Step 4:

• Step 5:

• Step 6: Update the basic solution

• Step 7: Update the basis and return to Step 1.

1 0.Bx B b 

Solve  for the vector of simplex multipliers .T

BB c 

Select a column  of  such that 0.  We may, for example, select

the  which gives the largest negative values of  or the first  with negative .

    If 0,  stop  current so

T

k k Nk k

k k k

T T

N

a N p c a

a p k p

p c N





  

     lution is optimal.

Solve for :   ky By a

 0 0

0

Find min  where 1  and 0.

-  Look at .

-  If none of the s are positive, then the set of solutions to ,  0 is 

   unbounded and the cost  can be made an arbitrar

l l i i i

new

Bi i i Nk

i

x y x y i m y

x x y x

y Ax b x

z

     

 

 

ily large negative number.

-  Terminate computation  unbounded solution.

; ; Set   corresponding to the new basic variable,  (  goes out)i i li
x x y i l x k l    

Revised Simplex Algorithm Steps
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 How to get initial feasible solution…Phase I of LP

• An LP problem for Phase I

1

ˆ ˆ ˆ    min  such that ;    0,   0

         ˆ  ~ Artificial Variable

m

i m

i

y Ax I y b x y

y



 
     

 


1

1

ˆ    If we can find an optimal solution such that  = 0, then we have .

ˆ    If  0 then there is no feasible solution to ,  0.

     

    Solve via revised simp

 Infeasible Problem

m

i B

i

m

i

i

y x

y Ax b x







   









ˆlex starting with 0,   & .mx y b B I  

• Another approach is to combine both phases I and II by solving:

 
,

    min   (where  is a large number)  

        s.t.  ;     0,    0

T T

x y
e x Me y M

Ax y b x y

 

   

− This is called the “big-M” method.

Phase I of LP
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 How to Update Basis: 
• NOTE: We need to solve:

     and ,  where the 's differ by only one column between any 

      two subsequent iterations  column  replaces 

T

B k

k l

B c By a B

a a

  



• A simple way to solve these equations is to propagate B-1 from one iteration to the next.

 

 

 

 1 1 1

1 1 1 1

1

      column column   Recall: rank one upd  

    = .      and  

ate

NOTE
1

:So,  

T

new old l k old k l l

T T

old k l l old old k l l

new old old old k oldT

l old k l l

B B a a B a a e

B a a e B B a a e
B B I B B a y B

e B a a y

  

    



       

  
     

   

1

1 1

1

2

      product form of the inverse (PFI) 

1 0 ... ... 0

0 1 ... ... 01
      where 

0 ... ... 1 ... 0

0 ... ... ... 1

l l

old new

l

T

l lT

l l

ll l

m l

a e

B EB

y y

ye y y
E I e e

yy y

y y

 



  

 
 


    
 
 

 

E is called an 

“Elementary Matrix.”

    1 1 2 1

    For large scale problems, store  as a vector and update  and  sequentially as follows:

      ...    or   ...  ... ...

T T

T T

B p p p k

E p

c E E E y E E E a



 



       

• What if yl is small?  This creates a problem…

• Modern revised simplex methods use LU or QR decompositions.

Basis Updates
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 LU Decomposition 

Sequential LU and QR

• If B is the current basis:

 

 

1 2

1 2 1 1

     ...

     ... 

m old old old

new l l m k

B a a a L U B

B a a a a a a 

   

  

1 1

1 2 1 1      ... ...  is an upper HessenbNOTE erg matrix.: old new l l m old kH L B u u u u u L a 

 
     

• Use a sequence of elimination steps on H to get:

1

1 1 1

1 1

1

ˆ ˆ ˆ ˆ ˆ     ...      ... 

ˆ ˆ  St    ore:  ... 

new m l l new old l m new

new m l old

U M M M H B L M M U

L M M L



  

 



   

 

 QR Decomposition 

 1 2 1 1

1 1

     ... ;         

    :

       ...  and 

Do Givens on

 

 

... 

 )   Theoretically, revised simplex is an exponential algorithmO( .

