Lecture 9: Linear Programming: Revised Simplex and Interior Point Methods (a nice application of what we have learned so far)

Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering
University of Connecticut
Contact: krishna@engr.uconn.edu (860) 486-2890
$\begin{array}{ll}\text { ECE 6435 } & \text { Fall 2008 } \\ \text { Adv Numerical Methods in Sci Comp } & \text { October 22, } 2008\end{array}$

Lecture Outline

- What is Linear Programming (LP)?
- Why do we need to solve Linear-Programming problems?
- L_{1} and L_{∞} curve fitting (i.e., parameter estimation using 1-and ∞-norms)
- Sample LP applications
- Transportation Problems, Shortest Path Problems, Optimal Control, Diet Problem
- Methods for solving LP problems
- Revised Simplex method
- Ellipsoid method....not practical
- Karmarkar's projective scaling (interior point method)
- Implementation issues of the Least-Squares subproblem of Karmarkar's method More in Linear Programming and Network Flows course
- Comparison of Simplex and projective methods

References

1. Dimitris Bertsimas and John N. Tsisiklis, Introduction to Linear Optimization, Athena Scientific, Belmont, MA, 1997.
2. I. Adler, M. G. C. Resende, G. Vega, and N. Karmarkar, "An Implementation of Karmarkar’s Algorithm for Linear Programming," Mathematical Programming, Vol. 44, 1989, pp. 297-335.
3. I. Adler, N. Karmarkar, M. G. C. Resende, and G. Vega, "Data Structures and Programming Techniques for the Implementation of Karmarkar's Algorithm," ORSA Journal on Computing, Vol. 1, No. 2, 1989.

What is Linear Programming?

\square One of the most celebrated problems since 1951

- Major breakthroughs:
- Dantzig: Simplex method (1947-1949)
- Khachian: Ellipsoid method (1979)
- Polynomial complexity, but not competitive with the Simplex \rightarrow not practical.
- Karmarkar: Projective Interior point algorithm (1984)
- Polynomial complexity and competitive (especially for large problems)
- LP Problem Definition
- Given:
- an m x n matrix $A, m<n$ or $A \in R^{m n}, m<n$ assume $\operatorname{rank}(A)=m$
- a column vector \underline{b} with m components: $\underline{b} \in R^{m}$
- a row vector \underline{c}^{T} with n components: $\quad \underline{c} \in R^{n}$
$m \times n \Rightarrow A \underline{x}=\underline{b}$ has infinitely many solutions $\Rightarrow \underline{b}=\sum_{i=1}^{n} \underline{a}_{i} x_{i}$
consider $\underline{x}_{r} \in R\left(A^{T}\right), A \underline{x}_{r}=\underline{b} \Rightarrow A\left(\underline{x}_{r}+\underline{x}_{n}\right)=\underline{b}$, where $\underline{x}_{n} \in N(A) \Rightarrow\left(\underline{x}_{n}: A \underline{x}_{n}=0\right)$

Standard form of LP

\square We impose two restrictions on \underline{x} :

- We want nonnegative solutions of $A \underline{x}=\underline{b} \Rightarrow x_{i} \geq 0$ (or) $\underline{x} \geq 0$ x such that $A \underline{x}=\underline{b} \& \underline{x} \geq 0$ are said to be feasible
- Among all those feasible $\{\underline{x}\}$, we want \underline{x}^{*} such that $\underline{c}^{T} \underline{x}=c_{1} x_{1}+c_{2} x_{2}+\ldots c_{n} x_{n}$ is a minimum
- This leads to the so-called "standard form of LP"

- Claim: Any LP problem can be converted into standard form.
\square Inequality constraints:
a) $\underline{a}_{i}^{T} \underline{x} \leq b_{i} \Rightarrow\left(\begin{array}{ll}\underline{a}_{i}^{T} & 1\end{array}\right)\binom{\underline{x}}{x_{n+1}}=b_{i} ; x_{n+1} \geq 0, \quad x_{n+1} \sim$ slack variable
- In general: $A \underline{x} \leq \underline{b} \Rightarrow A \underline{x}+\underline{y}=\underline{b} \Rightarrow \overbrace{\left[\begin{array}{ll}A & I\end{array}\right]}^{A_{a}}(\underline{\underline{x}} \underset{\underline{y}}{)})=\underline{b}, \underline{x} \geq 0, \underline{y} \geq 0$

Increase number of variables by $m \& A_{a}$ is m by $(n+m)$ matrix.

How to Convert Constraints into a SLP? - 1

- Inequality Constraints
b) $\underline{a}_{i}^{T} \underline{x} \geq b_{i} \Rightarrow a_{i}^{T} \underline{x}-x_{n+1}=b_{i}, \quad x_{n+1} \geq 0 ; \quad x_{n+1} \sim$ surplus variable

$$
A \underline{x} \geq \underline{b} \Rightarrow\left[\begin{array}{ll}
A & -I
\end{array}\right]\left[\begin{array}{l}
\underline{x} \\
\underline{y}
\end{array}\right]=\underline{b}, \underline{y} \geq \underline{0}
$$

c) $d_{i} \leq x_{i} \Rightarrow$ define $\hat{x}_{i}=x_{i}-d_{i} \& \hat{x}_{i} \geq 0$
d) $d_{i} \geq x_{i} \Rightarrow$ define $\hat{x}_{i}=d_{i}-x_{i} \& \hat{x}_{i} \geq 0$
e) $d_{i 1} \leq x_{i} \leq d_{i 2} \Rightarrow 0 \leq x_{i}-d_{i 1} \leq d_{i 2}-d_{i 1}$
define $\hat{x}_{i}=x_{i}-d_{i 1}$ and $\hat{x}_{i}+\underbrace{y_{i}}_{\text {slack }}=d_{i 2}-d_{i 1} ; y_{i} \geq 0$
f) $b_{1 i} \leq \underline{a}_{i}^{T} \underline{x} \leq b_{2 i} \Rightarrow$ use two slacks

$$
\left.\begin{array}{l}
\underline{a}_{i}^{T} \underline{x}-y_{i 1}=b_{1 i} \\
\underline{a}_{i}^{T} \underline{x}+y_{i 2}=b_{2 i}
\end{array}\right\} \quad y_{i 1}, y_{i 2} \geq 0
$$

g) $\left|\underline{a}_{i}^{T} \underline{x}\right| \leq b_{i} \Rightarrow-b_{i} \leq \underline{a}_{i}^{T} \underline{x} \leq b_{i} \Rightarrow \underline{a}_{i}^{T} \underline{x}-y_{i 1}=-b_{i} ; \quad \underline{a}_{i}^{T} \underline{x}+y_{i 2}=b_{i}$

How to Convert Constraints into a SLP? - 2

$\square \quad x_{i}$ is a free variable

- Define $x_{i}=\bar{x}_{i}-\hat{x}_{i}$ with $\bar{x}_{i} \geq 0 \& \hat{x}_{i} \geq 0$
a) Maximization: change $\underline{c}^{T} \underline{x}$ to $-\underline{c}^{T} \underline{x}$
b) $\min \sum_{i=1}^{n}\left|x_{i}\right|$ s.t. $A \underline{x} \leq \underline{b} \Rightarrow A \underline{x}+\underline{y}=\underline{b}$; write $x_{i}=\bar{x}_{i}-\hat{x}_{i}$

$$
\left.\begin{array}{l}
\Rightarrow \min \sum_{i=1}^{n}\left(\bar{x}_{i}+\hat{x}_{i}\right) \\
\text { s.t. }\left[\begin{array}{lll}
A & -A & I
\end{array}\right]\left[\begin{array}{l}
\underline{\underline{x}} \\
\underline{\hat{x}} \\
\underline{y}
\end{array}\right]=\underline{b}
\end{array}\right) \begin{aligned}
& \text { The optimal solution of } \\
& \text { this problem solves the } \\
& \text { original problem. }
\end{aligned}
$$

\square Example of LP Problems

- $\quad L_{1}$ - curve fitting
- Recall that given a set of scalars $\left(b_{1}, b_{2}, \ldots, b_{m}\right)$, the estimate that minimizes $\sum_{i=1}^{m}\left|x-b_{i}\right|$ is the median and that this estimate is insensitive to outliers in the data $\left\{b_{i}\right\}$.

