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State Estimation, H2 and H Optimal Control 

1. State Estimation: Introduction 
• Observability requirement 

 

2. State Observer 

• Structure of observer 

• Properties of estimation error 

• Observer pole placement (SO, MO cases) 

• Deadbeat Observer 

• Kalman Filter (KF) 

• Reduced order observers 

• Time delay modifications 
 
 

3. Implementation Considerations 
• Composite CL observer and controller (LQG when observer = KF) 
• Poles and zeros of composite system 
• Loop transfer recovery (LTR) 

4. Examples 
• Antenna positioning 

• Satellite control 
 

5. H2 Output Feedback Optimal Controller 
• General Control Problem Formulation 
• LQG: a special H2 output feedback optimal controller 

6. H Output Feedback Optimal Controller 
• Two Riccati equation solution: continuous design with gain transfomation and direct digital 

design 
• H Loop shaping 

 

 
 

 

 



Copyright ©2006-2012  by K. Pattipati  3 

 State Estimation 

^ 

•   State x(k) is often not measurable directly  

  

  -  Measure y(k) = Cx(k), a linear combination of states  

  

•   Assume measurements made with no noise/error  

•   Objective:  

  -  Develop an estimate x(k) of the state x(k) suitable for use in SVFB or for other purposes   

  -  Use available information about system input and output  

{u(j),  j <  k},  {y(j), j  ≤  k}  

  

  -  Need to generate state estimate on-line 

  

  

 x(k+1) = Φx(k) + Γu(k) C 

State  

Estimator 
–K 

Kr 
r u(k) 

^ x(k) 

 x 

y(k) 

+ 

+ 

^   -  Will using  x(k) as a substitute for x(k) work?  

•   Design issues  

  -  Desired properties of state estimator  

  -  Expect/force a linear estimator (system is linear, so why not the estimator?)  
^   -  How fast must  x(k) → x(k)?  

•   State estimate is useful even in non-control applications (e.g., decisionmaking using x).  
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“Observation” of System State 

•   What can be done to estimate x(k) ?  

  -  Consider u(k) = 0:  
x(k+1) = Φ x(k)  

y(k) = C x(k)  

x(0) = unknown initial condition  

•   Estimate  x(0) = [x1(0), ... , xn(0)] ' from the output measurements   {y(0), y(1), ... , y(n–1)}  

y(0) = C x(0)  

y(1) = C x(1) = CΦ x(0)  

y(2) = C x(2) = CΦ2 x(0)  

y(n – 1) = C x(n – 1) = CΦn–1 x(0) 

. . . 

----  C ---- 

---  CΦ ---  

  

--  CΦn-1-- 

y(0)  

y(1)  
  

y(n–1) 

x1(0)  

x2(0)  
  

xn(0) 

= 

H0'  x(0) 

. . . 

... 

. . . 
  -  If H0' has full column rank (invertible in SO case), it is possible to find x(0)  

  -  Obtain x(0) after n independent measurements at step k = n – 1 (for SO case) 

•   Once x(0) is obtained,  x(k) = Φk x(0)  for k  > 0.  

  -  Eventually, we would like to obtain state estimates recursively.  
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Observability 

•   A discrete system is completely observable if 

det                                       = det (H0) ≠ 0 
|  

ΦTCT  
| 

|  
CT  
| 

|  
(ΦT)n-1CT 

| 

... 

•   Physical interpretation:  All modes show up in the output, either directly or indirectly.  

•   Observability is a property of only {Φ, C}.  Actually, all you need is detectability  

    (unobserved modes are stable).  

•   Controllability-observability duality:  

Φ → Φ',   Γ→ C'  

•   Continuous-discrete relationship  

     If original continuous system was observable,  

det                                          ≠ 0 
|  

A'C'  
| 

|  
C'  
| 

|  
(A')n-1C'  

| 

... 

then equivalent discrete system is observable provided  h ≠ M(2π/ωc0),  M = integer,  

where  
ωc0 = imaginary part of any eigenvalue of A that is on jω-axis  

•   Observability will be a necessary condition for state estimation  

  -  det (H0) and/or det (H0'H0) is often used as a "measure of observability”   
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A Question of Notation 

•   Must consider state estimate in 2 parts  

  -  Estimate will undergo a discontinuity at a measurement point k  

^ 

^   -  Need to distinguish between the estimate  x- (k) prior to making the measurement of y(k), 

     and the estimate  x+(k) after making the measurement y(k). 

^ 

^ 

k–1 k k+1 

y(k–1) 

 x+(k–1) 

x- (k) 

y(k) 

 x+(k) 

State  
 Estimate 

· · · · · · 

^ 

Define:  
^ •   x (k | k-1) = estimate of x(k) prior to obtaining the measurement y(k) at time t = kh  

= estimate of x(k) from {y(k–1), y(k–2), ... }  ^                     = x- (k)  
^ •   x (k | k)     = estimate of x(k) after obtaining and processing the mesurement y(k) at t = kh  

= estimate of x(k) from {y(k), y(k–1), ... }  ^ = x+(k)  
^   -  Obviously x (k | k) is the better estimate of  x(k)  

  -  Desire a recursive estimation scheme: 

^ ^  · · ·    x(k–1| k–1) x(k | k–1)  x(k | k)      · · ·  

u(k–1) y(k) 

time k–1 time k 

 x+(k – 1)  x+(k) ^ 

^ 

^ ˆ ( )x k

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Structure of the Estimator 

^ 

  -  Since no measurements are made over (k–1, k) the only way to estimate x (k | k–1) is  

     via the state equation  

    x(k) = Φ x(k–1) + Γu(k–1) 

  -  How to include the measurement y(k) ? 

known input over (k–1, k] 

 =>   x (k | k) =  x (k | k–1) + L[y(k) – C x (k | k–1)] 

where  y (k | k–1) ^ 

^ ^ 

•   "Update" estimate,  x(k | k) from  x (k | k–1)  ^ ^ 

x (k | k–1)  
      y(k) 

 x (k | k) 
ALGORITHM 

^ 
^ 

-  Alternate notation  x- (k) = Φ x+( k–1) + Γu(k–1)  ^ ^ 

=>   x (k | k–1) = Φ x (k–1| k–1) + Γu(k–1) ^ ^ 

= best prediction of what the measurement at step k should be  
^              v(k)      y(k) –  y(k | k–1)  

