

Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering University of Connecticut

Contact: krishna@engr.uconn.edu (860) 486-2890

ECE 6435

Fall 2008

Adv Numerical Methods in Sci Comp

October 22, 2008

Copyright ©2004 by K. Pattipati

Lecture Outline

- □ What is Linear Programming (LP)?
- □ Why do we need to solve Linear-Programming problems?
 - L_1 and L_{∞} curve fitting (i.e., parameter estimation using 1-and ∞ -norms)
 - Sample LP applications
 - Transportation Problems, Shortest Path Problems, Optimal Control, Diet Problem
- □ Methods for solving LP problems
 - Revised Simplex method
 - Ellipsoid method....not practical
 - Karmarkar's projective scaling (interior point method)
- □ Implementation issues of the Least-Squares subproblem of Karmarkar's method More in *Linear Programming and Network Flows* course
- □ Comparison of Simplex and projective methods

References

- 1. Dimitris Bertsimas and John N. Tsisiklis, <u>Introduction to Linear Optimization</u>, Athena Scientific, Belmont, MA, 1997.
- 2. I. Adler, M. G. C. Resende, G. Vega, and N. Karmarkar, "An Implementation of Karmarkar's Algorithm for Linear Programming," <u>Mathematical Programming</u>, Vol. 44, 1989, pp. 297-335.

3. I. Adler, N. Karmarkar, M. G. C. Resende, and G. Vega, "Data Structures and Programming Techniques for the Implementation of Karmarkar's Algorithm," <u>ORSA Journal on Computing</u>, Vol. 1, No. 2, 1989.

What is Linear Programming?

- One of the most celebrated problems since 1951
- Major breakthroughs:
 - **Dantzig:** Simplex method (1947-1949)
 - **Khachian:** Ellipsoid method (1979)
 - Polynomial complexity, but not competitive with the Simplex \rightarrow not practical.
 - **Karmarkar:** Projective Interior point algorithm (1984)
 - Polynomial complexity and competitive (especially for large problems)

LP Problem Definition

- Given:
 - an $m \ge n$ matrix A, m < n or $A \in \mathbb{R}^{mn}$, m < n assume rank(A) = m
 - a column vector \underline{b} with *m* components: $\underline{b} \in \mathbb{R}^m$
 - a row vector \underline{c}^T with *n* components: $\underline{c} \in \mathbb{R}^n$

 $m \ge n \implies A\underline{x} = \underline{b}$ has infinitely many solutions $\implies \underline{b} = \sum_{i=1}^{n} \underline{a}_i x_i$

consider $\underline{x}_r \in R(A^T)$, $A \underline{x}_r = \underline{b} \implies A(\underline{x}_r + \underline{x}_n) = \underline{b}$, where $\underline{x}_n \in N(A) \implies (\underline{x}_n : A\underline{x}_n = 0)$

Standard form of LP

We impose two restrictions on \underline{x} :

• We want nonnegative solutions of $A\underline{x} = \underline{b} \implies x_i \ge 0$ (or) $\underline{x} \ge 0$

x such that $A\underline{x} = \underline{b} \& \underline{x} \ge 0$ are said to be *feasible*

- Among all those feasible $\{\underline{x}\}$, we want \underline{x}^* such that $\underline{c}^T \underline{x} = c_1 x_1 + c_2 x_2 + \dots + c_n x_n$ is a minimum
- This leads to the so-called "standard form of LP"

 $\begin{array}{l} \min \underline{c}^{T} \underline{x} \\ (\text{SLP}): \ \text{s.t.} \ A \underline{x} = \underline{b} \\ \underline{x} \ge \underline{0} \end{array} \end{array} \qquad \text{convex programming problem. If a} \\ \begin{array}{l} \text{bounded solution exists, then } \underline{x}^{*} \text{ is} \\ \text{unique } \Rightarrow \text{ a single minimum.} \end{array}$

- <u>Claim</u>: Any LP problem can be converted into standard form.
- I Inequality constraints:

a)
$$\underline{a}_{i}^{T} \underline{x} \leq b_{i} \Longrightarrow \left(\underline{a}_{i}^{T} \quad 1\right) \begin{pmatrix} \underline{x} \\ x_{n+1} \end{pmatrix} = b_{i}; x_{n+1} \geq 0, x_{n+1} \sim \text{slack variable}$$

- In general:
$$A\underline{x} \le \underline{b} \Rightarrow A\underline{x} + \underline{y} = \underline{b} \Rightarrow \overbrace{\left[A \quad I\right]}^{A_a} \left(\frac{\underline{x}}{\underline{y}}\right) = \underline{b}, \ \underline{x} \ge 0, \ \underline{y} \ge 0$$

Increase number of variables by $m \& A_a$ is m by (n+m) matrix.

How to Convert Constraints into a SLP? - 1

Inequality Constraints

b)
$$\underline{a}_{i}^{T} \underline{x} \ge b_{i} \implies a_{i}^{T} \underline{x} - x_{n+1} = b_{i}, \ x_{n+1} \ge 0; \qquad x_{n+1} \sim \text{surplus variable}$$

 $A \underline{x} \ge \underline{b} \implies \begin{bmatrix} A & -I \end{bmatrix} \begin{bmatrix} \underline{x} \\ \underline{y} \end{bmatrix} = \underline{b}, \ \underline{y} \ge \underline{0}$
c) $d_{i} \le x_{i} \implies \text{define } \hat{x}_{i} = x_{i} - d_{i} \& \hat{x}_{i} \ge 0$
d) $d_{i} \ge x_{i} \implies \text{define } \hat{x}_{i} = d_{i} - x_{i} \& \hat{x}_{i} \ge 0$
e) $d_{i1} \le x_{i} \le d_{i2} \implies 0 \le x_{i} - d_{i1} \le d_{i2} - d_{i1}$
define $\hat{x}_{i} = x_{i} - d_{i1} \text{ and } \hat{x}_{i} + \underbrace{y_{i}}_{\text{slack}} = d_{i2} - d_{i1}; \ y_{i} \ge 0$
f) $b_{1i} \le \underline{a}_{i}^{T} \underline{x} \le b_{2i} \implies \text{use two slacks}$

$$\frac{\underline{a}_{i}^{T} \underline{x} - y_{i1} = b_{1i}}{\underline{a}_{i}^{T} \underline{x} + y_{i2} = b_{2i}} \} \quad y_{i1}, y_{i2} \ge 0$$

g) $\left|\underline{a}_{i}^{T}\underline{x}\right| \leq b_{i} \implies -b_{i} \leq \underline{a}_{i}^{T}\underline{x} \leq b_{i} \implies \underline{a}_{i}^{T}\underline{x} - y_{i1} = -b_{i}; \quad \underline{a}_{i}^{T}\underline{x} + y_{i2} = b_{i}$

How to Convert Constraints into a SLP? - 2

x_i is a free variable

• Define $x_i = \overline{x}_i - \hat{x}_i$ with $\overline{x}_i \ge 0$ & $\hat{x}_i \ge 0$

a) Maximization: change
$$\underline{c}^T \underline{x}$$
 to $-\underline{c}^T \underline{x}$

b) min
$$\sum_{i=1}^{n} |x_i|$$
 s.t. $A\underline{x} \le \underline{b} \implies A\underline{x} + \underline{y} = \underline{b};$ write $x_i = \overline{x}_i - \hat{x}_i$

$$\Rightarrow \min \sum_{i=1}^{n} (\overline{x}_{i} + \hat{x}_{i})$$

s.t. $\begin{bmatrix} A & -A & I \end{bmatrix} \begin{bmatrix} \overline{x} \\ \frac{\hat{x}}{y} \\ \underline{y} \end{bmatrix} = \underline{b}$ The optimal solution of this problem solves the original problem.

Example of LP Problems

• L_l – curve fitting

- Recall that given a set of scalars $(b_1, b_2, ..., b_m)$, the estimate that

minimizes $\sum_{i=1}^{m} |x-b_i|$ is the median and that this estimate is insensitive to <u>outliers</u> in the data $\{b_i\}$.