Curve Fitting

\square In the vector case, we want \underline{x} such that:

- $\min _{\underline{x}} \sum_{i=1}^{m}\left|\underline{a}_{i}^{T} \underline{x}-b_{i}\right|=\min _{\underline{x}}\|A \underline{x}-\underline{b}\|_{1}$
- L_{1} - curve fitting \rightarrow an LP write $\underline{x}=\underline{\tilde{x}}-\underline{\hat{x}} ; \quad\left|\underline{a}_{i}^{T} \underline{x}-b_{i}\right|=u_{i}+v_{i}$;

Then the LP problem is: $\min _{\underline{x}, \underline{u}, \underline{v}} \sum_{i=1}^{n}\left(u_{i}+v_{i}\right)=\min _{\underline{x}, \underline{u}, \underline{v}} \underline{e}^{T}(\underline{u}+\underline{v})$

$$
\text { s.t. } A(\underline{\tilde{x}}-\underline{\hat{x}})-\underline{u}+\underline{v}=\underline{b}
$$

$$
\underline{\tilde{x}} \geq 0 ; \quad \underline{\hat{x}} \geq 0 ; \quad \underline{u} \geq 0 ; \quad \underline{v} \geq 0
$$

- $\quad L_{\infty}$ - curve fitting \rightarrow want \underline{x} such that $\min _{\underline{x}} \max _{1 \leq i \leq m}\left|\underline{a}_{i}^{T} \underline{x}-b_{i}\right|=\min _{\underline{x}}\|A \underline{x}-\underline{b}\|_{\infty}$
- $\quad L_{\infty}$ - curve fitting \rightarrow an LP
- Let $\max _{1 \leq i \leq m}\left|\underline{a}_{i}^{T} \underline{x}-b_{i}\right|=w$; then the problem is equivalent to:

$$
\min _{\underline{x}, w} w, \quad \text { s.t. }-w \leq \underline{a}_{i}^{T} \underline{x}-b_{i} \leq w \text { for } i=1,2, \ldots, m
$$

$\min w \quad$ s.t. $\left[\begin{array}{cc}A & \underline{e} \\ -A & \underline{e}\end{array}\right]\left[\begin{array}{l}\underline{x} \\ w\end{array}\right] \geq\left[\begin{array}{c}\underline{b} \\ -\underline{b}\end{array}\right]$

Transportation Problem - 1

- \quad Since the number of constraints is large ($2 m$) and the number of variables (n) is small, typically the dual problem with $(n+1)$ constraints and $2 m$ variables is solved instead.

$$
\begin{aligned}
& \max \underline{b}^{T}(\underline{\lambda}-\underline{\mu}) \\
& \text { s.t. } A^{T}(\underline{\lambda}-\underline{\mu})=\underline{0}, \underline{e}^{T}(\underline{\lambda}+\underline{\mu})=1 \text { and } \underline{\lambda} \geq \underline{0} ; \underline{\mu} \geq \underline{0}
\end{aligned}
$$

\square Transportation or Hitchcock problem (special LP)

- $\quad m$ sources of a commodity or a product and n destinations
- amount of commodity to be shipped from source $i=a_{i}, 1 \leq i \leq m$
- amount of commodity to be received at destination (sink, terminal node) $i=b_{j}, 1 \leq j \leq n$
- shipping cost from source i to destination j per unit commodity $=c_{i j}$ dollars/unit
- Problem: How much commodity to be shipped from source i to destination j to minimize the total cost of transportation?

Transportation Problem - 2

\rightarrow BIPARTITE GRAPHS: Special LP Problem

$$
a_{i}=b_{i}=1 \Rightarrow \text { Assignment problem or weighted bipartite matching problem. }
$$

Shortest Path Problem - 1

- Shortest-path problem
- We formulate it as an LP for conceptual reasons only

- $\mathrm{s}, \mathrm{u}, \mathrm{v}, \mathrm{t}$ are computers, edge lengths are costs of sending a message between pairs of nodes denoting computers
- Q: What is the cheapest way to send a message from s to t ?
- Intuitively, $x_{s v}=x_{u t}=0$, i.e., no messages are sent from s to $v \&$ from u to t.
- Shortest path $s-u-v-t \Rightarrow x_{s u}=x_{u v}=x_{v t}=1$
- Shortest path length $=2+1+3=6$

Shortest Path Problem - 2

- LP problem formulation
- Let $x_{i j}$ be the fraction of messages sent from i to j
$-\min 2 x_{s u}+4 x_{s v}+x_{u v}+5 x_{u t}+3 x_{v t}$

$$
\begin{aligned}
& \text { s.t. } x_{s u} \geq 0 ; x_{s v} \geq 0 ; x_{u v} \geq 0 ; x_{u t} \geq 0 ; x_{v t} \geq 0 \\
& x_{s u}-x_{u v}-x_{u t}=0 \text { (message not lost at } u \text {) } \\
& x_{s v}+x_{u v}-x_{v t}=0 \\
& x_{u t}+x_{v t}=1
\end{aligned}
$$

- Add all constraints $\rightarrow x_{s u}+x_{s v}=1$, which it must be!!
- Only 3 independent constraints (although 4 nodes)
- In matrix notation:

$$
A \underline{x}=\left[\begin{array}{ccccc}
1 & 0 & -1 & -1 & 0 \\
0 & 1 & 1 & 0 & -1 \\
0 & 0 & 0 & 1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{s u} \\
x_{s v} \\
x_{u v} \\
x_{u t} \\
x_{v t}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\underline{b}
$$

- $\quad n$ nodes $\Rightarrow n-1$ independent equations \Rightarrow Similar to Kirchoff's Laws

Optimal Control Problem - 1

\square Shortest path problem as a standard LP

NOTE:

$\left.\begin{array}{l}\min \underline{e}^{T} \underline{x} \\ \text { s.t. } A \underline{x}=\underline{b} \\ \underline{x} \geq 0\end{array}\right\}$

- A is called the incidence matrix
- \underline{b} is a special vector
- A is a unimodular matrix and so are all invertible submatrices \tilde{A} of A $\Rightarrow \operatorname{det} \tilde{A}=1$ or -1
- Optimal Control
- Consider a linear time-invariant discrete-time system
$\underline{x}_{k+1}=A \underline{x}_{k}+\underline{b} u_{k} ; u_{k} \sim$ scalar for simplicity $, k=0,1, \ldots$.
$\underline{x}_{k}=A^{k} \underline{x}_{0}+\sum_{l=0}^{k-1} A^{k-1} \underline{u_{l}} u_{l}$
- Define Terminal Error: $e_{N}=\underline{x}_{d}-x_{N}=\underline{x}_{d}-A^{N} \underline{x}_{0}-\sum_{l=0}^{N-1} A^{N-l-1} \underline{b} u_{l}$
- Given $\underline{x}_{0}, \underline{x}_{d}$ \& given the fact that u_{k} is constrained by $u_{\min } \leq u_{k} \leq u_{\max }$, we can formulate various versions of LP.

Optimal Control Problem - 2

- Versions of LP
a) $\min \sum_{i=1}^{n}\left|e_{N i}\right|=\sum_{i=1}^{n}\left|\left\{\left(\underline{x}_{d}-A^{N} \underline{x}_{0}\right)_{i}-\left(\sum_{l=0}^{N-1} A^{N-l-1} \underline{b} u_{l}\right)_{i}\right\}\right| 1$-norm of error

$$
\begin{aligned}
& =\sum_{i=1}^{n}\left|c_{i}+d_{i}^{T} \underline{z}\right| \\
& -\quad d_{i} \sim N \text { vector with c } \\
& -\quad \underline{z}=\left(u_{0}, u_{1}, \ldots, u_{N-1}\right)^{T} \\
& - \\
& \text { s.t. } u_{\min } \underline{1} \leq \underline{z} \leq u_{\max } \underline{1}
\end{aligned}
$$

$$
-\quad d_{i} \sim N \text { vector with components }-\left(A^{N-l-1} b\right)_{i}=d_{i l}
$$

- Convert to standard form via: $v_{i}-u_{i}=c_{i}+d_{i}^{T} \underline{z}$

$$
\left.\begin{array}{ll}
& \sum_{i=1}^{n}\left(v_{i}+u_{i}\right) \\
\text { s.t. } & u_{\min } \underline{1} \leq \underline{z} \leq u_{\max } \underline{1} \\
& v_{i}-u_{i}=c_{i}+d_{i}^{T} \underline{z} \quad 1 \leq i \leq n
\end{array}\right) \quad \begin{aligned}
& \text { Optimal Solutions: } \\
& v_{i}^{*}=\left(\begin{array}{l}
\left(\frac{d_{i}^{T}}{} \underline{z}+c_{i} \text { if } \underline{d}_{i}^{T} \underline{z}+c_{i}>0\right. \\
0 \text { otherwise }
\end{array}\right. \\
& u_{i}^{*}=\binom{-\left(d_{i}^{T} \underline{z}+c_{i}\right) \text { if } \underline{d}_{i}^{T} \underline{z}+c_{i}<0}{0 \text { otherwise }} .
\end{aligned}
$$

- Can also include constraints on state variables

Optimal Control Problem - 3

- Versions of LP
b) $\min \max _{1 \leq i \leq n}\left|e_{N i}\right|=\min \max _{1 \leq i \leq n}\left|c_{i}+d_{i}^{T} \underline{z}\right| \infty$-norm of error

Define $v=\max _{1 \leq i \leq n}\left|c_{i}+d_{i}^{T} \underline{z}\right| \Rightarrow \min v$
s.t. $u_{\text {min }} \underline{1} \leq \underline{z} \leq u_{\max } \underline{1}, \quad v+c_{i}+d_{i}^{T} \underline{z} \geq 0, \quad v-c_{i}-d_{i}^{T} \underline{z} \geq 0$

- Proof of equivalence for (a)

Suppose $v_{i}^{*}, u_{i}, \& \mathrm{z}^{*}$ are optimal solutions. Claim: $v_{i}^{*} \& u_{i}^{*}$ can not simultaneously be non-zero.