= difference between what is actually measured at step k and   

what we expect to measure (innovation)  
L = n x m arbitrary gain matrix, to be determined  

These relations are called a dynamic "observer"  -  Requires a model of system:  (Φ, Γ, C) 

^ ^ y(k | k–1)     C x (k | k–1)  

•   "Prediction" estimate,  x (k | k–1) from  x (k–1| k–1)   ^ ^ 

  -  Alternate notation x+ (k) =  x- (k) + L[y(k) – C x- (k)]  ^ ^ ^ 

^ 
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The Estimation Error 

  -  Subtract from system equation  x(k+1) = Φ x(k) + Γu(k)  

e(k+1| k) = Φe(k | k–1) – ΦL[y(k) – C x(k | k–1)] 

^  x(k | k–1) + L[y(k) – C x(k | k–1)] ^ 

  -  Usually   x(0 | –1) =  0  ^ 

  -   x(0 | –1)    estimate of initial state  x(0) based on all prior information  ^ 

^ x(k+1| k) = Φ x(k | k) + Γu(k)   ^ 

•   Observer "starts" at k = 0 with  x(0 | –1)   ^ 

•   Obtain evolution of prediction error, e(k | k–1)     x(k) – x(k | k–1)  ^ 

  -  Initial condition e(0 | –1) = x(0)  –  x(0 | –1) =  x(0),   [if  x(0 | –1) = 0]  ^ ^ 

^ 

^ =>   x(k +1| k) = Φ x(k | k–1) + Γu(k) + ΦL[y(k) – C x(k | k–1)] ^ ^ 

Ce (k | k–1) 

=>   e(k+1| k) = (Φ – ΦLC) e(k | k–1) 

 e(k| k–1) = (Φ – ΦLC)k x(0) 

•   Selection of observer gain L  

-  Rate at which  e  → 0 depends on eigenvalues of Φ – ΦLC  

  -  Choose L so that eigenvalues of Φ – ΦLC are within unit circle  

  -  Since Φ – ΦLC = Φ(Φ – LC Φ)Φ-1, eigenvalues of Φ – ΦLC ≡ eigenvalues of Φ – LCΦ  

  -  Want  e  → 0 rapidly  

^ •   Update error, e(k | k)     x(k) –  x(k | k) = (Φ  – LCΦ)e(k–1 | k–1) 
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Observer Pole Placement Problem 

•   Select L so that eigenvalues of Φ – LCΦ are at preselected locations within unit circle  

= estimator desired characteristic polynomial  

•   Re-formulate as a "control" problem  

  -  Select L' so that eigenvalues of ΦT – [ΦT CT]LT are at desired locations  

  -  Like pole placement for Φ – ΓK with associations  

Φ <==> ΦT,    Γ <==> ΦTCT,    K <==> LT  

•   Ackermann formula (for single output state stimation) 
1

L' = [ 0   0  ···  1 ]                                          pe(Φ') 
|  

(ΦT)2CT 
| 

|  
ΦTCT 

| 

|  
(ΦT)nCT  

| 
··· 

Φ' · H0 

 = | zI – (Φ – LCΦ) | 

λ1,  λ2,  ...  ,  λn → pe(z)  =  zn  +  d1z
n-1 + ··· + dn  

pe(Φ) = Φn +  d1Φ
n-1 + ··· +  dnI 

•   Multi-output case 

   -  Kautsky’s robust eigen structure assignment algorithm for multi-output case 

   -  Sylvester Equation:  

State:  x(k) = Φ x(k–1) + Γu(k–1)   Estimate equation:   z(k +1) = Φe z(k ) + Γeu(k) + y(k) 

1ˆLet ( | 1) ( ) and find requirements on x k k X z k X 

( 1| ) ( 1) ( 1) ( ) ( ) ( ) ( ) ( )

Use ( ) ( ) while adding and subtracting ( ),  we get

                    = ( ) ( ) ( ) ( ) ( )

  

e e

e

e e e

e

X e k k z k X x k z k u k y k X x k X u k

y k Cx k X x k

Xe k X u k X X C x k

X X C Sylevester obser

            

 

        

      and  stablee ever equation X and   
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Selection of Observer CL Poles 

•   Depends on what you will need to do with the estimate.    Will it be used for SVFB or not ?  
^ (1)  Only interested in a good state estimate,  x →  x  

  -  No tie-ins or constraints imposed by SVFB  
^   -  Place poles within unit circle depending on how fast desire  x →  x  

  -  E.g., if | λi | ≤  r <  1 then error → 0 as rk (if r = 0.5, error decreases by 50% each step, 

     with ~ 12% error after 3 steps) 
^ (2)  Anticipate using  x for  x in SVFB control  

  -  What matters is how fast  e(k) → 0 compared to how fast  x(k) →  0  

  -  E.g., if primary poles of Φ – ΓK satisfy  

p  ≤  | λi | < 1  

       then place observer poles λi inside  

circle of radius  r = p2  to  r = p3   

(p = magnitude of  primary control poles)  

p 

r 
1 –1 

  -  Desire  e(k) →  0 faster by  ~  2 to 3 times  

•   Best to "uniformly" space λi on semi-circle of radius r, with Re{λi}  > 0  

•   Deadbeat observer  

  -  Special case when r = 0  =>  all observer poles @ z = 0  

  -  Any initial error  e(0 | –1) →  0 in n steps  

  =>  obtain perfect estimate after n measurements y(0), y(1), ... , y(n–1)  

^   =>  x (n–1| n–1) =  x(n–1), and all subsequent estimates are exact  
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Example of State Estimation 

•   Satellite model, G(s) = 1/s2 

1  
 s 

1  
 s 

x2 
x1 = y u 

  -  Can only measure y(kh) = x1(kh); build estimator for x(k)  

•   Equivalent discrete system 

x1(k+1)  

x2(k+1) 

1  h  

0  1 

x1(k)  

x2(k) 

h2/2  

  h 
=                          +            u(k);  y(k) = [ 1  0 ] x(k) 

C 



x1 = x2  

x2 = u 

Design observer  

  -  Desired characteristic polynomial, pe(z) = z2 +  d1z + d2  

•   Check observability 

Ho = [ C'  Φ'C' ] =            =>  observable (as long as h ≠ 0) 1  1  
0  h 

  -  Deadbeat observer  

d1 = d2 = 0 (poles @ z = 0)  