Curve Fitting

In the vector case, we want \underline{x} such that:

•
$$\min_{\underline{x}} \sum_{i=1}^{m} \left| \underline{a}_{i}^{T} \underline{x} - b_{i} \right| = \min_{\underline{x}} \left\| A \underline{x} - \underline{b} \right\|_{1}$$

 L_1 – curve fitting \rightarrow an LP

write $\underline{x} = \underline{\tilde{x}} - \underline{\hat{x}}; \quad \left|\underline{a}_i^T \underline{x} - b_i\right| = u_i + v_i;$

Then the LP problem is:
$$\min_{\underline{x},\underline{u},\underline{v}} \sum_{i=1}^{n} (u_i + v_i) = \min_{\underline{x},\underline{u},\underline{v}} \underline{e}^T (\underline{u} + \underline{v})$$

s.t.
$$A(\underline{\tilde{x}} - \underline{\hat{x}}) - \underline{u} + \underline{v} = \underline{b}$$

$$\underline{\tilde{x}} \ge 0; \quad \underline{\hat{x}} \ge 0; \quad \underline{u} \ge 0; \quad \underline{v} \ge 0$$

• L_{∞} - curve fitting \rightarrow want \underline{x} such that $\min_{\underline{x}} \max_{1 \le i \le m} \left| \underline{a}_i^T \underline{x} - b_i \right| = \min_{\underline{x}} \left\| A \underline{x} - \underline{b} \right\|_{\infty}$

- L_{∞} curve fitting \rightarrow an LP
 - Let $\max_{1 \le i \le m} \left| \underline{a}_i^T \underline{x} b_i \right| = w$; then the problem is equivalent to: $\min_{\underline{x}, w} w$, s.t. $-w \le \underline{a}_i^T \underline{x} - b_i \le w$ for i = 1, 2, ..., m $\min w$ s.t. $\begin{bmatrix} A & \underline{e} \\ -A & \underline{e} \end{bmatrix} \begin{bmatrix} \underline{x} \\ w \end{bmatrix} \ge \begin{bmatrix} \underline{b} \\ -\underline{b} \end{bmatrix}$

Transportation Problem - 1

• Since the number of constraints is large (2*m*) and the number of variables (*n*) is small, typically the dual problem with (*n*+1) constraints and 2*m* variables is solved instead.

 $\max \underline{b}^{T} \left(\underline{\lambda} - \underline{\mu} \right)$ s.t. $A^{T} \left(\underline{\lambda} - \underline{\mu} \right) = \underline{0}, \quad \underline{e}^{T} \left(\underline{\lambda} + \underline{\mu} \right) = 1 \text{ and } \underline{\lambda} \ge \underline{0}; \quad \underline{\mu} \ge \underline{0}$

- Transportation or Hitchcock problem (special LP)
 - *m* sources of a commodity or a product and *n* destinations
 - amount of commodity to be shipped from source $i = a_i, 1 \le i \le m$
 - amount of commodity to be received at destination (sink, terminal node) $i = b_i$, $1 \le j \le n$
 - shipping cost from source *i* to destination *j* per unit commodity $= c_{ij}$ dollars/unit
 - Problem: How much commodity to be shipped from source *i* to destination *j* to minimize the total cost of transportation?

Shortest Path Problem - 1

- **Shortest-path problem**
 - We formulate it as an LP for conceptual reasons only

- s, u, v, t are computers, edge lengths are costs of sending a message between pairs of nodes denoting computers

- Q: What is the cheapest way to send a message from *s* to *t*?

- Intuitively, x_{sv} = x_{ut} = 0, i.e., no messages are sent from s to v & from u to t.
- Shortest path $s u v t \implies x_{su} = x_{uv} = x_{vt} = 1$
- Shortest path length = 2+1+3=6

Shortest Path Problem - 2

LP problem formulation

• Let x_{ij} be the fraction of messages sent from *i* to *j*

$$- \min 2x_{su} + 4x_{sv} + x_{uv} + 5x_{ut} + 3x_{vt}$$

s.t. $x_{su} \ge 0$; $x_{sv} \ge 0$; $x_{uv} \ge 0$; $x_{ut} \ge 0$; $x_{vt} \ge 0$
 $x_{su} - x_{uv} - x_{ut} = 0$ (message not lost at u)
 $x_{sv} + x_{uv} - x_{vt} = 0$
 $x_{ut} + x_{vt} = 1$

- Add all constraints $\rightarrow x_{su} + x_{sv} = 1$, which it must be!!
- Only 3 independent constraints (although 4 nodes)
 - In matrix notation:

$$A\underline{x} = \begin{bmatrix} 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & 0 & 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} x_{su} \\ x_{sv} \\ x_{uv} \\ x_{ut} \\ x_{vt} \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \underline{b}$$

- *n* nodes \Rightarrow *n*-1 independent equations \Rightarrow Similar to Kirchoff's Laws

Optimal Control Problem - 1

Shortest path problem as a standard LP

NOTE:

- $\begin{array}{l} \min \underline{e}^{T} \underline{x} \\ \text{s.t. } A \underline{x} = \underline{b} \\ \underline{x} \ge 0 \end{array} \end{array} \xrightarrow{\hspace{1cm}} A \text{ is called the incidence matrix} \\ \underline{b} \text{ is a special vector} \\ A \text{ is a unimodular matrix and so a} \end{array}$
 - $\int -A \text{ is a unimodular matrix and so are all invertible submatrices } \tilde{A} \text{ of } A$ $\Rightarrow \det \tilde{A} = 1 \text{ or } -1$

Optimal Control

• Consider a linear time-invariant discrete-time system

$$\underline{x}_{k+1} = A\underline{x}_k + \underline{b}u_k ; \quad u_k \sim \text{scalar for simplicity, } k = 0, 1, \dots$$
$$\underline{x}_k = A^k \underline{x}_0 + \sum_{l=0}^{k-1} A^{k-l} \underline{b}u_l$$

- Define Terminal Error: $e_N = \underline{x}_d - x_N = \underline{x}_d - A^N \underline{x}_0 - \sum_{l=0}^{N-1} A^{N-l-1} \underline{b} u_l$

- Given $\underline{x}_0, \underline{x}_d$ & given the fact that u_k is constrained by $u_{\min} \le u_k \le u_{\max}$, we can formulate various versions of LP.

13 Copyright ©2004 by K. Pattipati

Optimal Control Problem - 3

Versions of LP

b) $\min \max_{1 \le i \le n} |e_{Ni}| = \min \max_{1 \le i \le n} |c_i + d_i^T \underline{z}| \infty$ -norm of error Define $v = \max_{1 \le i \le n} \left| c_i + d_i^T \underline{z} \right| \implies \min v$ s.t. $u_{\min} \underline{1} \leq \underline{z} \leq u_{\max} \underline{1}, \quad v + c_i + d_i^T \underline{z} \geq 0, \quad v - c_i - d_i^T \underline{z} \geq 0$ **Proof of equivalence for (a)** Suppose $v_i^*, u_i^*, \& z^*$ are optimal solutions. Claim: $v_i^* \& u_i^*$ can not simultaneously be non-zero. If they are and $v_i^* > u_i^*$, define $\hat{v}_i = v_i^* - u_i^*$, $\hat{u}_i = 0$ $\Rightarrow \hat{v}_i + \hat{u}_i = v_i^* - u_i^* < v_i^* + u_i^* \dots$ a contradiction. \Rightarrow Only one of the two can be non-zero. **Proof of equivalence for (b)** Let z^*, v^* be optimal for revised problem, but z^* is not optimal for original problem. Suppose \hat{z} is optimal solution of original problem.

- Define $v = \max \left| d_i^T \hat{z} + c_i \right| \implies$ feasible for revised problem

 $\Rightarrow v < v^* \Rightarrow$ Contradiction.