- If they are and $v_{i}^{*}>u_{i}^{*}$, define $\hat{v}_{i}=v_{i}^{*}-u_{i}^{*}, \hat{u}_{i}=0$
$\Rightarrow \hat{v}_{i}+\hat{u}_{i}=v_{i}^{*}-u_{i}^{*}<v_{i}^{*}+u_{i}^{*} \ldots$. a contradiction.
\Rightarrow Only one of the two can be non-zero.
- Proof of equivalence for (b)

Let z^{*}, v^{*} be optimal for revised problem, but z^{*} is not optimal for original problem.

- Suppose \hat{z} is optimal solution of original problem.
- Define $v=\max \left|d_{i}^{T} \hat{z}+c_{i}\right| \Rightarrow$ feasible for revised problem
$\Rightarrow v<v^{*} \Rightarrow$ Contradiction.

Diet Problem

- Diet Problem
- We want to find the most economical diet that meets minimum daily requirements for calories and such nutrients as proteins, calcium, iron, and vitamins.
- We have n different food items:
$c_{j}=$ cost of food item j
$x_{j}=$ units of food item j (in grams) included in our economic diet
- There are m minimum nutritional requirements
$b_{i}=$ minimum daily requirement of $i^{\text {th }}$ nutrient
$a_{i j}=$ amount of nutrient i provided by a unit of food item j
- The problem is an LP:

$$
\left.\begin{aligned}
& \min \sum_{j=1}^{n} c_{j} x_{j} \\
& \text { s.t. } \sum_{j=1}^{n} a_{i j} x_{j} \geq b_{i} ; \quad i=1,2, \ldots, m \\
& \quad x>0 ; \quad i=1.2 \quad n
\end{aligned} \right\rvert\, \Rightarrow \begin{aligned}
& \min \underline{c}^{T} \underline{x} \\
& \text { s.t. } A \underline{x} \geq \underline{b} \\
& \underline{x} \geq 0
\end{aligned}
$$

Classes of Algorihtms for LP

\square Fundamental Property of LP

- Optimal solution \underline{x}^{*} is such that $(n-m)$ of its components are zero.
- If we know the $n-m$ components that are zero, we can immediately compute the optimal solution (i.e., remaining m nonzero components) from $A \underline{x}=\underline{b}$
- Since we don't know the zeros a priori, the chief task of every algorithm is to discover where they belong.
- Three Classes of Algorithms for LP
- Simplex
- Ellipsoid
- Projective Transformation (scaling) Algorithm
\square Key Ideas of Simplex Algorithm
- Phase 1: Find a vector \underline{x} that has $(n-m)$ zero components, with $A \underline{x}=\underline{b}$ and $\underline{x} \geq 0$. This is a feasible \underline{x}, not necessarily optimal.
- Phase 2: Allow one of the zero components to become positive and force one of the positive components to become zero.

Geometry of LP - 1

- Simplex Algorithm
- Q: How to pick "entering" and "leaving" components?
- A: cost $\underline{c}^{T} \underline{x} \downarrow$ and $A \underline{x}=\underline{b}, \underline{x} \geq 0$ must be satisfied.
- Another Key Property: Need to look at only extreme (corner) points of the feasible set.

- $\quad \underline{x} \geq 0$ defines a positive cone in R^{n}.
- $\underline{a}_{i}^{T} \underline{x} \leq 0$ defines a half space on or below the plane $\underline{a}_{i}^{T} \underline{x}=0$
- Feasible set $=$ positive cone \cap half spaces defined by $\underline{a}_{i}^{T} \underline{x} \leq b_{i}$
\Rightarrow polyhedron (polygon in 2 dimensions).
- Feasible set is convex: $\underline{x}_{1}, \underline{x}_{2}$ feasible $\Rightarrow \alpha \underline{x}_{1}+(1-\alpha) \underline{x}_{2}$ is also feasible $\forall \alpha \in[0,1]$. Line segment is also in feasible set.

Geometry of LP - 2

\square An LP may not have a solution

\square An LP may have an unbounded solution

$$
\begin{aligned}
& \mathbf{x}_{2} \uparrow \quad \text { Example: } \\
& \min -\left(x_{1}+x_{2}\right) \\
& \text { such that } x_{1}-2 x_{2}=4 \\
& \Rightarrow \text { opt. } x_{1}, x_{2}=(\infty, \infty) \\
& \Rightarrow \text { opt. cost value }=-\infty
\end{aligned}
$$

- So, an algorithm must decide whether an optimal solution exists and find the corner where the optimum occurs.

Revised Simplex Algorithm - 1

- Revised Simplex Algorithm
- Consider SLP: $\min \underline{z}=\underline{c}^{T} \underline{x}$ s.t. $A \underline{x}=\underline{b}$ and $\underline{x} \geq 0$
- Assume $\operatorname{rank}(A)=m$. Then, we can partition $A=[B \mid N]$, where $B \sim m$ linearly independent columns.
- Assume first m columns for convenience

$$
[B \mid N]\left[\begin{array}{c}
\underline{x}_{B} \\
--- \\
\underline{x}_{N}
\end{array}\right]=\underline{b} \quad \underline{x}_{B} \in R^{m} ; \quad \underline{x}_{N} \in R^{n-m}
$$

- We know $n-m$ components of \underline{x} are zero
- If $\underline{x}_{N}=0, \underline{x}_{B}=B^{-1} \underline{b}$ is said to be the basic solution and the columns of B form the basis
- If, in addition, $\underline{x}_{B} \geq \underline{0}$, then \underline{x}_{B} is called the basic feasible solution.
- In terms of \underline{x}_{B} and \underline{x}_{N}, the cost function is

$$
z=\underline{c}_{B}^{T} \underline{x}_{B}+\underline{c}_{N}^{T} \underline{x}_{N}
$$

$-\quad$ Using $\underline{x}_{B}=B^{-1} \underline{b}-B^{-1} N \underline{x}_{N}=B^{-1} \underline{b}-B^{-1}\left(\underline{a}_{m+1} x_{m+1}+\ldots+\underline{a}_{n} x_{n}\right)$

$$
\begin{aligned}
\Rightarrow z & =\underline{c}_{B}^{T} B^{-1} \underline{b}+\left(\underline{c}_{N}^{T}-\underline{c}_{B}^{T} B^{-1} N\right) \underline{x}_{N}=z_{0}+\underline{p}^{T} \underline{x}_{N} \\
& =z_{0}+p_{1} x_{m+1}+\ldots+p_{n-m} x_{n}
\end{aligned}
$$

Revised Simplex Algorithm - 2

- Revised Simplex Algorithm
- Compute \underline{p}^{T} in two steps:

1) Solve: $\quad B^{T} \underline{\lambda}=\underline{c}_{B}$
2) Compute: $\underline{p}^{T}=\underline{c}_{N}-\underline{\lambda}^{T} N$ or $\underline{p}=\underline{c}_{N}-N^{T} \underline{\lambda}$; $\underline{\lambda}$ is called vector of simplex multipliers

- \underline{p} is called the relative cost vector
\Rightarrow forms the basis fo exchanging basis variables.
- If $\underline{p} \geq 0$, then the corner is optimal, since $\underline{p}^{T} \underline{x}_{N}=0$ and $\underline{x} \geq \underline{0}$, it doesn't pay to increase \underline{x}_{N}.
- If a component $p_{k}<0$, then the cost can be decreased by increasing the corresponding component of \underline{x}_{N}, that is, $\left(x_{k}: m+1 \leq k \leq n\right)$.
- Simplex method chooses one entering variable
- One with the most negative p_{k} (or)
- The first negative \boldsymbol{p}_{k} (avoids cycling)
- Simplex allows the component x_{k} to increase from zero.