                       L =             (as h → 0, need large L) 
1  

1/h 

  -  Observer gains, L = pe(Φ)  =                                = 
- CΦ  -  

- CΦ2 - 
0  
1 

-1 1    h  

1   2h 
0  
1 

1– d2  

(1+ d1 + d2)/h 

-1 

pe(Φ)  
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Mechanics of Observer Dynamics 

•   Observer algorithm; initialize  x- (0) =  0 (usually)  

                    (5)  k  =  k + 1  
•   In previous example,   h = 1,   L =         =   

update 

propagate 

                    (2)  update x+(k) = x- (k) + Lv(k)  ^ ^ 

                    (3)  propagate  x -(k+1) = Φ x+(k) + Γu(k)  ^ ^ 

                    (4)  y(k+1) = C x- (k+1)  ^ ^ 

x2
-(k+1)  =  x2

+(k) + u(k) ^ ^ 

x1
-(k+1)  =  x1

+(k) + x2
+(k) + ½ u(k)  ^ ^ 

x2
+(k) =  x2

-(k) + L2v (k) ^ ^ 

x1
+(k) = x1

-(k) + L1v (k)  ^ ^ 

                    (1)  measure y(k),  form v(k) = y(k) –  y(k)  ^ 

                v(k) = y(k) – x1
-(k)  ^ 

^ 

L1  
L2 

1– d2  

1+ d1+ d2 

•   Deadbeat case, L1 = 1, L2 = 1.  Open-loop u = {–1,  0.5,  –0.3,  0.4, ...} 

  -  u(k) = control input over time interval (k, k+1]  

  -  Need only 2 measurements to obtain  x exactly  ^ =>   x+(1) =  x(1)  
^ ^   -  Subsequent  x+,  x- are correct as long as we know state equations and system inputs 

Actual System 

y u x2 x1 k 
0  
1  
2  
3 

 1.0  
 0.2  
-0.85  
-1.8        

 1.0  
  0.2  
-0.85  

   -1.8           

-0.3  
-1.3  
-0.8  
-1.1 

-1.0  
 0.5  
-0.3 

··· etc. 

 0.0  
  1.5  
-0.85  

   -1.8           

Observer 
x1

- x2
- v x1

+ x2
+ 

  0.0         
    0.0          

-0.8         

   -1.1           

 1.0  
 -1.3          

    0.0          

     0.0            

 1.0  
  0.2  
-0.85  

   -1.8           ··· 

 1.0  
  -1.3 
 -0.8  

   -1.1 

^ ^ ^ ^ 
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Discrete-time Steady State Kalman Filter 

^  =>   x (k | k) =  x (k | k–1) + L [y(k) – C x (k | k–1)] ^ ^ -   "Update"   

=>   x (k | k–1) = Φ x (k–1| k–1) + Γu(k–1) ^ ^ 

L = n x m Kalman gain matrix =  CT (C CT +V)-1  

- "Prediction" 

•   Estimation in presence of noise  

x(k+1) = Φ x(k) + Γu(k) + Ew(k)  
white noise, zero mean, cov W  y(k) = C x(k) + v(k)  

white noise, zero mean, cov V  

^ ^   -  Results in Kalman filter for  x(k | k),  x(k | k–1)  

  -  Identical to observer, but with a different scheme to find steady state gains L  

  -  is the steady state error covariance matrix (of prediction error) given by 

1 1 1 1 1 1( ) ( ) ( )T T T T T T T T T T T

nEWE C C C V C C V C EWE I C V C EWE                    

  - Suppose want to minimize  

0

1
lim [ ( ) ( ) ( ) ( )] { ( ) ( ) ( ) ( )}

ˆ ˆRecalling ( ) ( | 1) ( | 1) and that ( | 1) ( | 1),  we have

ˆ ˆ{ ( | 1) ( | 1) ( ) ( )} ( ) ( )

N
T T T T

N
k

T T T

J x k Qx k u k Ru k E x k Qx k u k Ru k
N

x k x k k e k k x k k e k k

J E x k k Qx k k u k Ru k Trace Q Trace PEWE Q

where




   

      

        



1 1 1

1

 is the solution of control DARE:

( ) ( )

ˆ ˆ( ) ( | 1) ( ) ( | 1)

T T T T T T

n

T T

P

P P Q P P R P P I R P Q

and u k K x k k P R P x k k

  



             

          

Separation Principle: 

Controller and Estimator gains 

can be computed separately 



Copyright ©2006-2012  by K. Pattipati  14 

 Implementation of Observer  

– Controller Pair 

•   Use feedback control  

  -  includes the latest information y(k)  

  -  Kr, K obtained via usual SVFB control design   

^                                  u(k) = Krr(k) – K x(k | k) 

  -  x(k | k–1) is not as good as  x(k | k)  ^ ^ 

  -  x(k | k) is best estimate of  x(k) at step k  ^ 

•   Algorithm at any particular k 

  -  Steps 2 and 3 require np+nm MADDS to obtain new control  

This shifts n2 + n (m+p) MADDS to "wait" portion of cycle 
  -  Steps 5 and 6 set up  x- and y for the next cycle.  ^ ^ 

Sample: y(k), r(k) 

u = Krr(k) – K x+ 

Return u(k) 

x- = Φ x+ + Γu(k) 

y = C x- Return 

1 

3 

4 

5 

6 

Update:  x(k | k) 

Control 

Propagate:  x(k+1| k) ^ 

^ 

^ ^ 

^ ^ 

^ 

^ x+ = x- + L[y(k) – y] 2 ^ ^ 

^ ^ ^ 

Initialize at k = 0  

x-,  y = C x- 0 



Copyright ©2006-2012  by K. Pattipati  15 

Some Practical Considerations 

•   Propagate step 5 assumes that the u(k) computed will actually be applied to the system   

  -  Apply software limits to u, Δu, etc., to match any system or hardware  

     constraints/nonlinearities, or else  

  -  Modify algorithm to use actual control:  

  -  Requires significantly more computation before u(k) is obtained   

      =>  larger computational delay  

                1.     Sample  y(k) , r(k),  u(k–1)  
         5    →  1a.    x- = Φ x+ + Γu      ← obtains  x(k | k–1) at step k   
         6    →  1b.    y = C x-  

                 2.     x+ =  x- + L[y(k) –  y]  
                 3.     u = Krr(k) – K x+  
                 4.     Return u(k)  