Diet Problem

Diet Problem

- We want to find the most economical diet that meets minimum daily requirements for calories and such nutrients as proteins, calcium, iron, and vitamins.
 - We have *n* different food items:
 - $c_j = \text{cost of food item } j$
 - x_i = units of food item *j* (in grams) included in our economic diet
 - There are *m* minimum nutritional requirements

 b_i = minimum daily requirement of i^{th} nutrient

 a_{ii} = amount of nutrient *i* provided by a unit of food item *j*

• The problem is an LP:

 $\min \sum_{j=1}^{n} c_j x_j$ s.t. $\sum_{j=1}^{n} a_{ij} x_j \ge b_i; \quad i = 1, 2, ..., m$ $\Rightarrow \begin{array}{l} \min \underline{c}^T \underline{x} \\ \Rightarrow \\ x_j \ge 0; \quad j = 1, 2, ..., n \end{array}$

Classes of Algorihtms for LP

Fundamental Property of LP

- Optimal solution \underline{x}^* is such that (n-m) of its components are zero.
- If we know the n-m components that are zero, we can immediately
 - compute the optimal solution (i.e., remaining *m* nonzero components) from $A\underline{x} = \underline{b}$
- Since we don't know the zeros *a priori*, the chief task of every algorithm is to discover where they belong.
- **Three Classes of Algorithms for LP**
 - Simplex
 - Ellipsoid
 - Projective Transformation (scaling) Algorithm
- **1** Key Ideas of Simplex Algorithm
 - Phase 1: Find a vector \underline{x} that has (n-m) zero components, with $A\underline{x} = \underline{b}$ and $\underline{x} \ge 0$. This is a feasible \underline{x} , not necessarily optimal.
 - Phase 2: Allow one of the zero components to become positive and force one of the positive components to become zero.

Geometry of LP - 1

Simplex Algorithm

- Q: How to pick "entering" and "leaving" components?
- A: $\cot \underline{c}^T \underline{x} \downarrow$ and $A\underline{x} = \underline{b}, \underline{x} \ge 0$ must be satisfied.
- Another Key Property: Need to look at only <u>extreme (corner)</u> points of the feasible set.

- Minimum occurs at one of the corners (vertices) of the fesible set:

 $x_1 = 0, x_2 = 2 \implies \text{corner point } Q$

In *n*-dimensions, feasible set lies in

n-dimensions and so do the cost planes $\underline{c}^T \underline{x} = \text{const.}$

- Inequality constraints:

$$x_1 + 2x_2 \le 4$$
, and $x_1 \ge 0$, $x_2 \ge 0$

- $\underline{x} \ge 0 \text{ defines a positive cone in } \mathbb{R}^n.$
- $\underline{a}_i^T \underline{x} \le 0$ defines a half space on or below the plane $\underline{a}_i^T \underline{x} = 0$
- − Feasible set = positive cone \cap half spaces defined by $\underline{a}_i^T \underline{x} \le b_i$ ⇒ polyhedron (polygon in 2 dimensions).
- Feasible set is convex: $\underline{x}_1, \underline{x}_2$ feasible $\Rightarrow \alpha \underline{x}_1 + (1-\alpha)\underline{x}_2$ is also feasible $\forall \alpha \in [0,1]$. Line segment is also in feasible set.

Geometry of LP - 2

An LP may not have a solution

An LP may have an unbounded solution

• So, an algorithm must decide whether an optimal solution exists and find the corner where the optimum occurs.

Revised Simplex Algorithm - 1

Revised Simplex Algorithm

- Consider SLP: $\min \underline{z} = \underline{c}^T \underline{x}$ s.t. $A\underline{x} = \underline{b}$ and $\underline{x} \ge 0$
 - Assume rank(A) = m. Then, we can partition A = [B | N], where $B \sim m$ linearly independent columns.
 - Assume first *m* columns for convenience

$$\begin{bmatrix} B \mid N \end{bmatrix} \begin{bmatrix} \underline{x}_B \\ --- \\ \underline{x}_N \end{bmatrix} = \underline{b} \qquad \underline{x}_B \in R^m; \quad \underline{x}_N \in R^{n-m}$$

- We know n-m components of \underline{x} are zero
 - If $\underline{x}_N = 0$, $\underline{x}_B = B^{-1}\underline{b}$ is said to be the basic solution and the columns of *B* form the basis
 - If, in addition, $\underline{x}_B \ge \underline{0}$, then \underline{x}_B is called the basic feasible solution.
 - In terms of \underline{x}_B and \underline{x}_N , the cost function is

$$z = \underline{c}_B^T \underline{x}_B + \underline{c}_N^T \underline{x}_N$$

- Using $\underline{x}_B = B^{-1}\underline{b} - B^{-1}N\underline{x}_N = B^{-1}\underline{b} - B^{-1}\left(\underline{a}_{m+1}x_{m+1} + \dots + \underline{a}_nx_n\right)$ $\Rightarrow z = \underline{c}_B^T B^{-1}\underline{b} + \left(\underline{c}_N^T - \underline{c}_B^T B^{-1}N\right)\underline{x}_N = z_0 + \underline{p}^T \underline{x}_N$ $= z_0 + p_1 x_{m+1} + \dots + p_{n-m} x_n$

Revised Simplex Algorithm - 2

- **Revised Simplex Algorithm**
 - Compute \underline{p}^T in two steps:
 - 1) Solve: $B^T \underline{\lambda} = \underline{c}_B$
 - 2) Compute: $\underline{p}^{T} = \underline{c}_{N} \underline{\lambda}^{T} N \text{ or } \underline{p} = \underline{c}_{N} N^{T} \underline{\lambda}$;

 $\underline{\lambda}$ is called vector of simplex multipliers

- *p* is called the <u>relative cost vector</u>

 \Rightarrow forms the basis fo exchanging basis variables.

- If $\underline{p} \ge 0$, then the corner is optimal, since $\underline{p}^T \underline{x}_N = 0$ and $\underline{x} \ge \underline{0}$, it doesn't pay to increase \underline{x}_N .
- If a component $p_k < 0$, then the cost can be decreased by increasing the corresponding component of \underline{x}_N , that is, $(x_k : m+1 \le k \le n)$.
- Simplex method chooses one entering variable
 - One with the most negative p_k (or)
 - The first negative p_k (avoids cycling)
- Simplex allows the component x_k to increase from zero.

Revised Simplex Algorithm - 3

Revised Simplex Algorithm

- Q: Which component x_1 should leave?
- A: It will be the first to reach zero. $\Rightarrow A\underline{x} = \underline{b}$ is satisfied again at the new point.
- Assume $p_k < 0$, and consider what happens when we increase x_{Nk} from zero.
 - Let \underline{x}_{B}^{old} = initial feasible solution

 $\underline{x}_{B}^{new} + B^{-1}\underline{a}_{k}x_{Nk} = B^{-1}\underline{b} = \underline{x}_{0} = \underline{x}_{B}^{old}$ $\implies \underline{x}_{B}^{new} + x_{Nk}\underline{y} = B^{-1}\underline{b} = \underline{x}_{0}, \text{ where } B\underline{y} = \underline{a}_{k}$

- i^{th} component of \underline{x}_{B}^{new} will be zero when the i^{th} component of $\underline{y}x_{Nk} = y_i x_{Nk}$, and $(B^{-1}\underline{b})_i = x_{0i}$ are equal. This happens when $\Rightarrow x_{Nk} = i^{th}$ component of $B^{-1}\underline{b} / i^{th}$ component of $y = x_{0i} / y_i$
- So, among all y_i s such that $y_i > 0$, the smallest of these ratios determines how large x_{Nk} can become.
 - If the l^{th} ratio is the smallest, then the leaving variable will be x_l .
 - At the new corner, $x_{Nk} > 0$ and $x_l = 0$.
 - $x_{Bl} \Rightarrow$ nonbasic set & column \underline{a}_l joins the nonbasic matrix N.
 - $-x_k \implies$ basic set & column k joins the basic matrix B.
- Thus, $\theta = \frac{x_{0i}}{y_i} = \min_{1 \le i \le m} \left(\frac{x_{0i}}{y_i} : y_i > 0 \right)$