T

new l l m k old new

T T

m l new new old l m

B a a a a a a Q B H

J J H R Q Q J

H

J

n

m

 

 

  

 
 
 





 





  2    

   In practice, it takes approximately 2( ) iterations.

Each iteration takes approximately  operations

 

.

n m

O m m n m



 
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 Duality and Sensitivity Analysis 
1

1

Recall that the basic feasible solution 

is the solution of SLP "min   s.t. ,   0" if and

      
0

     

   

 only i

       ~  Vector of simplex (Lagrange) multi

f:

p

B

N

T T

B

Tc x Ax b x

B bx
x

x

c B





  
   



 
   





 



1

liers or dual variables

        0  ~  Non-negative relative cost vectorT T T

N Bp c c B N   

• Note that the optimal cost is given by

1

So,  can be gotten by knowing optimal  or optimal    . B

T T T

Bz c x c B

z

b b

x





  



A:  Yes, by solving a

: Is there anot

n equivalent LP

   

, c

her way 

alled a 

to 

dua

 get

l    LP 

Q

p

 

r em

?

obl .





Sensitivity Analysis
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 Dual of an SLP

 min

s.t. ,  0

 variables

 constraints

non-negativity

constraints on 

T

x
c x

Ax b x

n

m

x

 

max

s.t. 

 constraints

 variables

no constraints on 

the sign of { }

T

T

i

b

A c

n

m









• Duality of an Inequality constrained LP (InLP)

Primal Problem Dual Problem

ASYMMETRIC 

DUAL

SYMMETRIC 

DUAL

Primal Dual

min

s.t. 

0

T

x
c x

Ax b

x





min

s.t. 

0

T

T

b

A c












Dual LP Problems
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• Dual of a Dual = Primal

-  For any feasible  and dual feasible 

(SLP):  
     weak duality lemma

(InLP):  

T T T

T T T

x

b Ax c x

b Ax c x



 

 

  


  

Dual feasible solution  ≤ primal feasible solution

• Very useful concept in deriving efficient algorithms for large integer

programming problems (e.g., scheduling) with separable structures.

 Complementary Slackness Conditions 

 

 

1)  0  0 or 0

2)   0  0 or 0

           ~ synthetic cost of variable 

T T T

j j j j

T T

i i i i

T

j

c A x p c a x

Ax b q a x b

a j

 

 



      

      



• For variables in the optimal basis, relative cost pj = 0  synthetic cost = real cost

• For variables not in optimal basis, relative cost pj ≥ 0  synthetic cost ≤ real cost

Duality Properties
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 Interpretation of Simplex Multipliers 

Simplex Multipliers & Sensitivity - 1

• Sensitivity (post-optimality) analysis

− Q:  How much can we change {ci} & {bi} without changing the optimal basis?

1

    Suppose    without changing the optimal basis.

    Change in the optimal objective function value

                    

     marginal price (value) of the  resourc

T T

B

th

i

i

b b b

z c B b b

z
i

b



   








  



 

   e (i.e., right hand side of )

    { } are also called shadow prices, dual variables, 

       Lagrange multipliers, or equilibium prices.

i

i

b



 

    

      min ;   s.t. ,   0

     is the parameter to be varied

    Nominal value of 0.

       Want to find the range for the  coefficient. 

Consider:
T

x

th

j

c d x Ax b x

d e j









  



 

  
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• Fact: Basis B will be optimal as long as nonbasic reduced costs {pk} remain

non-negative (recall that the reduced costs for basic variables are zero).