^ 

^ ^ 

^ 

^ 

^ 

^ 

^ ^ 

•   Any system time delay must be modeled in step 5:  ^ ^ x- = Φ x+ + Γ1u(k–M–1) + Γ0u(k–M)  

•   Try to keep observer gains with | Li | small  

  -  Minimize amplification of y(k) measurement error  

  -  || L || increases as observer poles → 0  

•   Observer requires a "model" of system {Φ, Γ, C}  
  -  Mismatch will yield estimation error  
  -  In a CL application, the feedback will reduce some of the effects of mismatch between 

     “model” and system  
  -  Large modeling errors can cause the estimate to divergence  

•   If u(k) must be returned prior to sampling y(k) use  
^ u(k) = Krr(k) – K x(k | k–1) 
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Composite CL Observer and Controller 

^ 

L 

System  
Φ, Γ, C 

Γ 

Kr r v 

u 

x+ 

Φ 

C 

y 

K + - + 

- 

z-1 

Delay 

u 

^ 

^ 

•   Composite system is order 2n  

  -  n-th order system and n-th order observer  

•   Alternative representation (r = 0,  x- (0) =  0)  
  -  Input y to observer-controller and output u  

  =>  can compute  

  -  Develop equation for  x(k | k) in terms of y(k)  

^ ^ x(k+1| k+1) = (I – LC) x(k+1| k) + Ly(k+1)  

  =>  x(k+1| k+1) = Φ x(k | k) + Ly(k+1);     Φ= (I – LC)(Φ – ΓK);    – u(k) = K x(k | k)  

  -  Take z-transform [y(k+1) → zy(z)] 

           =  -Heq(z)  u(z)    y(z) 

System, G(z) 

–Heq(z) 

u 
y 

=>  Heq(z) = zK(zI – Φ)-1L 

^ ^ Φ x(k | k) + Γu(k) = (Φ – ΓK) x(k | k) 

^ ^ ^ 

•   Provides a "modern" control approach to the design of "classical“ series/FB compensators.   

m  -  Use LGain(z) = G(z)Heq(z) for stability analysis (     , ωc) 

x̂
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Why LQG/Loop Transfer Recovery ? 
1 1 Recall Loop gain ( ) ( ) ( ) ( ) ( ) ; ( )( )ain eq n nLG z G z H z zC zI K zI L I LC K          

1

1 2

  Double integrator with h=0.1 sec.  Select Diag(1,0); R=0.1

  SVFB gain vector: [2.7889 2.3617]. Controller poles: [0.8749 - 0.1107i 0.8749 + 0.1107i]  

0.25 0.222
   SVFB LG , =K(zI- )ain

Q

K

z
L

z



 

 


   0

3 2

1 0

2 2

; 58.2    
2 1

  W=10 , 10 [0.3575 0.2585] ; filter poles: [0.6873 - 0.1654i 0.6873 + 0.1654i]

0.3575 0.3316
    Filter LG , (zI- ) ; 68  

2 1

   Controller-Kalman filter comb

m

T

ain m

z

I V I L

z
L C L

z z





 




 

   


   

 

 1 1

3

0

3 2 2

ination gives LG , ( ) ( )

0.0080376 (z+1) (z-0.864)
     ; 11   (what happened?)

(z-1)  (z  - 1.375z + 0.4997)

ain n n

m

L zC zI K zI L

L 

    

 

1

1

1

2

 Loop transfer recovery  (LTR)

   SVFB ( ), x , ( ) ( )  has good phase margin properties

   so does, Kalman filter , x , ( ) ( )   by duality

   But, (

ain n

ain n

ain

LG z an m m matrix L z K zI

LG a p p matrix L z C zI L

LQG LG z







  

 

1 1

3

1 1

4

3 4 1 2

), x , ( ) ( ) ( )  need not have good 

   Alternately, ( ), x , ( ) ( ) ( )  need not

   Can we make  ( ) or ( ) equal to ( ) or ( )?  

n n m

ain n n

a p p matrix L z zC zI K zI L

LQG LG z an m m matrix L z zK zI LC zI

L z L z L z L z

 

 

   

   

Yes  for minimum phase and  systemsp m
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LQG/Loop Transfer Recovery 

1 1 1

1 1 1

1

 How to make ( ) ( ) ( ) ?

   A dual approach to make ( ) ( ) ( )

 Procedure:

   -  Design SVFB by choosing   by setting   and   [ ( )

n n n

n n n

T

n

zC zI K zI L K zI

zC zI K zI L C zI L

K Q C C R I K zI 

  

  



      

    



   

1 1

] 

       is large at low frequencies and small at high frequencies for robust stability.  

   -  Then, design a Kalman filter gain,  with  and . 

      As 0, ( ) ( ) (

T T

n n

L V CC W

zC zI K zI L K zI



  



  

     1)n

 

1 0

2

8 1

2

 Loop transfer recovery  (LTR) applied to Satellite example

0.1678 z - 0.1548
   For  and R=0.5, SVFB LG ( ) 60.5

2 1

   Choose W=10  , Filter ( ) ( )  has 65.

T

ain m

T T

n m

Q C C K zI
z z

V CC L z C zI L







 



      
 

      0

3 2
0

4 3 2

5  

5.424e-05 z  + 2.743e-007 z  - 5.397e-05 z
   This choice gives ( ) ; 59

z  - 3.824 z  + 5.487 z  - 3.501 z + 0.8385

 

ain mLQG LG z  

•   Disadvantages of LTR procedure 

-   Applicable to minimum phase systems only (it is basically cancelling zeros) 

-   Lightly damped zeros cause problems as well 

-   Typically results in high gains 

-   Ad hoc process 
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Transfer Function of Composite  

CL Observer and Controller 

^ 

^ 

•   2n-th order system ( => 2n poles)  

•   Examine transfer function y(z) = T(z) u(z)   

  -  Obtain via state equations (2n)  
^ •   State  x(k) evolution with u(k) = Krr(k) – K x(k | k)  

^ x(k+1) = Φx(k) – ΓK x(k | k) + KrΓr(k)  

(I – LC) x(k | k–1) + LCx(k)  

^ =>   x(k+1) = (Φ – ΓKLC) x(k) – ΓK(I – LC) x(k | k–1) + KrΓ r(k) 

•   State estimate  x(k | k-1) evolution  

^ ^ x(k+1| k) = Φ x(k | k) + Γu(k)  

^ ^ x(k+1| k) = (Φ – ΓK) x(k | k) + KrΓr(k)  