Revised Simplex Algorithm Steps

One Iteration of Revised Simplex Algorithm

- **Step 1:** Given is the basis *B* such that $\underline{x}_B = B^{-1}\underline{b} \ge \underline{0}$.
- <u>Step 2</u>: Solve $B^T \underline{\lambda} = \underline{c}_B$ for the vector of simplex multipliers $\underline{\lambda}$.
- Select a column <u>a</u>_k of N such that <u>p</u>_k = c_{Nk} <u>λ</u>^T <u>a</u>_k < 0. We may, for example, select the <u>a</u>_k which gives the largest negative values of p_k or the first k with negative p_k.
 If p^T = <u>c</u>_N <u>λ</u>^T N ≥ 0, stop ⇒ current solution is optimal.
- **<u>Step 4</u>**: Solve for \underline{y} : $\underline{By} = \underline{a}_k$
- Step 5: Find $\theta = x_{0l} / y_l = \min(x_{0i} / y_i)$ where $1 \le i \le m$ and $y_i > 0$.
 - Look at $x_{Bi}^{new} = x_{0i} y_i x_{Nk}$.
 - If none of the y_i s are positive, then the set of solutions to $A\underline{x} = \underline{b}, \ \underline{x} \ge 0$ is unbounded and the cost *z* can be made an arbitrarily large negative number.
 - Terminate computation \Rightarrow unbounded solution.
- Step 6: Update the basic solution $\overline{x_i} = x_i - \theta \underline{y}_i$; $i \neq l$; Set $x_l = \theta$ corresponding to the new basic variable, k (l goes out)
- **<u>Step 7</u>**: Update the basis and return to Step 1.

Phase I of LP

- How to get initial feasible solution...Phase I of LP
 - An LP problem for Phase I
 - $\min\left(\sum_{i=1}^{m} \hat{y}_i\right) \text{ such that } A\underline{x} + I_m \, \underline{\hat{y}} = \underline{b}; \quad \underline{x} \ge \underline{0}, \quad \underline{\hat{y}} \ge 0$
 - \hat{y} ~ Artificial Variable

- If we can find an optimal solution such that $\sum_{i=1}^{m} \hat{y}_i = 0$, then we have \underline{x}_B .

- If $\sum_{i=1}^{m} \hat{y}_i > 0$ then there is no feasible solution to $A\underline{x} = \underline{b}, \ \underline{x} \ge \underline{0}.$

 \Rightarrow Infeasible Problem

- Solve via revised simplex starting with $\underline{x} = \underline{0}$, $\hat{y} = \underline{b} \& B = I_m$.

• Another approach is to combine both phases I and II by solving: $- \min_{\underline{x},\underline{y}} \left(e^T \underline{x} + M e^T \underline{y} \right) \text{ (where } M \text{ is a large number)}$

s.t.
$$A\underline{x} + \underline{y} = \underline{b}; \quad \underline{x} \ge 0, \quad \underline{y} \ge 0$$

- This is called the "big-M" method.

Basis Updates

- How to Update Basis:
 - NOTE: We need to solve:
 - $B^T \underline{\lambda} = \underline{c}_B$ and $B\underline{y} = \underline{a}_k$, where the *B*'s differ by only one column between any two subsequent iterations \Rightarrow column \underline{a}_k replaces \underline{a}_l
 - A simple way to solve these equations is to propagate B^{-1} from one iteration to the next.

$$- \text{Recall: } B_{new} = B_{old} - \text{column } \underline{a}_{l} + \text{column } \underline{a}_{k} = B_{old} + (\underline{a}_{k} - \underline{a}_{l}) \underline{e}_{l}^{T} \implies \text{rank one update}$$

$$- \text{ So, } B_{new}^{-1} = B_{old}^{-1} - \frac{B_{old}^{-1}(\underline{a}_{k} - \underline{a}_{l}) \underline{e}_{l}^{T} B_{old}^{-1}}{1 + \underline{e}_{l}^{T} B_{old}^{-1}(\underline{a}_{k} - \underline{a}_{l})} = \left[I - \frac{B_{old}^{-1}(\underline{a}_{k} - \underline{a}_{l}) \underline{e}_{l}^{T}}{y_{l}}\right] B_{old}^{-1}. \text{ NOTE: } B_{old}^{-1} \underline{a}_{k} = \underline{y} \text{ and } B_{old}^{-1} \underline{a}_{l} = \underline{e}_{l}$$

$$\Rightarrow B_{old}^{-1} = EB_{new}^{-1} = \text{product form of the inverse (PFI)}$$
where $E = I - \frac{\underline{y}\underline{e}_{l}^{T}}{y_{l}} + \frac{1}{y_{l}} \underline{e}_{l} \underline{e}_{l}^{T} = \begin{bmatrix} 1 & 0 & \dots & -y_{1}/y_{l} & \dots & 0\\ 0 & 1 & \dots & -y_{2}/y_{l} & \dots & 0\\ 0 & \dots & \dots & 1/y_{l} & \dots & 0\\ 0 & \dots & \dots & -y_{m}/y_{l} & \dots & 1 \end{bmatrix}$

$$E \text{ is called an ``Elementary Matrix.''}$$

- For large scale problems, store *E* as a vector and update $\underline{\lambda}^T$ and \underline{p}^T sequentially as follows:

$$\underline{\lambda}^{T} = \left[\left(\underline{c}_{B}^{T} E_{p} \right) E_{p-1} \right] \dots E_{1} \quad \text{or} \quad \underline{y} = E_{p} \left[\dots \dots \left(E_{2} \left(E_{1} \underline{a}_{k} \right) \right) \dots \right]$$

- What if y_l is small? This creates a problem...
- Modern revised simplex methods use LU or QR decompositions.

Sequential *LU* and *QR*

- LU Decomposition
- If *B* is the current basis:

$$- B = \left(\underline{a}_1 \ \underline{a}_2 \ \dots \ \underline{a}_m\right) = L_{old} U_{old} = B_{old}$$

$$- B_{new} = \left(\underline{a}_1 \, \underline{a}_2 \, \dots \, \underline{a}_{l-1} \, \underline{a}_{l+1} \cdot \underline{a}_m \, \underline{a}_k\right)$$

- NOTE: $H = L_{old}^{-1} B_{new} = \left[\underline{u}_1 \underline{u}_2 \dots \underline{u}_{l-1} \underline{u}_{l+1} \dots \underline{u}_m L_{old}^{-1} \underline{a}_k \right]$ is an upper Hessenberg matrix.
- Use a sequence of elimination steps on H to get:

$$- U_{new} = \hat{M}_{m-1} \dots \hat{M}_{l+1} \hat{M}_l H \implies B_{new} = L_{old} \hat{M}_l^{-1} \dots \hat{M}_{m-1} U_{new}$$

- **Store:**
$$L_{new}^{-1} = \hat{M}_{m-1} \dots \hat{M}_l L_{old}^{-1}$$

QR Decomposition

$$- B_{new} = \left(\underline{a}_1 \underline{a}_2 \ \dots \ \underline{a}_{l-1} \underline{a}_{l+1} \cdot \underline{a}_m \underline{a}_k\right); \qquad Q_{old}^T B_{new} = H$$

- Do Givens on H:

$$J_{m-1}^T \dots J_l^T H = R_{new}$$
 and $Q_{new} = Q_{old} J_l \dots J_{m-1}$

- Theoretically, revised simplex is an exponential algorithm O($\binom{n}{m}$).
- In practice, it takes approximately 2(n+m) iterations.
- Each iteration takes approximately $O(m^2 + m(n-m))$ operations.