   

   

 

1 1

min max

    Split  and  as |  and |

    The required condition is:

                      0

                       0    

    So the range of , ,  

T T T T T T

B N B N

T T T T

N B N B

T T T T

c d c c c d d d

c c B N d d B N

p q q p

  

 

  



   

    

 

min

max

where

                      max max :  0 and  is nonbasic ,

                      min min :  0 and  is nonbasic ,

j

j

j

j

j

j

p
q j

q

p
q j

q





     
     

    

     
     

    

Simplex Multipliers & Sensitivity - 2

• If α Є (αmin, αmax), the new optimal cost is:

1( ) ( ). (0)
T T T

B B B Bz c d B b z d x     
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• Consider parametric changes in b

• If B is the optimal basis, then need 

• The range of α = (αmin , αmax) is given by:

• If α Є (αmin, αmax), then 

1( ) ( ) ( ) (0)
T T T

Bz c B b d b d z d         

min 
  

s.t.    ;   0  nominal

        0

T
c x

x

Ax b d

x

   



1 1

(   ) [ ,0]

where    and  

T TT T T

B N
T T

x x x b d

b B b d B d


 

  

 

min max
11

max max{ : 0}, ;  min min{ : 0},
i i

i i
i mi m

i i

b b
d d

d d
 

  

    
        

   

31

Simplex Multipliers & Sensitivity - 3
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 Karmarkar’s Interior Point Algorithm

• Discuss not the original Karmarkar’s algorithm, but an equivalent (and more general) 

formulation based on barrier functions

• Key: x*(μ) → x* as the barrier parameter μ → 0

•

1

*

min                              min ( , ) ln ;  0

SLP:  s.t.     Barrier         s.t.   

                0          Problem

    optimal solution                  optimal sol

n
T T

j
x x

j

c x f x c x x

Ax b Ax b

x

x

  


  

  





*
ution ( )x 

 many variations of barrier function formulations. Wewill discuss them later

32

Karmarkar’s Interior Point Method
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 Consider the general NLP

 What does Newton’s Method do for this problem? 

        min ( )  s.t.  

   Suppose  is feasible, then   

             search direction

   Pick    (new point is feasible) and ( ) ( )

x
f x Ax b

x x x d

d

Ax b f x f x







 

  







33

2

   Feasibility  0 0

   Newton's method fits a quadratic to ( ) at the current point and takes 1

   ( ) ( ) 1 2   where      ( );     ( )

  Newton’s method solves a 

T T

Ax Ax Ad Ad

f x

f x d f x g d d H d g f x H f x





     



       







 quadratic problem to find 

  (  a weighted least squares problem)

d



Newton’s Method for NLP
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• Consider

• Define Lagragian function:

• Karush-Kuhn-Tucker necessary conditions of optimality:

• Special NLP = barrier formulation of LP:

( , ) 1 2  ;  ~ Lagrange multiplier
TTTL d g d d Hd d    

1 1 1

 / 0  0

/ 0  0;  ( )

T

T

L d g H d A

L Ad AH A AH g



    

       

      

1 2 2             ( )  and ( )

where   ( ) ,   1,  2,  ...,   and (1 1 1 ... 1)T

j

g f x c D e H f x D

D Diag x j n e

      

  

1 2 1 2 2 1/2

2min 1 2   min1 2 || || ;   symmetric squareroot

   s.t.    0                                  s.t.    0       

T T

d d
g d d H d H d H g H

Ad Ad

  

 

34

Optimality Conditions
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• Karush-Kuhn-Tucker conditions for special NLP are:

• So,

• Using Ad = 0 in (1), we get

• So, λ is the solution of weighted least square (WLS) problem:

2 1( ) 0

0

TD d c D e A

Ad

      



2 11
( )              (1)Td D c D e A 




  

1 2

2min || [ ] ||TD c D e A


  

35

2 1 2 1=(AD A ) AD (c- D e)              (2)T  

Optimality Conditions for LP
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 Barrier Function Algorithm

Choose a strictly feasible solution and constant μ > 0. Let the tolerance parameter be ε

and a parameter associated with the update of μ be σ.

2 2 1

2 1

For 0,1,2,  ... DO

       Let ( )

       Compute the solution  to

             ( ) ( ) ... WLS solution

       Let

             

             ( ) /

             

j

T

T

k

D Diag x

AD A AD c D e

p c A

d D p D e

x x d



 



 









 

 

  

 

      If ,   stop:           is near-optimal solution ...