^ ^ =>   x(k+1| k) = (Φ – ΓK)(I – LC) x(k | k–1) + (Φ – ΓK)LC x(k) + KrΓ r(k) 

y(k) 

^ (I – LC) x(k | k–1) + LC x(k)  

^ •   Augmented system,  xa(k)     [ x(k),   x(k | k–1)]T 

  -  Messy!  Easier to  

     obtain D(z) first, 

     then get N(z) T(z) = C*'(zI – Φ*)-1Γ*  = N(z)  
D(z) 

=                                                                          +            r(k)     
x(k+1)  

 x(k +1| k) 

 x(k)   Φ–ΓKLC            – ΓK(I–LC)  

(Φ – ΓK)LC     (Φ – ΓK)(I – LC) ^  x(k | k-1) 

KrΓ  

KrΓ 

Φ*  xa(k) Γ* 
y(k) = [ C        0 ] xa(k) 

C* 

^ 
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Poles and Zeros of Composite T(z) 

  zI–Φ+ΓKLC             ΓK(I–LC)  

–ΦLC+ΓKLC      zI– (Φ–ΓK)(I–LC) 

•   D(z) = | zI – Φ* | = characteristic polynomial of CL system 

  zI–Φ+ΓK    ΓK(I–LC)  

         0         zI–Φ(I–LC) 

–Φ(I–LC) + ΓK(I–LC) 

=>  D(z) = | zI – Φ+ΓK | · | zI – Φ(I–LC) | = pd(z) · pe(z) 

  -  Poles of composite system are those of the controller {λi, ··· , λn} and the observer  {λi, ··· , λn} 

=>  N(z) =                          · | zI – Φ(I – LC) |                 

– KrΓ  
– KrΓ  

0 

pe(z) 

•   N(z) = 

zI – Φ  

C  
0 

–KrΓ  

0  
0 

ΓK(I – LC)  

0  
zI – Φ(I – LC) 

zI – Φ* 

C    0 

Via row  

and column  

manipulation 

zI – Φ  –KrΓ  
     C        0 

Kr  * numerator of open-loop system 

   N(z) = Kr B(z) pe(z),      B(z) = open-loop numerator  

zI – Φ*  –Γ*  
   C*        0 

•   Transfer function  =>   T(z) =                        = 
Kr B(z)  
   pd(z) 

KrB(z) pe(z)  
  pd(z) pe(z) 

  -  Same as SVFB case! True in MIMO case as well. 
  -  Observer dynamics are "transparent" in steady-state   
      (after initial transient in state estimate  e → 0)  

  -  SVFB with observer does not modify system zeros  
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Command Inputs to  

Observer-Controller System 

Heq(z) = zK(zI – Φ)-1L 

System 

Heq(z) 

u y 
Kr r 

+ 

- 

Hr(z) 

Includes a feedforward compensator Hr(z) on r(k)  

  

  -  Observer-controller implementation generally preferable 

•   Alternate representation in output feedback form (when r ≠ 0) 

•   Recall, for a SVFB loop, u(k) = Kr r(k) – K x(k)  

  -  Kr chosen so that DC gain r → y = 1 in steady-state  

^ In observer-controller implementation, u(k) = Kr r(k) – K x(k | k)  
^   -  In steady-state,  x(k | k) →  x(k)  =>  Kr same as in SVFB case    

•   A common situation (consider SO case for simplity):  

                         y = xj = some position variable   

then generally Kr = Kj = gain on xj, i.e.,  

^ ^ ^ u = – K1 x1 – ··· – Kj(xj  –  r) – ··· – Kn xn  

Redefine xj  –  r      xje = error in xj and we measure only xje => error model  

  -  All previous results (with r = 0) applicable to error model  

Kr =   C(zI – Φ+ΓK)-1Γ 
z =1 

-1 

1( ) [ ( ) ( ) ]rH z I K zI I LC    

Φ= (I – LC)(Φ – ΓK) 
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Example – Radar Positioning System 

^ 

x2(t) = x1(t)       τ = 10 sec 

x1(t) = –    x1(t) +    u(t)  
1  
 τ 

1  
 τ 

  1  
τs+1 x1 

u(t) 
v(t) 1  

 s x2 

θe(t) 
θ(t) 

r(t) = r0 
– 

+ 

  -  Pick desired CL poles λi =  esih, si = –0.5 ± j0.5; 

  -  SVFB gains K = [ 7.21  3.19 ]  

•   Design digital control (h = 1) so that an initial offset θe(0) → 0 with  

ts      ~ 10 sec and PO ~ 10%.  Only θe = x2 is measurable.    x1(0) = 0, x2(0) = – r0  

  -  Equivalent to an input command system when only the error   

         e(t)     θe(t) = θ(t) – r  is measurable and θ(0) = 0  

•   Digital control design  
–0.1   0  
   1     0 

x1  

x2 

0.1  
 0 

=                          +          u 

1% 

  -  Equivalent discrete system with h = 1  

x(k+1) =                  x(k) +               u(k) 
0.905  0  

0.952  1 

0.095  

0.048 

 pd(z) = z2 – 1.06z + 0.367  (λi = 0.53 ±j0.29)  

•   Simulate CL response:   x(0) = [ 0   –1]′  ;      x(0|–1) = [ 0   0]′  ;     r = unit step    

•   Only the shaft offset θe(k) = x2(k) available for measurement  

  -  Design observer to estimate  x(k)  

  -  With C = [ 0  1 ], system is observable  

  -  Observer gain L = [ 0.588  0.945 ]′ 

  -  Observer poles λi ≤   | λprim |3 = 0.63 ≈ 0.22;  pick λi = 0.2 ± j0.1 for good damping on  e  

1x

2x
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Simulation Results 

^ ^ 

^ 

^ 

2 

4 

6 

0 

u(k), full-order observer  

u(k), state feedback 

-2 

2 

4 

12 16 t(sec) 6 8 10 14 

8 

(b)  Control input, u(k) 

-1.0 

-0.5 

0 

θe(t), using estimated state   u(k) = – K x(k | k) 
0.5 

2 4 

12 16 t(sec) 

θe(t), using actual state  u(k) = – K x(k) 

6 8 10 14 

- PO ≈ 37% for observer design vs ≈ 5% for SVFB.   
^ - Why? Puzzling since  x(k|k) →  x(k) quickly (as 0.2k) 