Revised Simplex Algorithm - 3

- Revised Simplex Algorithm

- Q: Which component x_{1} should leave?
- A: It will be the first to reach zero. $\Rightarrow A \underline{x}=\underline{b}$ is satisfied again at the new point.
- Assume $p_{k}<0$, and consider what happens when we increase $x_{N k}$ from zero.
- Let $\underline{x}_{B}^{\text {old }}=$ initial feasible solution

$$
\begin{aligned}
& \underline{x}_{B}^{\text {new }}+B^{-1} \underline{a}_{k} x_{N k}=B^{-1} \underline{b}=\underline{x}_{0}=\underline{x}_{B}^{\text {old }} \\
& \Rightarrow \underline{x}_{B}^{\text {new }}+x_{N k} \underline{y}=B^{-1} \underline{b}=\underline{x}_{0}, \text { where } B \underline{y}=\underline{a}_{k}
\end{aligned}
$$

- $i^{\text {th }}$ component of $\underline{x}_{B}^{\text {new }}$ will be zero when the $i^{\text {th }}$ component of
$\underline{y}_{N k}=y_{i} x_{N k}$, and $\left(B^{-1} \underline{b}\right)_{i}=x_{0 i}$ are equal. This happens when
$\Rightarrow x_{N k}=i^{\text {th }}$ component of $B^{-1} \underline{b} / i^{\text {th }}$ component of $\underline{y}=x_{0 i} / y_{i}$
- So, among all $y_{i} \mathrm{~s}$ such that $y_{i}>0$, the smallest of these ratios determines
how large $x_{N k}$ can become.
- If the $l^{t h}$ ratio is the smallest, then the leaving variable will be x_{l}.
- At the new corner, $x_{N k}>0$ and $x_{l}=0$.
$-\quad x_{B l} \Rightarrow$ nonbasic set \& column \underline{a}_{l} joins the nonbasic matrix N.
$-\quad x_{k} \Rightarrow$ basic set $\&$ column k joins the basic matrix B.
- Thus, $\theta=\frac{x_{0 l}}{y_{l}}=\min _{1 \leq i \leq m}\left(\frac{x_{0 i}}{y_{i}}: y_{i}>0\right)$

Revised Simplex Algorithm Steps

- One Iteration of Revised Simplex Algorithm
- Step 1: Given is the basis B such that $\underline{x}_{B}=B^{-1} \underline{b} \geq \underline{0}$.
- Step 2: Solve $B^{T} \underline{\lambda}=\underline{c}_{B}$ for the vector of simplex multipliers $\underline{\lambda}$.
- Step 3: Select a column \underline{a}_{k} of N such that $\underline{p}_{k}=c_{N k}-\underline{\lambda}^{T} \underline{a}_{k}<0$. We may, for example, select the \underline{a}_{k} which gives the largest negative values of p_{k} or the first k with negative p_{k}.
- If $\underline{p}^{T}=\underline{c}_{N}-\underline{\lambda}^{T} N \geq 0$, stop \Rightarrow current solution is optimal.
- Step 4: Solve for $\underline{y}: B \underline{y}=\underline{a}_{k}$
- Step 5: Find $\theta=x_{0 l} / y_{l}=\min \left(x_{0 i} / y_{i}\right)$ where $1 \leq i \leq m$ and $y_{i}>0$.
- Look at $x_{B i}^{n e w}=x_{0 i}-y_{i} x_{N k}$.
- If none of the $y_{i} \mathrm{~s}$ are positive, then the set of solutions to $A \underline{x}=\underline{b}, \underline{x} \geq 0$ is unbounded and the cost z can be made an arbitrarily large negative number.
- Terminate computation \Rightarrow unbounded solution.
- Step 6: Update the basic solution
$\bar{x}_{i}=x_{i}-\theta \underline{y}_{i} ; i \neq l$; Set $x_{l}=\theta$ corresponding to the new basic variable, k (l goes out)
- \quad Step 7: Update the basis and return to Step 1.

Phase I of LP

\square How to get initial feasible solution．．．Phase I of LP
－An LP problem for Phase I
$-\quad \min \left(\sum_{i=1}^{m} \hat{y}_{i}\right)$ such that $A \underline{x}+I_{m} \underline{\hat{y}}=\underline{b} ; \quad \underline{x} \geq \underline{0}, \underline{\hat{y}} \geq 0$
$\underline{\underline{y}} \sim$ Artificial Variable
－If we can find an optimal solution such that $\sum_{i=1}^{m} \hat{y}_{i}=0$ ，then we have \underline{x}_{B} ．
－If $\sum_{i=1}^{m} \hat{y}_{i}>0$ then there is no feasible solution to $A \underline{x}=\underline{b}, \underline{x} \geq \underline{0}$ ．
\Rightarrow Infeasible Problem
－Solve via revised simplex starting with $\underline{x}=\underline{0}, \hat{y}=\underline{b} \& B=I_{m}$ ．
－Another approach is to combine both phases I and II by solving：
－ $\min _{\underline{x}, \underline{y}}\left(e^{T} \underline{x}+M e^{T} \underline{y}\right)$（where M is a large number）
s．t．$A \underline{x}+\underline{y}=\underline{b} ; \quad \underline{x} \geq 0, \quad \underline{y} \geq 0$
－This is called the＂big－M＂method．

Basis Updates

\square How to Update Basis:

- NOTE: We need to solve:
$-B^{T} \underline{\lambda}=\underline{c}_{B}$ and $B \underline{y}=\underline{a}_{k}$, where the B 's differ by only one column between any two subsequent iterations \Rightarrow column \underline{a}_{k} replaces \underline{a}_{l}
- A simple way to solve these equations is to propagate B^{-1} from one iteration to the next.
- Recall: $B_{\text {new }}=B_{\text {old }}-$ column $\underline{a}_{l}+$ column $\underline{a}_{k}=B_{\text {old }}+\left(\underline{a}_{k}-\underline{a}_{l}\right) \underline{e}_{l}^{T} \quad \Rightarrow$ rank one update
- So, $B_{\text {new }}^{-1}=B_{\text {old }}^{-1}-\frac{B_{\text {old }}^{-1}\left(\underline{a}_{k}-\underline{a}_{l}\right) \underline{e}_{l}^{T} B_{\text {old }}^{-1}}{1+\underline{e}_{l}^{T} B_{\text {old }}^{-1}\left(\underline{a}_{k}-\underline{a}_{l}\right)}=\left[I-\frac{B_{\text {old }}^{-1}\left(\underline{a}_{k}-\underline{a}_{l}\right) \underline{e}_{l}^{T}}{y_{l}}\right] B_{\text {old }}^{-1}$. NOTE: $B_{\text {old }}^{-1} \underline{a}_{k}=\underline{y}$ and $B_{\text {old }}^{-1} \underline{a_{l}}=\underline{e}_{l}$ $\Rightarrow B_{\text {old }}^{-1}=E B_{\text {new }}^{-1}=$ product form of the inverse (PFI)
where $E=I-\frac{y_{l} e_{l}^{T}}{y_{l}}+\frac{1}{y_{l}} e_{l} e_{l}^{T}=\left[\begin{array}{cccccc}1 & 0 & \ldots & -y_{1} / y_{l} & \ldots & 0 \\ 0 & 1 & \ldots & -y_{2} / y_{l} & \ldots & 0 \\ 0 & \ldots & \ldots & 1 / y_{l} & \ldots & 0 \\ 0 & \ldots & \ldots & -y_{m} / y_{l} & \ldots & 1\end{array}\right]$
E is called an
"Elementary Matrix."
- For large scale problems, store E as a vector and update $\underline{\lambda}^{T}$ and \underline{p}^{T} sequentially as follows:
$\underline{\lambda}^{T}=\left[\left(\underline{c}_{B}^{T} E_{p}\right) E_{p-1}\right] \ldots E_{1} \quad$ or $\underline{y}=E_{p}\left[\ldots \quad \ldots\left(E_{2}\left(E_{1} \underline{a}_{k}\right)\right) \ldots\right]$
- What if y_{l} is small? This creates a problem...
- Modern revised simplex methods use LU or QR decompositions.

Sequential $L U$ and $Q R$

$\square \quad$ LU Decomposition

- If \boldsymbol{B} is the current basis:
$-B=\left(\underline{a}_{1} \underline{a}_{2} \cdots \underline{a}_{m}\right)=L_{\text {old }} U_{\text {old }}=B_{\text {old }}$
$-\quad B_{\text {new }}=\left(\underline{a}_{1} \underline{a}_{2} \cdots \underline{a}_{l-1} \underline{a}_{l+1} \cdot \underline{a}_{m} \underline{a}_{k}\right)$
- NOTE: $H=L_{\text {old }}^{-1} B_{\text {new }}=\left[\underline{u}_{1} \underline{u}_{2} \ldots \underline{u}_{l-1} \underline{u}_{l+1} \ldots \underline{u}_{m} L_{\text {old }}^{-1} \underline{a}_{k}\right]$ is an upper Hessenberg matrix.
- Use a sequence of elimination steps on H to get:
- $U_{\text {new }}=\hat{M}_{m-1} \ldots \hat{M}_{l+1} \hat{M}_{l} H \Rightarrow B_{\text {new }}=L_{\text {old }} \hat{M}_{l}^{-1} \ldots \hat{M}_{m-1} U_{\text {new }}$
- Store: $L_{\text {new }}^{-1}=\hat{M}_{m-1} \ldots \hat{M}_{l} L_{\text {old }}^{-1}$
\square QR Decomposition
- $B_{\text {new }}=\left(\underline{a}_{1} \underline{a}_{2} \ldots \underline{a}_{l-1} \underline{a}_{l+1} \cdot \underline{a}_{m} \underline{a}_{k}\right) ; \quad Q_{\text {old }}^{T} B_{\text {new }}=H$
- Do Givens on H :

$$
J_{m-1}^{T} \ldots J_{l}^{T} H=R_{\text {new }} \text { and } Q_{\text {new }}=Q_{o l d} J_{l} \ldots J_{m-1}
$$

- Theoretically, revised simplex is an exponential algorithm $O\left(\binom{n}{m}\right.$.
- In practice, it takes approximately $2(n+m)$ iterations.
- Each iteration takes approximately $O\left(m^{2}+m(n-m)\right)$ operations.