                                           complementary slackness condition.

     else

          (1 )

     end if

end DO

T

x p x

n




 



 
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1) Finding a feasible point

2) Since the method uses Newton’s directions, expect quadratic convergence near 

minimum

3) Major computational step: Least-squares subproblem

Generally A is sparse

We will discuss the computational aspects of Least-squares subproblem later 



Practicalities & Insights -1

2 2 1( )TAD A AD c D e   

0 00 2

00 2

  Select any 0 and define -  with || || 1

    || - ||  and solve                

              min      . .  (   )    ;    0,    0  

              ,

  Thesolution :      0

x s b Ax s

b Ax

x
s t A s b x

x





 






  

 

 
   

 







0

 or when  starts becoming negative stop

  Suggest = || ||x b e




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4) The algorithm (theoretically) requires               iterations with overall complexity              

where 

5) In practice, the method typically takes 20-50 iterations even for very large problems 

(>20,000 variables). Simplex, on the other hand, takes increasingly large number of 

iterations with the problem size, n.

6) Initialize                  and                . In practice, need to experiment with the parameters.

7)

0 1

log | | 1 1
m n

ij

i j

L a
 

    

( )2O L 

Other potential functions : ( , ) ln( ) ln

where

               and

               a lower -bound on the optimal cost

T

j

j

f x q r e x q x

r n n

q

  

 





( )O nL
3( )O n L

1/ 6 
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 Variants of the algorithm

• Problem with barrier function approach:

– Update of μ

– Selection of initial μ and parameter σ

•

– Affine scaling

– Power series approximation

 Views affine scaling directions as a set of differential equations

 Not competitive with affine scaling methods

• Do not know if the variants have polynomial complexity. But, they work well in 

practice!!

 two classes of algorithms 
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 Affine scaling:

• Typically, the affine scaling methods are used on the dual problem

• Suppose have a strictly feasible     and the corresponding reduced cost vector 

(slack vector)  

• Define

• So, the dual problem is : 

Affine Scaling Method - 1

1

1 2
ˆ ,  where      ( ,  ,  ... , )   np P p P Diag p p p    

p


ˆ ˆ       max    s.t.  ;  0
T Tb A P p c p    

Primal                Dual                        Modified dual

min               max                    max  

s.t.      s.t.          s.t.  

      0                         

T T T

x

T T

c x b b

Ax b A c A p c

x

 
 

      

                              0p 
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• From the equality constraint:

• Assuming full column rank of A
T

or row rank of A

• Note that 

• Eliminating λ from the dual problem, we have:

1 1 1ˆ ˆ( )  ( )T Tp P c A P A P c p       

2 1 1

2 1 1 1 1

 linearly independent constraints in primal

ˆ( )

ˆ ˆ ( ) ( ) ( )

T

T

AP A AP P c p

AP A AP P c p M P c p





  

    



 

    

1( ) ( )R AP R M  

1

ˆˆ

1

ˆ ˆ           max ( ) ( )                      min                  

ˆ           s.t.     ( ) 0                           s.t.   0                            

                   

T T

pp
b M P c p f p b M

H p P c H









 

   

1

1

ˆ ˆ     0                                              where           

and where                                               

              –  ,  asymmetric projection matrix        

 

T

p p P c

H I P A M

 



  


2       H H 
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• In addition, we have

•

• But, R(P
-1

A
T
) = R(M

T
)

• In terms of original unscaled reduced costs, the project gradient is  

1Note that we want ( ) ( )TN H R P A    

 



1

1

  The gradient of ( ) w.r.t. scaled reduced costs  is

ˆ     ( ) ( )

  Result: The gradient w.r.t. scaled reduced costs, , already lies

                   in the range space of , 

T T T

p

T

f p p

g M b R M R P A

p

P A





   





making projection unnecessary.

1 10  columns of ( )AP H H N AP   

 2 1( )T T

p p
g Pg A AP A b    

42

Affine Scaling Method - 3



Copyright ©2004 by K. Pattipati 

• The corresponding feasible direction with respect to λ is:

•

• Otherwise, we replace λ by 

• Note that primal solution x is: 

since it satisfies Ax = b.  