(a)  Shaft offset angle, θe(t), θe(kh) 

  -  Observer design uses significantly more control than does SVFB, especially at k = 0   

  

  -  After first  measurement y(0) = θe(0) = –1, examine observer:  

     x1(0 | 0) = –0.588,   x2(0 | 0) = –0.945  ==>  – K x(0 | 0) = 7.25 
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Alternate Representation  

in Output Feedback Form 

m

System 

–Heq(z) 

θe(k) u(k) G(z) 

G(z) = C(zI – Φ)-1Γ   
     z + 0.967  

(z–1)(z–0.905) 
      = 0.048 

•   Open-loop dynamics 

•   Feedback loop dynamics  

  Heq(z) = zK(zI – Φ)-1L =                   ; L =              ;  K = [ 7.21   3.19 ] 2nd order  
2nd order 

0.588  

0.945 

– 0.136   – 0.801  

  0.0333   0.0466 
  Φ = (I – LC)(Φ – ΓK) = 

(zeros @ 0.713, 0 ;  poles @  – 0.045 ± j0.134)    Heq(z) =                                  
     7.25z2 – 5.18z  

z2 + 0.0894z + 0.0204 

       - gives ωc = 0.62 rad/sec,     = 40o  

m•   Can examine     , ωc via LGain(z) = G(z) Heq(z);   

•   Examine root locus of CL system with Heq → βHeq  

                 CL characteristic polynomial = 1 + βG(z) Heq(z) 

  -  When β= 1, CL poles are at  

                         zi = 0.2 ± j0.1 (observer poles)  

 and  0.53 ± j0.29 (controller poles) -1 1 

Root locus wr to β 
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Possible Modification to Improve Response 

^ 

^ 

•   Problems when  x(0) ≠ 0, or if a sudden large Δ x  

  -  Initial u(0) can be far from   –K x(0) in such cases ^          since  x(0 | 0) is off.  

•   These problems are typical of command input systems when we only measure the error 

     e(k) = y(t) – r(t), i.e., is a change in e due to a change in x or a change in r ? 

(1)  Initialize  x2(0 | –1) = – r0 = –1  

   -  Resulting θe(t) ≡ θe(t) with SVFB (provided x1(0) = 0)  

   -  Plausible to do in an input command system when r(k) is known  

(x2  ~  θ– r  or θ ~ x2 + r,   θ = shaft angle)  

   -  Not possible in general if  x(0) has unknown structure  

^ ^       if  x(0 | –1) =  0 , u(0) = – K x(0 | 0) = – KLC x(0)  

y(0) 

^ x2(k
+ | k–1) =  x2(k

- | k–1) – r(k) + r(k–1)   
= 0 @ k = 0 

(2)  Slow down observer at k = 0  

   -  Phase in observer gain L(k):  0 → L  

   -  Use slower observer poles, e.g., ≤  p2  =>  λi = 0.3 ± 0.2j  

(results in smaller L, but slower CL response)  

(3)  Slow down the control  

   -  Best obtained by using Δ(k) = u(k) – u(k – 1) as the "control"  

=>  a very popular scheme in practice  
(4)  Slow down the input command  
   -  Use r(k) = a sequence of smaller changes  =>  bound | Δr(k) |  

(5)  Reformulate as a command input problem;  ^                  u(k) = Krr(k) – K x(k | k) where we measure θ(k) 

u(k) = α u(k – 1) – (1 –  α)K x(k | k) 
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 Example – Satellite Control  

with Command Input 



^ 

  -  Formulation as a command input structure  

x1 = x2,      x2 = u,   measure y(k) = x1(k)  

h = 0.5,   r(k) = 1 (unit step)  

  -  Select SVFB gains to place control poles at zi = 0.85 ± j0.3  

m          (gives ωc ≈  0.78 rad/sec,      ≈ 32.5o)  

  -  Select L to place observer poles at zi = 0.55 ± j0.15  

  -  x(0) = [ –0.50,   0.0 ]',    x(0 | –1) = [ 0.0,   0.0 ]'  ^ u(k) = Krr(k) – K x(k | k) 

  -  If  x(0) =  0, response of system using observer is identical to response of system using  
actual state. 

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 t(sec) 
0 

0.22 

0.45 

0.89 

1.12 

1.34 

1.56 

1.79 

-0.45 

-0.22 

0.67 

State estimation control 

State determinate control 

y(t) 
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Reduced-Order Observers 

•   Redefine states so that y(k) = x1(k)  

  -  Use standard observable form, or  

  -  Use SV transformation  v = T-1 x with T-1 =  

Tn-1 = (n–1) · n, arbitrary (need only CT =  e1')  

•   Idea:  if measure y(k) = x1(k) need only to estimate  xb =  

  need only build an (n–1)st order estimator  

[in general if p measurements  (n–p)th order observer]  

- C -  
 Tn–1 } n-1 

x2  
x3  
  
xn 

··
· 

•   Decompose state equation:  x(k) = Φ x(k–1) + Γu(k–1) ;  y(k) = x1(k) 

Γ1  

Γb 

=                                       +          u(k–1)  
x1(k)  

 xb(k) 

x1(k–1)  

xb( k–1) 

Φ11    Φ1b  

Φb1    Φbb 

1 {  
n-1 { 

 1 n–1 

(1)   xb(k) = Φbb xb(k–1) + Φb1y(k–1) + Γbu(k–1) u*(k–1), known at time k–1 

(2)   y(k) = Φ11y(k–1) + Φ1b xb(k–1) + Γ1u(k–1)  

 y*(k), known at time k 

•   Build an observer for  xb:   xb(k) = Φbb x b(k–1) +  u*(k–1)  

•   Observable?    -  If original {Φ, C} is observable, then {Φbb, Φ1b} is also  

y*(k) = Φ1b xb(k–1)  

y(k) – Φ11y(k–1) – Γ1u(k–1) = Φ1b xb(k–1)  



Copyright ©2006-2012  by K. Pattipati  28 

Reduced-Order Observer Design for xb 

^ ^ xb(k | k) = estimate of  xb based on {y(k), y(k–1), ··· }      xb
+(k)  

•   Propagation/prediction step k–1 → k  
^ ^ =>   xb(k | k–1) = Φbb xb(k–1| k–1) + Φb1y(k–1) + Γbu(k–1) 

^ 
•   Update step  xb(k | k–1)  

y*(k)  
→   xb(k | k) 