Sensitivity Analysis

\square Duality and Sensitivity Analysis

- Recall that the basic feasible solution $\underline{x}=\left[\begin{array}{c}\underline{x}_{B} \\ \underline{x}_{N}\end{array}\right]=\left[\begin{array}{c}B^{-1} \underline{b} \\ \hdashline \underline{0}\end{array}\right]$
is the solution of SLP " $\min \underline{c}^{T} \underline{x}$ s.t. $A \underline{x}=\underline{b}, \underline{x} \geq \underline{0}$ " if and only if:
$-\quad \underline{\lambda}^{T}=\underline{c}_{B}^{T} B^{-1} \sim$ Vector of simplex (Lagrange) multipliers or dual variables
- $\underline{p}^{T}=\underline{c}_{N}^{T}-\underline{c}_{B}^{T} B^{-1} N \geq \underline{0} \sim$ Non-negative relative cost vector
- Note that the optimal cost is given by

$$
z=\underline{c}^{T} \underline{x}=\underline{c}_{B}^{T} B^{-1} \underline{b}=\underline{\lambda}^{T} \underline{b}
$$

- So, z can be gotten by knowing optimal \underline{x}_{B} or optimal $\underline{\lambda}$.
- Q: Is there another way to get $\underline{\lambda}$?
- A: Yes, by solving an equivalent LP, called a dual LP problem.

Dual LP Problems

\square Dual of an SLP

- Duality of an Inequality constrained LP (InLP)

Duality Properties

- Dual of a Dual = Primal
- For any feasible \underline{x} and dual feasible $\underline{\lambda}$ $\left.\begin{array}{l}\text { (SLP): } \underline{\lambda}^{T} \underline{b}=\underline{\lambda}^{T} A \underline{x} \leq \underline{c}^{T} \underline{x} \\ \text { (InLP): } \underline{\lambda}^{T} \underline{b} \leq \underline{\lambda}^{T} A \underline{x} \leq \underline{c}^{T} \underline{x}\end{array}\right\}$ weak duality lemma

$$
\text { Dual feasible solution } \leq \text { primal feasible solution }
$$

- Very useful concept in deriving efficient algorithms for large integer programming problems (e.g., scheduling) with separable structures.
\square Complementary Slackness Conditions

1) $\left(\underline{c}^{T}-\underline{\lambda}^{T} A\right) \underline{x}=0 \Rightarrow p_{j}=c_{j}-\underline{\lambda}^{T} \underline{a}_{j}=0$ or $x_{j}=0$
2) $\underline{\lambda}^{T}(A \underline{x}-\underline{b})=0 \Rightarrow q_{i}=\underline{a}_{i}^{T} \underline{x}-b_{i}=0$ or $\lambda_{i}=0$

- $\quad \underline{\lambda}^{T} \underline{a}_{j} \sim$ synthetic cost of variable j
- For variables in the optimal basis, relative cost $p_{j}=0 \Rightarrow$ synthetic cost $=$ real cost
- For variables not in optimal basis, relative cost $p_{j} \geq 0 \Rightarrow$ synthetic cost \leq real cost

Simplex Multipliers \& Sensitivity - 1

- Interpretation of Simplex Multipliers
- Suppose $\underline{b} \rightarrow \underline{b}+\delta \underline{b}$ without changing the optimal basis.
- Change in the optimal objective function value

$$
\delta z=\underline{c}_{B}^{T} B^{-1} \delta \underline{b}=\underline{\lambda}^{T} \delta \underline{b}
$$

$-\quad \lambda_{i}=\frac{\delta z}{\delta b_{i}}=$ marginal price (value) of the $i^{t h}$ resource (i.e., right hand side of b_{i})

- $\left\{\lambda_{i}\right\}$ are also called shadow prices, dual variables, Lagrange multipliers, or equilibium prices.
- Sensitivity (post-optimality) analysis
- Q: How much can we change $\left\{c_{i}\right\} \&\left\{b_{i}\right\}$ without changing the optimal basis?
- Consider:

$$
\min _{\underline{x}}(\underline{c}+\alpha \underline{d})^{T} \underline{x} ; \text { s.t. } A \underline{x}=\underline{b}, \quad \underline{x} \geq \underline{0}
$$

- α is the parameter to be varied
- Nominal value of $\alpha=0$.
$-\underline{d}=\underline{e}_{j} \Rightarrow$ Want to find the range for the $j^{t h}$ coefficient.

Simplex Multipliers \& Sensitivity - 2

- Fact: Basis B will be optimal as long as nonbasic reduced costs $\left\{p_{k}\right\}$ remain non-negative (recall that the reduced costs for basic variables are zero).
- Split \underline{c} and \underline{d} as $\underline{c}^{T}=\left(\underline{c}_{B}^{T} \mid \underline{c}_{N}^{T}\right)$ and $\underline{d}^{T}=\left(\underline{d}_{B}^{T} \mid \underline{d}_{N}^{T}\right)$
- The required condition is:

$$
\begin{aligned}
& \left(\underline{c}_{N}^{T}-\underline{c}_{B}^{T} B^{-1} N\right)+\left(\underline{d}_{N}^{T}-\underline{d}_{B}^{T} B^{-1} N\right) \geq 0 \\
& \underline{p}^{T}+\underline{q}^{T} \geq 0 \Rightarrow \underline{q}^{T} \geq-\underline{p}^{T}
\end{aligned}
$$

- So the range of $\alpha=\left(\alpha_{\text {min }}, \alpha_{\text {max }}\right)$, where

$$
\begin{aligned}
& \alpha_{\min }=\max \left\{\max \left\{\frac{-p_{j}}{q_{j}}: q_{j}>0 \text { and } j \text { is nonbasic }\right\},-\infty\right\} \\
& \alpha_{\max }=\min \left\{\min \left\{\frac{-p_{j}}{q_{j}}: q_{j}<0 \text { and } j \text { is nonbasic }\right\}, \infty\right\}
\end{aligned}
$$

- If $\alpha \in\left(\alpha_{\min }, \alpha_{\max }\right)$, the new optimal cost is:
$z(\alpha)=\left(\underline{c}_{B}{ }^{T}+\alpha \underline{d}_{B}{ }^{T}\right) \cdot B^{-1} \underline{b}=z(0)+\alpha \underline{d}_{B}{ }^{T} \underline{x}_{B}$

Simplex Multipliers \& Sensitivity - 3

- Consider parametric changes in \underline{b}

$$
\begin{aligned}
& \min _{\underline{x}} \underline{c}^{T} \underline{x} \\
& \text { s.t. } A \underline{x}=\underline{b}+\alpha \underline{d} ; \alpha=0 \text { nominal } \\
& \quad \underline{x} \geq \underline{0}
\end{aligned}
$$

- If B is the optimal basis, then need

$$
\begin{aligned}
& \underline{x}^{T}=\left(\underline{x}_{B}^{T} \underline{x}_{N}^{T}\right)=\left[\bar{b}^{T}+\alpha \overline{\bar{d}}^{T}, 0\right] \\
& \text { where } \underline{b}^{T}=B^{-1} \underline{b} \text { and } \underline{\bar{d}}^{T}=B^{-1} \underline{d}
\end{aligned}
$$

- The range of $\alpha=\left(\alpha_{\min }, \alpha_{\max }\right)$ is given by:

$$
\alpha_{\min }=\max \left\{\max _{1 \leq i \leq m}\left\{\frac{-\bar{b}_{i}}{\bar{d}_{i}}: \bar{d}_{i}>0\right\},-\infty\right\} ; \alpha_{\max }=\min \left\{\min _{1 \leq i \leq m}\left\{\frac{-\bar{b}_{i}}{\bar{d}_{i}}: \bar{d}_{i}<0\right\}, \infty\right\}
$$

- If $\alpha \in\left(\alpha_{\min }, \alpha_{\max }\right)$, then

$$
z(\alpha)=\underline{c}_{B}^{T} B^{-1}(\underline{b}+\alpha \underline{d})=\underline{\lambda}^{T}(\underline{b}+\alpha \underline{d})=z(0)+\alpha \underline{\lambda}^{T} \underline{d}
$$

Karmarkar's Interior Point Method

Karmarkar's Interior Point Algorithm

- Discuss not the original Karmarkar's algorithm, but an equivalent (and more general) formulation based on barrier functions

$$
\min _{\underline{x}} \underline{c}^{T} \underline{x} \quad \min _{\underline{x}} f(\underline{x}, \mu)=\underline{c}^{T} \underline{x}-\mu \sum_{j=1}^{n} \ln x_{j} ; \mu>0
$$

SLP: s.t. $A \underline{x}=\underline{b} \Rightarrow$ Barrier

$$
\underline{x} \geq \underline{0} \quad \text { Problem }
$$

optimal solution $\underline{x}^{*} \quad$ optimal solution $\underline{x}^{*}(\mu)$