2 2 2 1( )T T

px P g P A AP A b      

max

max

            

where        

            ; 0.95

            min : 0, 1,2,...,i
pi

pi

d

p
g i n

g

  

  



 

 

  
   

  

2 1ˆ ( )T T

p
d MM g AP A b

   

   T

p
g A d   

If 0  dual problem is unbounded primal is infeasible

(assuming 0)
p

g

b

  


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 Dual affine scaling algorithm

1 2

2

Start with a strictly feasible ,  stopping criterion  and .

For   0,  1,  2,  ... DO

           ;     (   ... )

       Compute the solution 

       ( ) ;    

    

T

old

T

n

T T

p

z b
k

p c A P Diag p p p

d

AP A d b g A d


 

  










  

  

   If 0

               Stop: unbounded dual solution  primal is infeasible 
       else

               min : 0,    1,  2,  ...,  

              (  next step);  

p

i
pi

pi
T

newp

g

p
g i n

g

d p p g z

 

    





  
   

  
     

2

| |
             If 

max(1,| |)

               stop: found an optimal solution 

               else
                          
              end if
       end if
end DO

new old

old

p

old new

b

z z

z

x P g

z z








 


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 Finding an initial strictly feasible solution for the dual affine scaling algorithm

• Want to find a  

• Select initial ξ
0

as

• Solve an (m+1) variable LP:

• Notes:

2

0

2

|| ||

|| ||T

c
b

A b


 
  
 

p p e  

  0
2min :  1,2,...,T

i
c A i m    

, 
max      s.t.   

T Tb A e c
 

     

50

0

0 0

   Select . ;   10

   The initial ( , ) are feasible for the problem

T b
  



 

 



_  If   0 at iteration   found a feasible 

_   If the algorithm is such that optimal     dual is 

          infeasible  primal is unboun

 

 

ded

k 

 

 

 


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 Lease-squares subproblem: implementation issues

• Generally A is sparse

• Major computational step at each iteration

• Key: need to solve a symmetric positive definite system             y b 

-2

2 2 -1

   ... Affine scaling

 (  -  )  (  -  ) 

                                                   ... barrier function method

T

T

AP A d b

AD A AD c µD e AD Dc µe



 
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 Solution approaches:

 Direct methods:

 Methods to speed up factorization

• During each iteration only D or P
-1

changes, while A remains unaltered

– Nonzero structure of   is static throughout.

– So, during the first iteration, keep track of the list of numerical operations 

performed

• Perform factorization only if the diagonal scaling matrix has changed significantly

• Consider

–

–

1

a) Cholesky factorization: ,  lower 

b)  factorization: ,  unit lower 

c)  factorization: of  or 

T

T T

T T

SS S

LDL LDL S

QR P A DA

   

   

2 TAP A 

replace  by P P
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– So, use rank-one modification methods discussed in Lecture 8

• Perform pivoting to reduce fill-ins  having nonzero elements in factors where there 

are zero elements in  .

– Recall that

– Unfortunately, finding the optimal permutation matrix to reduce filled-in is NP-

complete

– However,     heuristics

 minimum degree

 minimum local fill-in

: 0

where

 if | | / | |
           

    otherwise

           0.1

          define 

          then  . .

           column o
ii

old old old

ii ii ii iinew

ii

ii

new old

ii ii ii

Tnew old

i iii

i P

th

i

P P P P
P

P

P P P

P a a

a i





 

  
  
 

  

    







f A



TP P Py Pb 
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• Combine with an iterative method if have a few dense columns in A that will make 

impracticably dense  . (Recall the outer product representation) 

 Hybrid factorization and conjugate gradient method called a preconditioned 

conjugate gradient method.

Idea: At iteration k, split columns of A into two parts

where columns of A
s

are sparse (i.e., have density < λ(≈ 0.3))

–

– Find incomplete Cholesky factor L such that

– Basically the idea is to step through the Cholesky decomposition, but setting l
ij

= 0 if the corresponding 

 and S S

0
sij

 

2 T T

s s s
Z A P A LL 

2Form T

s s
A P A
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 Incomplete Cholesky Algorithm  

For   1,  ...,   DO

           

           For   1,  ...,   

                    If  0

                             /

                    end if

           end DO

           For

kk skk

sik

ik sik kk

k m

l

i k m DO

l l



 

 

 

 

   1,  ...,   DO

                     For   ,  ...,   DO        

                            If  0

                                       

                            end if

     

sij

sij sij ik jk

j k m

i j m

l l

 



 

   

                end DO

             end DO

end DO
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 Now consider the original problem 



Incomplete Cholesky Algorithm - 2

2

1 1 1

1 1 1

           

           ( ) .