^ ^ xb(k | k–1) = estimate of  xb based on {y(k–1), ··· }     xb
- (k)  

  -  follow same basic approach as full-order case  

^ ^ ^ xb(k | k) =  xb(k | k–1) + Lb[y*(k) – Φ1b xb(k– 1| k–1)]  

best prediction of  

y*(k) = Φ1b xb(k–1)  

at time k, given {y(k–1), ··· }  

^ ^ ^ =>   xb(k | k) =  xb(k | k–1) + Lb[y(k) – Φ11y(k–1) – Γ1u(k–1) – Φ1b xb(k–1| k–1) ]  

•   Selection of Lb = (n – 1) gain vector  

  -  Pick Lb so that eigenvalues of Φbb – LbΦ1b are in unit circle  

  -  Analogous to earlier result with  Φ → Φbb,  CΦ → Φ1b  :  

  Compute Lb by using Place command Φ → Φbb',  Γ → Φ1b';   obtain K → Lb' 

                        
0  
0  
  
1 

··
· 

---   Φ1b    ---  

--   Φ1bΦbb --  

  
-  Φ1bΦbb

n-2 - 

··
· 

-1 

Lb = per(Φbb) 

 per(z) = zn-1 +  d1z
n-2 + ··· +  dn-1  

e(k | k) = (Φbb –   LbΦ1b) e(k–1| k–1) 

  -  Can obtain equation for  e(k | k)      xb(k)  –  xb(k | k):  ^ 

 y(k) ^ 

   H0, r' = observability matrix for R-O system 

 Inverse exists if  

{Φbb , Φ1b } = observable 

^ 
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Implementation of Reduced- 

Order Observer/Controller 
•   Note, if original system in standard observable form 

•   Algorithm at any particular k  

  -  Initialization:  at step k = 0 we do not have y(– 1), u(– 1) or  ^ ^ xb(– 1|  – 1)  =>   y = 0  
^ ^   -  Let  xb(0 | – 1) = best prior estimate of  xb(0), usually =  0   

–a1   1    0  ···  0  
–a2   0    1   
  

                   1  
–an   0   ·  ·  ·   0 

. 
. 

. .  .  . 

Φ1b 

Φbb 

.  .  . 

Φ =                                  ==>    H0, r' = I(n–1)·(n–1) 

Return 

0 1 2 

3 

4 

5 6 

^ Update: xb(k | k) 

Control, using  

most current 

information 

^ Get  y for next cycle 

^ ^ 

Initialize at k = 0  

xb
-,   y = 0 

Sample: y(k), r(k) 

^ ^ y = Φ11y(k) + Γ1u(k) + Φ1b xb
+ 

Return u(k) 

^ ^ xb
- = Φbb xb

+ + Φb1y(k) + Γbu(k) 

^ ^ ^ xb
+ =  xb

- + Lb[y(k) –  y] 

^ u = Kr r(k) – K   
y(k)  

 xb
+ 

^ Propagate  xb(k+1| k)  for next cycle 
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bLbb

Loop Gain Analysis of  

R-O Observer/Controller 

^ 

^ 

^ 

•   Assume  xb
-(0) = 0,  r(k) = 0    

    =>  u(k) = – K1y(k) – Kb xb(k | k) 

•   Obtain transfer function from y to u = – Heq(z)  

  -  (n–1)st order feedback loop  u(z) = – Heq(z)y(z) = – K1 +          y(z) 
ub(z)  

    y(z) 

K1 u(k) 

^ xb
+ 

y(k)  

from  
System 

RO Observer K2, ··· , Kn 

Kb 

ub 

– 

– 

to  
system 

•   Obtain dynamic equation for  xb(k | k)  

^ ^ =>  xb(k | k) = [Φbb–LbΦ1b–(Γb–Lb1)Kb] xb (k–1| k–1) + Lby(k)  + [Φb1–LbΦ11– K1(Γb–Lb1)]y(k–1)  

^  -  u(k) = Kb xb(k | k) + K1y(k)      

•   Take z-transforms  

Φbb = Φbb – LbΦ1b – (Γb – LbK1)Kb  

If measure p outputs, will obtain an  
(n–p)th order feedback compensator.  

•   Treat command inputs similarly to full-order observer case.  

(n – 1) order  

(n – 1) order 

^ Φbb xb(k – 1| k – 1) + Φb1y(k – 1) + Γbu(k – 1) 

System 

–Heq(z) 

y u 
Lb = Φb1 – LbΦ11 – K1(Γb – LbΓ1)  

xb(k | k) =  xb(k | k – 1) + Lb[y(k) – Φ11y(k – 1) – Γ1u(k–1) – Φ1b xb(k – 1| k – 1)]  ^ ^ ^ 

Heq(z) = [Kb(zI  – Φbb)
-1(zLb+ Lb) + K1] = 
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Example – Radar Positioning Problem 

0.905   0  

0.952   1 

0.095  

0.048 
 x(k+1) =                       x(k) +                u(k) ;    y(k) = x2(k) = θe(k) 

•   Redefine states so that x1 = y(k)  =>  T =             ;  T-1 = T 
0   1  

1   0 
1   0.952  

0   0.905 

0.048  

0.095 
  x(k+1) =                     x(k) +                  u(k) ;    y(k) = x1(k) = θe(k) 

T-1ΦT T-1Γ 
K = [ 3.19  7.21 ] from previous analysis 

•   Select observer gain Lb (Φbb = 0.905,   Φ1b = 0.952)  

  -  Place observer pole at λi = 0.2  => 

^ •   Simulation results, x1(0) = y(0) = –1,   x2(0) = 0;    xb(0 | –1) = 0 

           Φbb – LbΦ1b = 0.2 = 0.905 – Lb 0.952   =>  Lb = 0.740  

2 

4 

6 

0 

θe(t), reduced-order observer  

θe(t), full-order observer 

-2 
2 

4 

12 16 t 6 8 10 14 

8 

u 

θe 

-0.5 

0 

0.5 

-1.0 

^ u(k) = –3.19 θe(k) – 7.21 

x2(k | k) 
  -  Results highly analogous to full-order observer case  

^ x2(0 | 0) = 0 + Lb{y(0) – 0} = –0.74  =>  u(0) = 8.52 
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

Alternate Implementation and LG Analysis 

   x(k+1) =                      x(k) +                 u(k) 
G(z) 

–Heq(z) 