Sensitivity Analysis

- **Duality and Sensitivity Analysis**
 - Recall that the basic feasible solution \underline{x} =

$$= \begin{bmatrix} \underline{x}_B \\ \underline{x}_N \end{bmatrix} = \begin{bmatrix} B^{-1}\underline{b} \\ \underline{0} \end{bmatrix}$$

is the solution of SLP "min $\underline{c}^T \underline{x}$ s.t. $A\underline{x} = \underline{b}, \ \underline{x} \ge \underline{0}$ " if and only if:

- $\underline{\lambda}^T = \underline{c}_B^T B^{-1}$ ~ Vector of simplex (Lagrange) multipliers or dual variables
- $\underline{p}^{T} = \underline{c}_{N}^{T} \underline{c}_{B}^{T}B^{-1}N \ge \underline{0} \sim \text{Non-negative relative cost vector}$
- Note that the optimal cost is given by

 $z = \underline{c}^T \underline{x} = \underline{c}_B^T B^{-1} \underline{b} = \underline{\lambda}^T \underline{b}$

- So, z can be gotten by knowing optimal \underline{x}_{B} or optimal $\underline{\lambda}$.

- Q: Is there another way to get $\underline{\lambda}$?

- A: Yes, by solving an equivalent LP, called a dual LP problem.

Dual LP Problems

ASYMMETRIC

DUAL

Dual of an SLP

• Duality of an Inequality constrained LP (InLP)

27 Copyright ©2004 by K. Pattipati

Duality Properties

Dual of a Dual = Primal

- For any feasible \underline{x} and dual feasible $\underline{\lambda}$

(SLP): $\underline{\lambda}^{T}\underline{b} = \underline{\lambda}^{T}A\underline{x} \leq \underline{c}^{T}\underline{x}$ weak duality lemma (InLP): $\underline{\lambda}^{T}\underline{b} \leq \underline{\lambda}^{T}A\underline{x} \leq \underline{c}^{T}\underline{x}$

Dual feasible solution \leq primal feasible solution

- Very useful concept in deriving efficient algorithms for large integer programming problems (e.g., scheduling) with separable structures.
- **Complementary Slackness Conditions**

1)
$$(\underline{c}^T - \underline{\lambda}^T A) \underline{x} = 0 \implies p_j = c_j - \underline{\lambda}^T \underline{a}_j = 0 \text{ or } x_j = 0$$

2)
$$\underline{\lambda}^{T} (A\underline{x} - \underline{b}) = 0 \implies q_{i} = \underline{a}_{i}^{T} \underline{x} - b_{i} = 0 \text{ or } \lambda_{i} = 0$$

- $\underline{\lambda}^T \underline{a}_j \sim \text{synthetic cost of variable } j$

- For variables in the optimal basis, relative cost $p_j = 0 \Rightarrow$ synthetic cost = real cost
- For variables not in optimal basis, relative cost $p_j \ge 0 \Rightarrow$ synthetic cost \le real cost

Simplex Multipliers & Sensitivity - 1

- Interpretation of Simplex Multipliers
 - Suppose $\underline{b} \rightarrow \underline{b} + \delta \underline{b}$ without changing the optimal basis.
 - Change in the optimal objective function value

$$\delta z = \underline{c}_{B}^{T} B^{-1} \delta \underline{b} = \underline{\lambda}^{T} \delta \underline{b}$$

- $\lambda_i = \frac{\delta z}{\delta b_i}$ = marginal price (value) of the *i*th resource (i.e., right hand side of b_i)
- $\{\lambda_i\}$ are also called shadow prices, dual variables, Lagrange multipliers, or equilibium prices.
- Sensitivity (post-optimality) analysis
 - Q: How much can we change $\{c_i\}$ & $\{b_i\}$ without changing the optimal basis?
 - Consider:

$$\min_{\underline{x}} \left(\underline{c} + \alpha \underline{d} \right)^T \underline{x}; \text{ s.t. } A \underline{x} = \underline{b}, \ \underline{x} \ge \underline{0}$$

- α is the parameter to be varied
- Nominal value of $\alpha = 0$.
- $\underline{d} = \underline{e}_j \implies$ Want to find the range for the j^{th} coefficient.

Simplex Multipliers & Sensitivity - 2

- **Fact:** Basis *B* will be optimal as long as nonbasic reduced costs $\{p_k\}$ remain non-negative (recall that the reduced costs for basic variables are zero).
 - Split \underline{c} and \underline{d} as $\underline{c}^T = \left(\underline{c}_B^T \mid \underline{c}_N^T\right)$ and $\underline{d}^T = \left(\underline{d}_B^T \mid \underline{d}_N^T\right)$
 - The required condition is:

$$\left(\underline{c}_{N}^{T} - \underline{c}_{B}^{T}B^{-1}N\right) + \left(\underline{d}_{N}^{T} - \underline{d}_{B}^{T}B^{-1}N\right) \ge 0$$

$$\underline{p}^{T} + \underline{q}^{T} \ge 0 \implies \underline{q}^{T} \ge -\underline{p}^{T}$$

- So the range of
$$\alpha = (\alpha_{\min}, \alpha_{\max})$$
, where

$$\alpha_{\min} = \max\left\{ \max\left\{ \frac{-p_j}{q_j} : q_j > 0 \text{ and } j \text{ is nonbasic} \right\}, -\infty \right\}$$
$$\alpha_{\max} = \min\left\{ \min\left\{ \frac{-p_j}{q_j} : q_j < 0 \text{ and } j \text{ is nonbasic} \right\}, \infty \right\}$$

• If $\alpha \in (\alpha_{min}, \alpha_{max})$, the new optimal cost is:

$$z(\alpha) = (\underline{c}_B^T + \alpha \underline{d}_B^T) \cdot B^{-1} \underline{b} = z(0) + \alpha \underline{d}_B^T \underline{x}_B$$

Simplex Multipliers & Sensitivity - 3

• Consider parametric changes in \underline{b}

$$\min_{\substack{\underline{x} \\ \underline{x} \\ \underline{x} \\ \underline{x} \\ \underline{x} \\ \underline{b} \\ \underline{a} \\ \underline{b} \\ \underline{a} \\ \underline{b} \\ \underline{a} \\ \underline{a} \\ \underline{b} \\ \underline{a} \\ \underline{a} \\ \underline{b} \\ \underline{a} \\ \underline{b} \\ \underline{a} \\ \underline{a} \\ \underline{b} \\ \underline{a} \\ \underline{b} \\ \underline{a} \\ \underline{a} \\ \underline{b} \\ \underline{a} \\ \underline{a} \\ \underline{b} \\ \underline{$$

• If *B* is the optimal basis, then need

$$\underline{x}^{T} = (\underline{x}^{T}_{B} \ \underline{x}^{T}_{N}) = [\underline{\overline{b}}^{T} + \alpha \underline{\overline{d}}^{T}, 0]$$

where $\underline{\overline{b}}^{T} = B^{-1}\underline{b}$ and $\underline{\overline{d}}^{T} = B^{-1}\underline{d}$

The range of
$$\alpha = (\alpha_{\min}, \alpha_{\max})$$
 is given by:

$$\alpha_{\min} = \max\left\{\max_{1 \le i \le m} \{\frac{-\overline{b}_i}{\overline{d}_i} : \overline{d}_i > 0\}, -\infty\right\}; \ \alpha_{\max} = \min\left\{\min_{1 \le i \le m} \{\frac{-\overline{b}_i}{\overline{d}_i} : \overline{d}_i < 0\}, \infty\right\}$$

• If
$$\alpha \in (\alpha_{min}, \alpha_{max})$$
, then

$$z(\alpha) = \underline{c}_B^T B^{-1}(\underline{b} + \alpha \underline{d}) = \underline{\lambda}^T (\underline{b} + \alpha \underline{d}) = z(0) + \alpha \underline{\lambda}^T \underline{d}$$