- Key: $\underline{x}^{*}(\mu) \rightarrow \underline{x}^{*}$ as the barrier parameter $\mu \rightarrow 0$
- \exists many variations of barrier function formulations. Wewill discuss them later

Newton's Method for NLP

- Consider the general NLP

$$
\min _{\underline{x}} f(\underline{x}) \text { s.t. } A \underline{x}=\underline{b}
$$

- Suppose \underline{x} is feasible, then $\underline{\bar{x}}=\underline{x}+\alpha \underline{d}$ $\underline{d} \sim$ search direction
- Pick α э $A \underline{\bar{x}}=\underline{b}$ (new point is feasible) and $f(\underline{x})<f(\underline{\bar{x}})$
- What does Newton's Method do for this problem?
- Feasibility $\Rightarrow A \bar{x}=A \underline{x}+\alpha A \underline{d}=0 \Rightarrow A \underline{d}=0$
- Newton's method fits a quadratic to $f(\underline{x})$ at the current point and takes $\alpha=1$
- $f(\underline{x}+\underline{d})=f(\underline{x})+\underline{g}^{T} \underline{d}+1 / 2 \underline{d}^{T} H \underline{d}$ where $\underline{g}=\nabla \underline{f}(\underline{x}) ; H=\nabla^{2} f(\underline{x})$
- Newton's method solves a quadratic problem to find \underline{d}
(\Rightarrow a weighted least squares problem)

Optimality Condititions

- Consider

$$
\begin{gathered}
\min _{\underline{d}} \underline{g}^{T} \underline{d}+1 / 2 \underline{d}^{T} H \underline{d} \Rightarrow \min _{\underline{d}} 1 / 2\left\|H^{1 / 2} d-H^{1 / 2} \underline{g}\right\|_{2}^{2} ; H^{1 / 2} \text { symmetric squareroot } \\
\text { s.t. } \quad A \underline{d}=\underline{0} \\
\text { s.t. } \quad A \underline{d}=\underline{0}
\end{gathered}
$$

- Define Lagragian function:

$$
L(\underline{d}, \underline{\lambda})=g^{T} \underline{d}+1 / 2 \underline{d}^{T} H \underline{d}-\underline{\lambda}^{T} \underline{d} ; \underline{\lambda} \sim \text { Lagrange multiplier }
$$

- Karush-Kuhn-Tucker necessary conditions of optimality:

$$
\begin{aligned}
& \Rightarrow \partial L / \partial \underline{d}=0 \Rightarrow \underline{g}+H \underline{d}-A^{T} \underline{\lambda}=\underline{0} \\
& \partial L / \partial \underline{\lambda}=0 \Rightarrow-A \underline{d}=0 ; \lambda=\left(A H^{-1} A^{T}\right)^{-1} A H^{-1} \underline{g}
\end{aligned}
$$

- Special NLP = barrier formulation of LP:

$$
\begin{aligned}
\underline{g} & =\nabla f(\underline{x})=\underline{c}-\mu D^{-1} \underline{e} \text { and } H=\nabla^{2} f(\underline{x})=\mu D^{-2} \\
\text { where } \quad & =\operatorname{Diag}\left(x_{j}\right), j=1,2, \ldots, n \text { and } \underline{e}=(111 \ldots 1)^{T}
\end{aligned}
$$

Optimality Conditions for LP

- Karush-Kuhn-Tucker conditions for special NLP are:

$$
\begin{aligned}
& \mu D^{-2} \underline{d}+\left(\underline{c}-\mu D^{-1} \underline{e}-A^{T} \underline{\lambda}\right)=\underline{0} \\
& A \underline{d}=\underline{0}
\end{aligned}
$$

- So,

$$
\begin{equation*}
\underline{d}=\frac{-1}{\mu} D^{2}\left(\underline{c}-\mu D^{-1} \underline{e}-A^{T} \underline{\lambda}\right) \tag{1}
\end{equation*}
$$

- Using $A \underline{d}=\underline{0}$ in (1), we get

$$
\begin{equation*}
\underline{\lambda}=\left(\mathrm{AD}^{2} \mathrm{~A}^{T}\right)^{-1} \mathrm{AD}^{2}\left(\underline{\mathrm{c}}-\mu \mathrm{D}^{-1} \underline{\mathrm{e}}\right) \tag{2}
\end{equation*}
$$

- So, λ is the solution of weighted least square (WLS) problem:

$$
\min _{\underline{\lambda}}\left\|D\left[\underline{c}-\mu D^{-1} \underline{e}-A^{T} \underline{\lambda}\right]\right\|_{2}^{2}
$$

Barrier Function Algorithm

\square Barrier Function Algorithm
Choose a strictly feasible solution and constant $\mu>0$. Let the tolerance parameter be ε and a parameter associated with the update of μ be σ.
For $k=0,1,2, \ldots$ DO
Let $D=\operatorname{Diag}\left(x_{j}\right)$
Compute the solution $\underline{\lambda}$ to

$$
\left(A D^{2} A^{T}\right) \underline{\lambda}=A D^{2}\left(\underline{c}-\mu D^{-1} \underline{e}\right) \ldots \text { WLS solution }
$$

Let

$$
\begin{aligned}
& \qquad \begin{aligned}
& \underline{p}=\underline{c}-A^{T} \underline{\lambda} \\
& \underline{d}=-D^{2}\left(\underline{p}-\mu D^{-1} \underline{e}\right) / \mu \\
& \underline{x}=\underline{x}+\underline{d} \\
& \text { If } \underline{x} \underline{x} \underline{p} \\
& \text { else stop: } \quad \underline{x} \text { is near-optimal solution ... }
\end{aligned} \quad \begin{array}{l}
\text { complementary slackness condition. }
\end{array} \\
& \text { els. }
\end{aligned}
$$

$$
\mu=\left(1-\frac{\sigma}{\sqrt{n}}\right) \mu
$$

end if
end DO

Practicalities \& Insights -1

1) Finding a feasible point

- Select any $\underline{x}_{0}>\underline{0}$ and define $\xi_{0} \underline{s}=\underline{b}-A \underline{x}_{0}$ with $\|\underline{s}\|_{2}=1$
$\Rightarrow \xi_{0}=\left\|b-A \underline{x}_{0}\right\|_{2}$ and solve

$$
\begin{aligned}
& \min \xi \\
& \underline{x}, \xi
\end{aligned} \quad \text { s.t. }(A \underline{s})\binom{\underline{x}}{\xi}=\underline{b} ; x \geq 0, \xi \geq 0
$$

- Thesolution: $\xi=0$ or when ξ starts becoming negative stop
- Suggest $\underline{x}_{0}=\|b\| \underline{e}$

2) Since the method uses Newton's directions, expect quadratic convergence near minimum
3) Major computational step: Least-squares subproblem

$$
A D^{2} A^{T} \underline{\lambda}=A D^{2}\left(\underline{c}-\mu D^{-1} \underline{e}\right)
$$

Generally A is sparse
We will discuss the computational aspects of Least-squares subproblem later

Practicalities \& Insights - 2

4) The algorithm (theoretically) requires $O(\sqrt{n} L)$ iterations with overall complexity where $O\left(n^{3} L\right)$

$$
L=\sum_{i=0}^{m} \sum_{j=1}^{n}\left[\log \left|a_{i j}\right|+1\right]+1
$$

5) In practice, the method typically takes 20-50 iterations even for very large problems (>20,000 variables). Simplex, on the other hand, takes increasingly large number of iterations with the problem size, n.
6) Initialize $\mu=2^{O(L)}$ and $\sigma \cong 1 / 6$. In practice, need to experiment with the parameters.
7) Other potential functions: $\left.f(\underline{x}, q)=r \ln \underline{e}^{T} \underline{x}-q\right)-\sum_{j} \ln x_{j}$ where

$$
\begin{aligned}
& r=n+\sqrt{n} \text { and } \\
& q=\text { a lower -bound on the optimal cost }
\end{aligned}
$$

Practicalities \& Insights - 3

Variants of the algorithm

- Problem with barrier function approach:
- Update of μ
- Selection of initial μ and parameter σ
- \exists two classes of algorithms
- Affine scaling
- Power series approximation
- Views affine scaling directions as a set of differential equations
- Not competitive with affine scaling methods
- Do not know if the variants have polynomial complexity. But, they work well in practice!!