            

where

             ( ) ;  ;  

T

T T

T T

y A P Ay b

L L L y L b

Qu f

Q L L u L y f L b



  

  

  

 

 

   

Solve  via conjugate gradient algorithm (see Lecture 5)Qu f
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 Conjugate gradient algorithm

• Computational load: O(m
2
+10m)

• Need to store only for vector: u, r, d and w

Conjugate Gradient Algorithm

               ... initial solution 

|| || 2         ... norm of RHS

1
      ... initial residual (negative gradient of ( ))

2

|| ||            ... square of norm of initial residual

  

T T

u f

c f

r f Qu u Qu u f

r

d r







  





max

             ... initial direction

0

do while /  and 

                    

       /       ... step length

                    ... new solution

                 ... new resid

T

k

c k k

w Qd

r d Qd

u u d

r r w

 









 





 

 
2

2

2

2

ual,  

      || || /              ... parameter to update direction

                 ... new direction 

      || ||

      1

end DO

r f Qu

r

d r d

r

k k

 





 



 



 
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 Comparison of simplex and dual affine scaling methods

• Three types of test problems

 NETLIB test problems

• 31 test problems

• The library and test problem can be accessed via electronic mail

netlib@anl-mcs (ARPANET/CSNET)

(or) research ! netlib (UNIX network)

• # of variables n ranged from 51 to 5533

• # of constraints m ranged from 27 to 1151

• # of non-zero elements in A ranged from 102 to 16276

• Comparisons on IBM 3090
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 Multi-commodity Network Flow problems

• Specialized LP algorithms exist that are better than simplex

• a program to generate random multi-commodity network flow problem called 

MNETGN

• 11 problems were generated

• # of variables n in the range (2606, 8800)

• # of constraints m in the range (1406, 4135)

• Non-zero elements in A ranged from 5212 to 22140

Simplex Affine scaling

Iterations (6, 7157) (19,55)

Ratio of time per iteration (0.093, 0.356) 1

Total CPU time range (secs) (0.01, 217.67) (0.05, 31.70)

Ratio of CPU times 

(simplex/Affine)

(0.2, 10.7) 1
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Simplex

MINOS 4.0

Specialized Simplex

(MCNF 85)

Affine scaling

Total # of iterations (940, 21915) (931, 16624) (28, 35)

Ratios of time per 

iteration (w.r.t.

Affine scaling)

(0.010, 0.069) (0.0018, 0.0404) 1

Total cpu time (secs) (12.73, 1885.34) (7.42, 260.44) (6.51, 309.50)

Ratios of cpu times 

w.r.t. affine scaling

(1.96, 11.56) (0.59, 4.15) 1
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 Timber Harvest Scheduling problems

• 11 timber harvest scheduling problems using a program called FORPLAN

• # of variables ranged from 744 to 19991

• # of constraints ranged from 55 to 316

• # of nonzero elements in A ranged from 6021 to 176346

 Promising approach to large real-world LP problems

Simplex (MINOS 4.0)

(default pricing)

Affine scaling

Total # of iterations (534, 11364) (38, 71)

Ratio of time per iteration (0.0141, 0.2947) 1

Total cpu time (secs) (2.74, 123.62) (0.85, 43.80)

Ratios of cpu times (1.52, 5.12) 1
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 Methods for solving LP problems

• Revised Simplex method

• Ellipsoid method….not practical 

• Karmarkar’s projective scaling (interior point method)

 Implementation issues of the Least-Squares subproblem of Karmarkar’s 
method ….. More in Linear Programming and Network Flows course

 Comparison of Simplex and projective methods

Summary