Karmarkar's Interior Point Method

- Karmarkar's Interior Point Algorithm
 - Discuss not the original Karmarkar's algorithm, but an equivalent (and more general) formulation based on **barrier functions**

$$\min_{\underline{x}} \underline{c}^{T} \underline{x} \qquad \qquad \min_{\underline{x}} f(\underline{x}, \mu) = \underline{c}^{T} \underline{x} - \mu \sum_{j=1}^{n} \ln x_{j}; \ \mu > 0$$
SLP: s.t. $A \underline{x} = \underline{b} \implies \text{Barrier} \qquad \text{s.t.} \ A \underline{x} = \underline{b}$

$$\underline{x} \ge \underline{0} \qquad \text{Problem}$$
optimal solution $\underline{x}^{*} \qquad \text{optimal solution } \underline{x}^{*}(\mu)$

- Key: $\underline{x}^*(\mu) \rightarrow \underline{x}^*$ as the barrier parameter $\mu \rightarrow 0$
- \exists many variations of barrier function formulations. We will discuss them later

Newton's Method for NLP

Consider the general NLP

```
\min_{\underline{x}} f(\underline{x}) \text{ s.t. } A\underline{x} = \underline{b}
```

- Suppose \underline{x} is feasible, then $\underline{x} = \underline{x} + \alpha \underline{d}$
 - \underline{d} ~ search direction
- Pick $\alpha \rightarrow A\underline{x} = \underline{b}$ (new point is feasible) and $f(\underline{x}) < f(\overline{\underline{x}})$

What does Newton's Method do for this problem?

- Feasibility $\Rightarrow A\overline{x} = A\underline{x} + \alpha A\underline{d} = 0 \Rightarrow A\underline{d} = 0$
- Newton's method fits a quadratic to $f(\underline{x})$ at the current point and takes $\alpha = 1$
- $f(\underline{x} + \underline{d}) = f(\underline{x}) + \underline{g}^T \underline{d} + 1/2 \underline{d}^T H \underline{d}$ where $\underline{g} = \nabla \underline{f}(\underline{x}); \quad H = \nabla^2 f(\underline{x})$
- Newton's method solves a quadratic problem to find \underline{d} (\Rightarrow a weighted least squares problem)

Optimality Conditions

Consider

 $\min_{d} \underline{g}^{T} \underline{d} + \frac{1}{2} \underline{d}^{T} H \underline{d} \implies \min_{d} \frac{1}{2} || H^{\frac{1}{2}} d - H^{\frac{1}{2}} \underline{g} ||_{2}^{2}; H^{\frac{1}{2}} \text{ symmetric squareroot}$ s.t. Ad = 0s.t. Ad = 0

• Define Lagragian function:

 $L(d, \lambda) = g^T d + 1/2d^T H d - \lambda^T d$; $\lambda \sim$ Lagrange multiplier

Karush-Kuhn-Tucker necessary conditions of optimality: ٠

$$\Rightarrow \partial L / \partial \underline{d} = 0 \Rightarrow \underline{g} + H \underline{d} - A^T \underline{\lambda} = \underline{0}$$
$$\partial L / \partial \underline{\lambda} = 0 \Rightarrow -A \underline{d} = 0; \ \lambda = (AH^{-1}A^T)^{-1}AH^{-1}g$$

• Special NLP = barrier formulation of LP:

$$\underline{g} = \nabla f(\underline{x}) = \underline{c} - \mu D^{-1} \underline{e} \text{ and } H = \nabla^2 f(\underline{x}) = \mu D^{-2}$$

where $D = Diag(x_j)$, $j = 1, 2, ..., n$ and $\underline{e} = (1\ 1\ 1\ ...\ 1)^T$

Optimality Conditions for LP

• Karush-Kuhn-Tucker conditions for special NLP are:

$$\mu D^{-2}\underline{d} + (\underline{c} - \mu D^{-1}\underline{e} - A^T\underline{\lambda}) = \underline{0}$$

$$A\underline{d} = \underline{0}$$

• So,

$$\underline{d} = \frac{-1}{\mu} D^2 (\underline{c} - \mu D^{-1} \underline{e} - A^T \underline{\lambda}) \tag{1}$$

• Using
$$A\underline{d} = \underline{0}$$
 in (1), we get

$$\underline{\lambda} = (AD^2A^T)^{-1}AD^2(\underline{c}-\mu D^{-1}\underline{e}) \qquad (2)$$

• So, λ is the solution of <u>weighted least square (WLS)</u> problem:

$$\min_{\underline{\lambda}} \| D[\underline{c} - \mu D^{-1} \underline{e} - A^T \underline{\lambda}] \|_2^2$$

Barrier Function Algorithm

Barrier Function Algorithm

Choose a strictly feasible solution and constant $\mu > 0$. Let the tolerance parameter be ε and a parameter associated with the update of μ be σ .

```
For k = 0, 1, 2, \dots DO
        Let D = Diag(x_i)
        Compute the solution \underline{\lambda} to
               (AD^{2}A^{T})\underline{\lambda} = AD^{2}(\underline{c} - \mu D^{-1}\underline{e}) \dots WLS solution
        Let
               p = \underline{c} - A^{\mathrm{T}} \underline{\lambda}
              \underline{d} = -D^2(p - \mu D^{-1}\underline{e}) / \mu
               \underline{x} = \underline{x} + \underline{d}
      If \underline{x}^{T} p < \varepsilon, stop: \underline{x} is near-optimal solution ...
                                                  complementary slackness condition.
     else
           \mu = (1 - \frac{\sigma}{\sqrt{n}})\mu
     end if
```

Copyright ©2004 by K. Pattipati

end DO

36

Practicalities & Insights -1

- Finding a feasible point
 - Select any $\underline{x}_0 > \underline{0}$ and define $\xi_0 \underline{s} = \underline{b} A \underline{x}_0$ with $||\underline{s}||_2 = 1$ $\Rightarrow \xi_0 = ||\underline{b} - A \underline{x}_0||_2$ and solve min ξ s.t. $(A \underline{s}) \left(\frac{\underline{x}}{\xi} \right) = \underline{b}; \ x \ge 0, \ \xi \ge 0$ \underline{x}, ξ
 - The solution : $\xi = 0$ or when ξ starts becoming negative stop
 - Suggest $\underline{x}_0 = || b || \underline{e}$
- 2) Since the method uses Newton's directions, expect quadratic convergence near minimum
- 3) Major computational step: Least-squares subproblem

$$AD^{2}A^{T}\underline{\lambda} = AD^{2}(\underline{c} - \mu D^{-1}\underline{e})$$

Generally A is sparse

We will discuss the computational aspects of Least-squares subproblem later

4) The algorithm (theoretically) requires $O(\sqrt{nL})$ iterations with overall complexity where $O(n^3L)$

$$L = \sum_{i=0}^{m} \sum_{j=1}^{n} \left[\log |a_{ij}| + 1 \right] + 1$$

- 5) In practice, the method typically takes 20-50 iterations even for very large problems (>20,000 variables). Simplex, on the other hand, takes increasingly large number of iterations with the problem size, n.
- 6) Initialize $\mu = 2^{O(L)}$ and $\sigma \cong 1/6$. In practice, need to experiment with the parameters.
- 7) Other potential functions : $f(\underline{x}, q) = r \ln (\underline{e}^T \underline{x} q) \sum_j \ln x_j$

where

 $r = n + \sqrt{n}$ and

q = a lower -bound on the optimal cost

Practicalities & Insights - 3

Variants of the algorithm

- Problem with barrier function approach:
 - Update of μ
 - Selection of initial μ and parameter σ
- \exists two classes of algorithms
 - Affine scaling
 - Power series approximation
 - Views affine scaling directions as a set of differential equations
 - Not competitive with affine scaling methods
- Do not know if the variants have polynomial complexity. But, they work well in practice!!