Affine Scaling Method - 1

- Affine scaling:
- Typically, the affine scaling methods are used on the dual problem

Primal

$$
\begin{array}{lllc}
\underline{\text { Primal }} & \underline{\text { Dual }} & & \underline{\text { Modified dual }} \\
\min _{\underline{x}} \underline{c}^{T} x & \max _{\underline{\underline{x}}} \underline{\lambda}^{T} \underline{b} & & \max _{\underline{\underline{x}}} \underline{\lambda}^{T} \underline{b} \\
\text { s.t. } A \underline{x}=\underline{b} & \Leftrightarrow & \text { s.t. } A^{T} \underline{\lambda} \leq \underline{c} & \Leftrightarrow \\
\underline{x} \geq \underline{0} & & & \text { s.t. } A^{T} \underline{\lambda}+\underline{p}=\underline{c} \\
& & & \underline{p} \geq \underline{0}
\end{array}
$$

- Suppose have a strictly feasible $\underline{\tilde{\lambda}}$ and the corresponding reduced cost vector (slack vector) $\underline{\tilde{p}}$
- Define

$$
\underline{\hat{p}}=P^{-1} \underline{p}, \text { where } \quad P=\operatorname{Diag}\left(\tilde{p}_{1}, \tilde{p}_{2}, \ldots, \tilde{p}_{n}\right)
$$

- So, the dual problem is :

$$
\max \underline{\lambda}^{T} \underline{b} \text { s.t. } A^{T} \underline{\lambda}+P \underline{\hat{p}}=c ; \underline{\hat{p}} \geq \underline{0}
$$

Affine Scaling Method－ 2

－From the equality constraint：

$$
\underline{\hat{p}}=P^{-1}\left(c-A^{T} \underline{\lambda}\right) \Rightarrow P^{-1} A^{T} \underline{\lambda}=\left(P^{-1} \underline{c}-\underline{\hat{p}}\right)
$$

－Assuming full column rank of A^{T} or row rank of A
\Rightarrow linearly independent constraints in primal

$$
\begin{aligned}
& A P^{-2} A^{T} \underline{\lambda}=A P^{-1}\left(P^{-1} \underline{c}-\underline{\hat{p}}\right) \\
& \Rightarrow \underline{\lambda}=\left(A P^{-2} A^{T}\right)^{-1} A P^{-1}\left(P^{-1} \underline{c}-\underline{\hat{p}}\right)=M\left(P^{-1} \underline{c}-\underline{\hat{p}}\right)
\end{aligned}
$$

－Note that $\underline{\lambda} \in R\left(A P^{-1}\right)=R(M)$
－Eliminating $\underline{\lambda}$ from the dual problem，we have：

$$
\begin{array}{lll}
\max _{\underline{\hat{p}}} \underline{b}^{T} M\left(P^{-1} \underline{c}-\underline{\hat{p}}\right)=f(\underline{\hat{p}}) & & \min _{\underline{\underline{\hat{p}}}} \underline{b}^{T} M \underline{\alpha} \\
\text { s.t. } H\left(\underline{\hat{p}}-P^{-1} \underline{c}\right)=\underline{0} \\
& \Leftrightarrow & \text { s.t. } H \underline{\alpha}=\underline{0} \\
\underline{\hat{p}} \geq & & \text { where } \underline{\alpha}=\underline{\hat{p}}-P^{-1} \underline{c}
\end{array}
$$

and where

$$
\begin{aligned}
& H=I-P^{-1} A^{T} M, \text { asymmetric projection matrix } \\
\Rightarrow & H^{2}=H
\end{aligned}
$$

Affine Scaling Method - 3

- In addition, we have

$$
A P^{-1} H=0 \Rightarrow \text { columns of } H \in N\left(A P^{-1}\right)
$$

- Note that we want $\underline{\alpha} \in N(H) \Rightarrow \alpha \in R\left(P^{-1} A^{T}\right)$
- But, $\mathrm{R}\left(\mathrm{P}^{-1} \mathrm{~A}^{\mathrm{T}}\right)=\mathrm{R}\left(\mathrm{M}^{\mathrm{T}}\right)$
- The gradient of $f(\underline{\hat{p}})$ w.r.t. scaled reduced costs \hat{p} is

$$
\underline{\underline{g}}_{p}=-M^{T} \underline{b} \in R\left(M^{T}\right)=R\left(P^{-1} A^{T}\right)
$$

\Rightarrow Result: The gradient w.r.t. scaled reduced costs, $\hat{\underline{p}}$, already lies
in the range space of $P^{-1} A^{T}$, making projection unnecessary.

- In terms of original unscaled reduced costs, the project gradient is

$$
\underline{g}_{p}=-P \hat{g}_{p}=-A^{T}\left(A P^{-2} A^{T}\right)^{-1} \underline{b}
$$

Affine Scaling Method - 4

- The corresponding feasible direction with respect to $\underline{\lambda}$ is:

$$
\begin{array}{ll}
& \underline{d}_{\lambda}=-M M^{T} \underline{\hat{g}}_{p}=\left(A P^{-2} A^{T}\right)^{-1} \underline{b} \\
\Rightarrow & \underline{g}_{p}=-A^{T} \underline{d}_{\lambda}
\end{array}
$$

- If $\underline{g}_{p} \geq \underline{0} \Rightarrow$ dual problem is unbounded \Rightarrow primal is infeasible (assuming $\underline{b} \neq \underline{0}$)
- Otherwise, we replace λ by

$$
\lambda \leftarrow \underline{\lambda}+\alpha \underline{d}_{\lambda}
$$

where

$$
\begin{aligned}
& \alpha=\beta \alpha_{\max } ; \beta \approx 0.95 \\
& \alpha_{\max }=\min \left\{\frac{-p_{i}}{g_{p i}}: g_{p i}<0, i=1,2, \ldots, n\right\}
\end{aligned}
$$

- Note that primal solution \underline{x} is:

$$
\underline{x}=-P^{-2} g_{p}=-P^{-2} A^{T}\left(A P^{-2} A^{T}\right)^{-1} \underline{b}
$$

since it satisfies $A \underline{x}=\underline{b}$.

Dual Affine Scaling Algorithm

- Dual affine scaling algorithm

Start with a strictly feasible $\underline{\lambda}$, stopping criterion ε and β.
$z_{\text {old }}=\underline{\lambda}^{T} \underline{b}$
For $k=-0,1,2, \ldots$ DO

$$
\underline{p}=\underline{c}-A^{T} \underline{\lambda} ; P=\operatorname{Diag}\left(p_{1} p_{2} \ldots p_{n}\right)
$$

Compute the solution \underline{d}_{λ}
$\left(A P^{-2} A^{T}\right) \underline{d}_{\lambda}=\underline{b} ; \quad \underline{g}_{p}{ }^{-}=-A^{T} \underline{d}_{\lambda}$
If $\underline{g}_{p} \geq 0$
Stop: unbounded dual solution \Rightarrow primal is infeasible
else

$$
\alpha=\beta \min \left\{\frac{-p_{i}}{g_{p i}}: g_{p i}<0, i=1,2, \ldots, n\right\}
$$

$\lambda \leftarrow \underline{\lambda}+\alpha \underline{d}_{\lambda}\left(\Rightarrow \underline{p} \leftarrow \underline{p}+\alpha \underline{g}_{p}\right.$ next step $) ; z_{\text {new }}=\underline{\lambda}^{T} \underline{b}$
If $\frac{\left|z_{\text {new }}-z_{\text {old }}\right|}{\max \left(1,\left|z_{\text {old }}\right|\right)}<\varepsilon$
stop: found an optimal solution $\underline{x}=-P^{-2} \underline{g}_{p}$
else
$z_{\text {old }} \leftarrow z_{\text {new }}$
end if
end if
end DO

Initial Feasible Solution

Finding an initial strictly feasible solution for the dual affine scaling algorithm

$$
\underline{\lambda}_{0}=\left(\frac{\|\underline{c}\|_{2}}{\left\|A^{T} \underline{b}\right\|_{2}}\right) \underline{b}
$$

- Want to find a $\underline{p}{ }^{\ni} \underline{p}=-\xi \underline{e}$
- Select initial ξ_{0} as

$$
\xi_{0}=-2 \min \left\{\left(\underline{c}-A^{T} \underline{\lambda}\right)_{i}: i=1,2, \ldots, m\right\}
$$

- Solve an $(m+l)$ variable $L P$:

$$
\max _{\underline{\lambda}, \xi} \underline{\lambda}^{T} \underline{b}-\mu \xi \quad \text { s.t. } A^{T} \underline{\lambda}-\xi \underline{e}<\underline{c}
$$

- Select $\mu=\gamma \cdot \frac{\lambda_{0}^{T} \underline{b}}{\xi_{0}} ; \gamma=10^{5}$
- The initial $\left(\underline{\lambda}_{0}, \xi_{0}\right)$ are feasible for the problem
- Notes:
_ If $\xi<0$ at iteration $k \Rightarrow$ found a feasible $\underline{\lambda}$
_ If the algorithm is such that optimal $\xi<\varepsilon \Rightarrow$ dual is infeasible \Rightarrow primal is unbounded

Least Squares Subproblem

Lease-squares subproblem: implementation issues

- Generally A is sparse
- Major computational step at each iteration
$A P^{-2} A^{T} \underline{d}=\underline{b} \ldots$ Affine scaling
$A D^{2} A^{T} \underline{\lambda}=A D^{2}\left(\underline{c}-\mu D^{-1} \underline{e}\right)=A D(D \underline{c}-\mu \underline{e})$
... barrier function method
- Key: need to solve a symmetric positive definite system $\Sigma \underline{y}=\underline{b}$

Solution Approaches－ 1

－Solution approaches：
－Direct methods：
a）Cholesky factorization：$\Sigma=S S^{T}, S=$ lower Δ
b）$L D L^{T}$ factorization：$\Sigma=L D L^{T}, S=$ unit lower Δ
c）$Q R$ factorization：of $P^{-1} A^{T}$ or $D A^{T}$
$\square \quad$ Methods to speed up factorization
－During each iteration only D or P^{-1} changes，while A remains unaltered
－Nonzero structure of Σ is static throughout．
－So，during the first iteration，keep track of the list of numerical operations performed
－Perform factorization only if the diagonal scaling matrix has changed significantly
－Consider
－$\Sigma=A P^{-2} A^{T}$
－replace P by \bar{P}

Solution Approaches - 2

where

$$
\begin{aligned}
& \bar{P}_{i i}^{\text {new }}=\left(\begin{array}{cc}
\bar{P}_{i i}^{\text {old }} \text { if }\left|P_{i i}-\bar{P}_{i i}^{\text {old }}\right| /\left|\bar{P}_{i i}^{\text {old }}\right|<\delta \\
P_{i i} & \text { otherwise }
\end{array}\right) \\
& \delta \sim 0.1 \\
& \text { define } \Delta P_{i i}=\bar{P}_{i i}^{\text {new }}-\bar{P}_{i i}^{\text {old }} \\
& \text { then } \Sigma^{\text {new }}=\Sigma^{\text {old }}+\sum_{i: \Delta P_{i i} \neq 0} \Delta P_{i i} \cdot \underline{a}_{i} \cdot \underline{a}_{i}^{T} \\
& \underline{a}_{i}=i^{\text {th }} \text { column of } A
\end{aligned}
$$

- So, use rank-one modification methods discussed in Lecture 8
- Perform pivoting to reduce fill-ins \Rightarrow having nonzero elements in factors where there are zero elements in Σ.
- Recall that $P \Sigma P^{T} P \underline{y}=P \underline{b}$
- Unfortunately, finding the optimal permutation matrix to reduce filled-in is NPcomplete
- However, \exists heuristics
- minimum degree
- minimum local fill-in

Solution Approaches - 3

- Combine with an iterative method if have a few dense columns in A that will make impracticably dense Σ. (Recall the outer product representation)
\Rightarrow Hybrid factorization and conjugate gradient method called a preconditioned conjugate gradient method.

Idea: At iteration k, split columns of A into two parts S and \bar{S}
where columns of A_{s} are sparse (i.e., have density $<\lambda(\approx 0.3)$)

- Form $A_{s} P^{-2} A_{s}^{T}$
- Find incomplete Cholesky factor L such that

$$
Z_{s}=A_{s} P^{-2} A_{s}^{T}=L L^{T}
$$

- Basically the idea is to step through the Cholesky decomposition, but setting $l_{i j}$ $=0$ if the corresponding $\Sigma_{s j j}=0$

Incomplete Cholesky Algorithm - 1

\square Incomplete Cholesky Algorithm
For $k=1, \ldots, m \mathrm{DO}$

$$
l_{k k}=\sqrt{\sum_{s k k}}
$$

For $i=k+1, \ldots, m D O$

$$
\begin{aligned}
& \text { If } \Sigma_{s i k} \neq 0 \\
& \quad l_{i k}=\sum_{s i k} / l_{k k}
\end{aligned}
$$

end if
end DO

$$
\begin{aligned}
& \text { For } j=k+1, \ldots, m \mathrm{DO} \\
& \text { For } i=j, \ldots, m \mathrm{DO} \\
& \text { If } \Sigma_{s i j} \neq 0 \\
& \quad \Sigma_{s i j}=\Sigma_{s i j}-l_{i k} l_{j k}
\end{aligned}
$$

end if
end DO
end DO
end DO

Incomplete Cholesky Algorithm - 2

- Now consider the original problem

$$
\begin{aligned}
& \Sigma \underline{y}=A^{T} P^{-2} A \underline{y}=\underline{b} \\
& L^{-1} \Sigma\left(L^{-1}\right)^{T} \cdot L^{T} \underline{y}=L^{-1} \underline{b} \\
& \Rightarrow \quad Q \underline{u}=\underline{f}
\end{aligned}
$$

where

$$
Q=L^{-1} \Sigma\left(L^{-1}\right)^{T} ; \underline{u}=L^{T} \underline{y} ; \underline{f}=L^{-1} \underline{b}
$$

- Solve $Q \underline{u}=\underline{f}$ via conjugate gradient algorithm (see Lecture 5)

Conjugate Gradient Algorithm

\square Conjugate gradient algorithm

$$
\begin{aligned}
& \underline{u}=\underline{f} \\
& \text {... initial solution } \\
& c=\|f\| 2 \quad \text {... norm of RHS } \\
& \underline{r}=f-Q \underline{u} \quad \text {... initial residual (negative gradient of }\left(\frac{1}{2} u^{T} Q u-u^{T} f\right) \text {) } \\
& \rho=\|r\| \quad \text {... square of norm of initial residual } \\
& \underline{d}=\underline{r} \quad \text {... initial direction } \\
& k=0 \\
& \text { do while } \sqrt{\rho} / c \geq \varepsilon \text { and } k \leq k_{\max } \\
& \underline{w}=Q \underline{d} \\
& \alpha=r / \underline{d}^{T} Q \underline{d} \quad \text {... step length } \\
& u=u+\alpha \underline{d} \quad \text {... new solution } \\
& \underline{r}=\underline{r}-\alpha \underline{w} \quad \text {... new residual, } \underline{r}=f-Q \underline{u} \\
& \beta=\|r\|_{2}^{2} / \rho \quad \text {... parameter to update direction } \\
& \underline{d}=r+\beta \underline{d} \quad \text {... new direction } \\
& \rho=\|r\|_{2}^{2} \\
& k=k+1 \\
& \text { end DO }
\end{aligned}
$$

- Computational load: $O\left(m^{2}+10 m\right)$
- Need to store only for vector: $\underline{u}, \underline{r}, \underline{d}$ and \underline{w}

Simplex vs. Dual Affine Scaling - 1

\square Comparison of simplex and dual affine scaling methods

- Three types of test problems
\square
NETLIB test problems
- 31 test problems
- The library and test problem can be accessed via electronic mail
netlib@anl-mcs (ARPANET/CSNET)
(or) research ! netlib (UNIX network)
- \# of variables n ranged from 51 to 5533
- \# of constraints m ranged from 27 to 1151
- \# of non-zero elements in A ranged from 102 to 16276
- Comparisons on IBM 3090

Simplex vs. Dual Affine Scaling - 2

	Simplex	Affine scaling
Iterations	$(6,7157)$	$(19,55)$
Ratio of time per iteration	$(0.093,0.356)$	1
Total CPU time range (secs)	$(0.01,217.67)$	$(0.05,31.70)$
Ratio of CPU times (simplex/Affine)	$(0.2,10.7)$	1

- Multi-commodity Network Flow problems
- Specialized LP algorithms exist that are better than simplex
- \exists a program to generate random multi-commodity network flow problem called MNETGN
- 11 problems were generated
- \# of variables n in the range $(2606,8800)$
- \# of constraints m in the range $(1406,4135)$
- Non-zero elements in A ranged from 5212 to 22140

	$\begin{gathered} \text { Simplex } \\ \text { MINOS } 4.0 \end{gathered}$	Specialized Simplex (MCNF 85)	Affine scaling
Total \# of iterations	$(940,21915)$	$(931,16624)$	$(28,35)$
Ratios of time per iteration (w.r.t. Affine scaling)	(0.010, 0.069)	(0.0018, 0.0404)	1
Total cpu time (secs)	$(12.73,1885.34)$	(7.42, 260.44)	(6.51, 309.50)
Ratios of cpu times w.r.t. affine scaling	(1.96, 11.56)	(0.59, 4.15)	1

Simplex vs. Dual Affine Scaling - 4

- Timber Harvest Scheduling problems
- 11 timber harvest scheduling problems using a program called FORPLAN
- \# of variables ranged from 744 to 19991
- \# of constraints ranged from 55 to 316
- \# of nonzero elements in A ranged from 6021 to 176346

	Simplex (MINOS 4.0) (default pricing)	Affine scaling
Total \# of iterations	$(534,11364)$	$(38,71)$
Ratio of time per iteration	$(0.0141,0.2947)$	1
Total cpu time (secs)	$(2.74,123.62)$	$(0.85,43.80)$
Ratios of cpu times	$(1.52,5.12)$	1

- Promising approach to large real-world LP problems

Summary

- Methods for solving LP problems
- Revised Simplex method
- Ellipsoid method....not practical
- Karmarkar's projective scaling (interior point method)
- Implementation issues of the Least-Squares subproblem of Karmarkar's method More in Linear Programming and Network Flows course
- Comparison of Simplex and projective methods