Affine Scaling Method - 1

Affine scaling:

- Typically, the affine scaling methods are used on the dual problem <u>Primal</u> <u>Dual</u> <u>Modified dual</u> $\min_{\underline{x}} \underline{c}^T x$ $\max_{\underline{\lambda}} \underline{\lambda}^T \underline{b}$ $\max_{\underline{\lambda}} \underline{\lambda}^T \underline{b}$
 - $s.t. A \underline{x} = \underline{b} \iff s.t. A^{T} \underline{\lambda} \le \underline{c} \iff s.t. A^{T} \underline{\lambda} + \underline{p} = \underline{c}$ $\underline{x} \ge \underline{0} \qquad \underline{p} \ge \underline{0}$
- Suppose have a strictly feasible $\underline{\tilde{\lambda}}$ and the corresponding reduced cost vector (slack vector) \tilde{p}
- Define

$$\underline{\hat{p}} = P^{-1}\underline{p}$$
, where $P = Diag(\tilde{p}_1, \tilde{p}_2, \dots, \tilde{p}_n)$

• So, the dual problem is :

$$\max \underline{\lambda}^{\mathsf{T}} \underline{b} \quad \text{s.t.} \quad A^{\mathsf{T}} \underline{\lambda} + P \underline{\hat{p}} = c; \quad \underline{\hat{p}} \ge \underline{0}$$

Affine Scaling Method - 2

• From the equality constraint:

$$\underline{\hat{p}} = P^{-1}(c - A^T \underline{\lambda}) \implies P^{-1}A^T \underline{\lambda} = (P^{-1}\underline{c} - \underline{\hat{p}})$$

• Assuming full column rank of A^T or row rank of A

 $\Rightarrow \text{ linearly independent constraints in primal}$ $AP^{-2}A^T \underline{\lambda} = AP^{-1}(P^{-1}\underline{c} - \underline{\hat{p}})$ $\Rightarrow \underline{\lambda} = (AP^{-2}A^T)^{-1}AP^{-1}(P^{-1}\underline{c} - \underline{\hat{p}}) = M(P^{-1}\underline{c} - \underline{\hat{p}})$

• Note that
$$\underline{\lambda} \in R(AP^{-1}) = R(M)$$

• Eliminating $\underline{\lambda}$ from the dual problem, we have:

$$\max_{\underline{\hat{p}}} \underline{b}^{T} M(P^{-1}\underline{c} - \underline{\hat{p}}) = f(\underline{\hat{p}}) \qquad \min_{\underline{\hat{p}}} \underline{b}^{T} M \underline{\alpha}$$

s.t.
$$H(\underline{\hat{p}} - P^{-1}\underline{c}) = \underline{0} \qquad \Leftrightarrow \qquad \text{s.t.} \quad H\underline{\alpha} = \underline{0}$$
$$\underline{\hat{p}} \ge \underline{0} \qquad \qquad \text{where} \quad \underline{\alpha} = \underline{\hat{p}} - P^{-1}\underline{c}$$

and where

 $H = I - P^{-1}A^{T}M$, asymmetric projection matrix $\Rightarrow H^{2} = H$

Affine Scaling Method - 3

• In addition, we have

 $AP^{-1}H = 0 \implies \text{columns of } H \in N(AP^{-1})$

- Note that we want $\underline{\alpha} \in N(H) \Longrightarrow \alpha \in R(P^{-1}A^T)$
- But, $R(P^{-1}A^{T}) = R(M^{T})$
- The gradient of $f(\underline{\hat{p}})$ w.r.t. scaled reduced costs $\underline{\hat{p}}$ is $\underline{\hat{g}}_p = -M^T \underline{b} \in R(M^T) = R(P^{-1}A^T)$
- \Rightarrow <u>Result</u>: The gradient w.r.t. scaled reduced costs, \hat{p} , already lies

in the range space of $P^{-1}A^{T}$, making projection <u>unnecessary</u>.

• In terms of original unscaled reduced costs, the project gradient is

$$\underline{g}_{p} = -P\hat{\underline{g}}_{p} = -A^{T}(AP^{-2}A^{T})^{-1}\underline{b}$$

• The corresponding feasible direction with respect to $\underline{\lambda}$ is:

$$\underline{d}_{\lambda} = -MM^{T} \underline{\hat{g}}_{p} = (AP^{-2}A^{T})^{-1}\underline{b}$$
$$\underline{g}_{p} = -A^{T}\underline{d}_{\lambda}$$

- If $\underline{g}_p \ge \underline{0} \Rightarrow$ dual problem is unbounded \Rightarrow primal is infeasible (assuming $\underline{b} \neq \underline{0}$)
- Otherwise, we replace λ by $\lambda \leftarrow \lambda + \alpha d_{\lambda}$

where

$$\alpha = \beta \alpha_{\max}; \beta \approx 0.95$$
$$\alpha_{\max} = \min\left\{\frac{-p_i}{g_{pi}}: g_{pi} < 0, i = 1, 2, ..., n\right\}$$

• Note that primal solution <u>x</u> is:

$$\underline{x} = -P^{-2}g_{p} = -P^{-2}A^{T}(AP^{-2}A^{T})^{-1}\underline{b}$$

since it satisfies $A\underline{x} = \underline{b}$.

Dual Affine Scaling Algorithm

Dual affine scaling algorithm

Start with a strictly feasible $\underline{\lambda}$, stopping criterion ε and β . $z_{old} = \underline{\lambda}^T \underline{b}$ For $k = 0, 1, 2, \dots$ DO $p = \underline{c} - A^T \underline{\lambda}; P = Diag(p_1 p_2 \dots p_n)$ Compute the solution \underline{d}_{λ} $(AP^{-2}A^T)\underline{d}_{\lambda} = \underline{b}; \quad g_n = -A^T\underline{d}_{\lambda}$ If $\underline{g}_p \ge 0$ Stop: unbounded dual solution \Rightarrow primal is infeasible else $\alpha = \beta \min \left\{ \frac{-p_i}{g_{pi}} : g_{pi} < 0, \ i = 1, \ 2, \ ..., \ n \right\}$ $\lambda \leftarrow \underline{\lambda} + \alpha \underline{d}_{\lambda} \iff \underline{p} \leftarrow \underline{p} + \alpha \underline{g}_{n}$ next step); $z_{new} = \underline{\lambda}^{T} \underline{b}$ If $\frac{|z_{new} - z_{old}|}{\max(1, |z_{old}|)} < \varepsilon$ stop: found an optimal solution $\underline{x} = -P^{-2}\underline{g}_{n}$ else $z_{old} \leftarrow z_{new}$ end if end if end DO

Initial Feasible Solution

Finding an initial strictly feasible solution for the dual affine scaling algorithm

$$\underline{\lambda}_{0} = \left(\frac{\|\underline{c}\|_{2}}{\|A^{T}\underline{b}\|_{2}}\right)\underline{b}$$

- Want to find a $\underline{p} \ni \underline{p} = -\xi \underline{e}$
- Select initial ξ_0 as

$$\xi_{0} = -2\min\left\{\left(\underline{c} - A^{T}\underline{\lambda}\right)_{i}: i = 1, 2, ..., m\right\}$$

• Solve an (m+1) variable *LP*:

$$\max_{\underline{\lambda},\,\xi} \quad \underline{\lambda}^{\mathsf{T}} \underline{b} - \mu \xi \quad \text{s.t.} \quad A^{\mathsf{T}} \underline{\lambda} - \xi \underline{e} < \underline{c}$$

• Select
$$\mu = \gamma \cdot \frac{\lambda_0^T \underline{b}}{\xi_0}; \quad \gamma = 10^5$$

- The initial $(\underline{\lambda}_0, \underline{\xi}_0)$ are feasible for the problem
- Notes:
 - _ If $\xi < 0$ at iteration $k \Rightarrow$ found a feasible $\underline{\lambda}$
 - _ If the algorithm is such that optimal $\xi < \varepsilon \Rightarrow$ dual is infeasible \Rightarrow primal is unbounded

- Lease-squares subproblem: implementation issues
 - Generally *A* is sparse
 - Major computational step at each iteration $AP^{-2}A^{T}\underline{d} = \underline{b}$... Affine scaling $AD^{2}A^{T}\underline{\lambda} = AD^{2}(\underline{c} - \mu D^{-1}\underline{e}) = AD(D\underline{c} - \mu \underline{e})$... barrier function method
 - <u>Key:</u> need to solve a symmetric positive definite system $\Sigma y = \underline{b}$

Solution Approaches - 1

- Solution approaches:
- Direct methods:

- a) Cholesky factorization: $\Sigma = SS^{T}$, $S = \text{lower } \Delta$
- b) LDL^{T} factorization: $\Sigma == LDL^{T}$, S = unit lower Δ
- c) QR factorization: of $P^{-1}A^{T}$ or DA^{T}

□ Methods to speed up factorization

- During each iteration only D or P^{-1} changes, while A remains unaltered
 - Nonzero structure of Σ is <u>static</u> throughout.
 - So, during the first iteration, keep track of the list of numerical operations performed
- Perform factorization only if the diagonal scaling matrix has changed significantly
- Consider

$$-\Sigma = AP^{-2}A^{T}$$

- replace P by \overline{P}

Solution Approaches - 2

where

$$\overline{P}_{ii}^{new} = \begin{pmatrix} \overline{P}_{ii}^{old} & \text{if } |P_{ii} - \overline{P}_{ii}^{old}| / |\overline{P}_{ii}^{old}| < \delta \\ P_{ii} & \text{otherwise} \end{pmatrix}$$

$$\delta \sim 0.1$$

define $\Delta P_{ii} = \overline{P}_{ii}^{new} - \overline{P}_{ii}^{old}$
then $\Sigma^{new} = \Sigma^{old} + \sum \Delta P \cdot a \cdot a \cdot a$

 $\underline{a}_{i} = i^{th} \text{ column of } A$

- So, use rank-one modification methods discussed in Lecture 8

- Perform pivoting to reduce fill-ins \Rightarrow having nonzero elements in factors where there are zero elements in \varSigma .
 - Recall that $P\Sigma P^T P \underline{y} = P\underline{b}$
 - Unfortunately, finding the optimal permutation matrix to reduce filled-in is NPcomplete
 - However, \exists heuristics
 - minimum degree
 - minimum local fill-in

Solution Approaches - 3

- Combine with an iterative method if have a few dense columns in A that will make impracticably dense Σ . (Recall the outer product representation)
 - ⇒ Hybrid factorization and conjugate gradient method called a preconditioned conjugate gradient method.

Idea: At iteration k, split columns of A into two parts S and \overline{S}

where columns of A_{s} are sparse (i.e., have density $< \lambda (\approx 0.3)$)

- Form $A_s P^{-2} A_s^T$
- Find <u>incomplete</u> Cholesky factor L such that

 $Z_{s} = A_{s}P^{-2}A_{s}^{T} = LL^{T}$

- Basically the idea is to step through the Cholesky decomposition, but setting $l_{ij} = 0$ if the corresponding $\Sigma_{sij} = 0$

Incomplete Cholesky Algorithm

For
$$k = 1, ..., m$$
 DO
 $l_{kk} = \sqrt{\Sigma_{skk}}$
For $i = k + 1, ..., m$ DO
If $\Sigma_{sik} \neq 0$
 $l_{ik} = \Sigma_{sik} / l_{kk}$
end if
end DO
For $j = k + 1, ..., m$ DO
For $i = j, ..., m$ DO
If $\Sigma_{sij} \neq 0$
 $\Sigma_{sij} = \Sigma_{sij} - l_{ik} l_{jk}$
end if
end DO
end DO
end DO

Incomplete Cholesky Algorithm - 2

Now consider the original problem

$$\Sigma \underline{y} = A^{T} P^{-2} A \underline{y} = \underline{b}$$
$$L^{-1} \Sigma (L^{-1})^{T} . L^{T} \underline{y} = L^{-1} \underline{b}$$
$$\Rightarrow Q \underline{u} = \underline{f}$$

where

$$Q = L^{-1}\Sigma(L^{-1})^{T}; \ \underline{u} = L^{T} \underline{y}; \ \underline{f} = L^{-1}\underline{b}$$

Solve $Q\underline{u} = f$ via conjugate gradient algorithm (see Lecture 5)

Conjugate Gradient Algorithm

Conjugate gradient algorithm ... initial solution u = f $c = \parallel f \parallel 2$... norm of RHS $\underline{r} = f - Q\underline{u}$... initial residual (negative gradient of $(\frac{1}{2}u^TQu - u^Tf)$) $\rho = ||r||$... square of norm of initial residual d = r ... initial direction k = 0do while $\sqrt{\rho} / c \ge \varepsilon$ and $k \le k_{\text{max}}$ w = Qd $\alpha = r / \underline{d}^{T} Q \underline{d}$... step length $u = u + \alpha \underline{d}$... new solution $\underline{r} = \underline{r} - \alpha \underline{w}$... new residual, $\underline{r} = f - Q\underline{u}$ $\beta = ||r||_2^2 / \rho$... parameter to update direction $d = r + \beta d$... new direction $\rho = \|r\|_{2}^{2}$ k = k + 1

end DO

- Computational load: $O(m^2+10m)$
- Need to store only for vector: <u>u</u>, <u>r</u>, <u>d</u> and <u>w</u>

Simplex vs. Dual Affine Scaling - 1

- Comparison of simplex and dual affine scaling methods
 - Three types of test problems
- NETLIB test problems
 - 31 test problems
 - The library and test problem can be accessed via electronic mail netlib@anl-mcs (ARPANET/CSNET)
 - (or) research ! netlib (UNIX network)
 - # of variables *n* ranged from 51 to 5533
 - # of constraints *m* ranged from 27 to 1151
 - # of non-zero elements in A ranged from 102 to 16276
 - Comparisons on IBM 3090

Simplex vs. Dual Affine Scaling - 2

	Simplex	Affine scaling
Iterations	(6, 7157)	(19,55)
Ratio of time per iteration	(0.093, 0.356)	1
Total CPU time range (secs)	(0.01, 217.67)	(0.05, 31.70)
Ratio of CPU times (simplex/Affine)	(0.2, 10.7)	1

- □ Multi-commodity Network Flow problems
 - Specialized LP algorithms exist that are better than simplex
 - ∃ a program to generate random multi-commodity network flow problem called *MNETGN*
 - 11 problems were generated
 - # of variables n in the range (2606, 8800)
 - # of constraints m in the range (1406, 4135)
 - Non-zero elements in *A* ranged from 5212 to 22140

Simplex vs. Dual Affine Scaling - 3				
	Simplex MINOS 4.0	Specialized Simplex (MCNF 85)	Affine scaling	
Total # of iterations	(940, 21915)	(931, 16624)	(28, 35)	
Ratios of time per iteration (w.r.t. Affine scaling)	(0.010, 0.069)	(0.0018, 0.0404)	1	
Total cpu time (secs)	(12.73, 1885.34)	(7.42, 260.44)	(6.51, 309.50)	
Ratios of cpu times w.r.t. affine scaling	(1.96, 11.56)	(0.59, 4.15)	1	

Simplex vs. Dual Affine Scaling - 4

- Timber Harvest Scheduling problems
 - 11 timber harvest scheduling problems using a program called FORPLAN
 - *#* of variables ranged from 744 to 19991
 - # of constraints ranged from 55 to 316
 - # of nonzero elements in A ranged from 6021 to 176346

	Simplex (MINOS 4.0) (default pricing)	Affine scaling
Total # of iterations	(534, 11364)	(38, 71)
Ratio of time per iteration	(0.0141, 0.2947)	1
Total cpu time (secs)	(2.74, 123.62)	(0.85, 43.80)
Ratios of cpu times	(1.52, 5.12)	1

Promising approach to large real-world LP problems

Summary

- □ Methods for solving LP problems
 - Revised Simplex method
 - Ellipsoid method....not practical
 - Karmarkar's projective scaling (interior point method)
- □ Implementation issues of the Least-Squares subproblem of Karmarkar's method More in *Linear Programming and Network Flows* course
- **Comparison of Simplex and projective methods**