θe(k) u(k) 

•   Feedback loop dynamics (reduced-order observer, Lb = 0.74)  

  Heq(z) = [Kb(zI – Φbb)
-1(zLb +  Lb) + K1] ;    K1 = 3.19 ;    Kb = K2 = 7.21 

1   0.952  

0   0.905 

0.048  

0.095 

Φ11   Φ1b Γ1 

Φb1     Φbb  Γb 

    y(k) = x1(k) 

   Heq(z) =                         = 8.52 
8.52z – 5.55  

  z + 0.362  

z – 0.650  

z + 0.362  

Φbb = [Φbb – LbΦ1b – (Γb – LbΓ1)Kb] = – 0.36  

Lb = Φb1 – LbΦ11 – K1(Γb – LbΓ1) = – 0.93  

•   Examine root locus of CL system with Heq → βHeq  

  CL characteristic polynomial = 1 + βG(z)Heq (z);     G(z) = 

  -  CL poles are observer poles plus controller poles  

  -  T(z) =            =                         = 
KrB(z)per(z)  

    pd(z)per(z) 

KrB(z)  

pd(z) 

y(z)  

 r(z) 
B(z) = Numerator of open-loop G(z) 

  -  When β = 1, CL poles are at  

                         zi = 0.53 ± j0.29   

                         and  0.2 

•   In general, for RO observer-controller 

-1 1 

Root locus wr to β 

0.048(z+0.967)  

(z–1)(z–0.905) 
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Phase Margin and Loop Gain  

Comparisons; Radar Positioning 

•   For SVFB, LG(z) = K(zI – Φ)-1Γ =  

•   For observer designs,  LG(z) = G(z) Heq(z) 

    0.84z – 0.573  

z2 – 1.905z + 0.905 

0 

-90 

-270 

-180 

ω (rad/sec) 

20 

0 

-20 

| L
G

(j
ω

) 
|, 

d
B

 

0.01 0.1 1 10 

SVFB  
full-order observer  
reduced-order observer 

ω (rad/sec) 0.01 0.1 1 10 

L
G

(j
ω

),
 d

eg
 

m  -  SVFB: ωc = 0.83,      = 46o  

m  -  Full-order observer: ωc = 0.616,     = 40o  

m  -  Reduced-order observer: ωc = 0.614,     = 39.3o 

•   To compensate for the phase-shift (filtering) that they introduce, observer designs inherently 
     reduce ωc.  
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   
δ

Aδ Aσ

0
where  δ e  ;    Γ δ e dσB   

Summary of Observer Design 
•   Full-order observer offers an excellent method to estimate system states from output  

     measurement(s)   

  -  Can specify how fast  e (k | k) →  0 via λi 

  -  Faster estimation  =>  higher gains L and more sensitivity to errors  

  -  Calculate estimator gains via use of Place or Acker (SISO) commnds 

•   Can obtain estimate of  x between samples,  

^ ^ x (kh + δ) = Φ(δ) x (k | k) + Γ(δ)u(k) 

^ •   Use of  x(k | k) in place of  x(k) in feedback  

  -  Need to place observer poles closer to origin (z = 0) than primary control poles r = p2 to p3; 

      p = |λdom| = magnitude of CL poles  

•   Implementation  
  -  Requires additional computation/storage  

  -  Includes a "model" of system in its structure  

  -  Can be implemented as an n-th order FB compensator (when r = 0)  

•   Reduced-order observer  
  -  Can implement an (n–1)-order observer when x1 = y by setting  x1    y  

•   CL transfer function from r to y same as SVFB using actual states  

  -  Observer is "transparent" in steady state  

•   Observer: excellent for systems that have good quality measurements, and state is subject 

     to occasional random/deterministic changes, Δx. 

•   Poles of CL observer/controller = {λi, ··· , λn,   λ1, ··· , λn}  

^ 
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Modification for Time Delay τ=Mh+ε 

x(k+1) = Φ x(k) + Γ0u(k-M) + Γ1u(k–1–M)  

•   Control law modifications using τ-sec ahead prediction:  

^ u(k) = Kr r(k) – K x(kh +τ | k)  

 
ε

Aσ

0
e dσBu k M 1 ^ ^ (1)  Obtain  x(kh+ε) = eAε x (k | k) + 

(2)  M-step propagation from time  kh + ε  to  kh + ε + Mh  

 
M

i 1

i 1

u k i



  ^ ^ x(kh + τ) = ΦM x(kh + ε) + 

  -  Store {u(k – M – 1), u(k – M), ··· , u(k – 1)} in an M+1 stack  

^   -  Controller is exactly as for full state FB, but with  x(k) →  x(k | k)  

^ 

prediction of state at time  t + Mh  + ε   

from x(k | k) and u(k–1), ··· , u(k–M), u(k–M–1)  

•   Observer modifications - Propagate step only  

^ ^ x(k+1| k) = Φ x(k | k) + Γ0u(k – M) + Γ1u(k – 1– M)  

= prediction of state at next sample time  

•   Since initial estimates are incorrect, estimation error will be propagated  forward in time 
^         =>  future FB control may not be very good until  x(·) →  x(·).  

  -  Response ≠ time shifted response with initial  x = eAτ x(0)  
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 Example – Satellite Control  

with Time Delay 
  -  Same problem as examined previously but with M = 3 step delay in loop (τ = 1.5 sec)  

^ x(0) = [ –0.50     0.0 ]',  u(k) = Krr(k) – K x(k+M | k)  

•   Full state FB, with and without delay 

•   State estimation FB, with and without delay 

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 

0 
0.24 
0.49 

0.98 
1.23 
1.48 
1.72 
1.97 

-0.49 
-0.24 

0.74 

τ = 1.5 

τ = 0 
y(t) 

t(sec) 

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 

0 
0.20 
0.41 

0.83 
1.03 
1.24 
1.45 
1.65 

-0.41 
-0.20 

0.62 

τ = 1.5 

τ = 0 
y(t) 

t(sec) 
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H2 Controller = Generlized  LQG 

System 

Model 

•   Standard  Controller Design Framework.  H2 assumes disturbances to be white noise procsses. 

w(k) z(k) 

y(k) 

H(z) 

u(k) 

x(k+1) = Φ x(k) + Γu(k) + E w(k) 

z(k) = C1 x(k) + D1 u(k) 

y(k) = C x(k) + v (k) 

Cov[w(k)] = W, Cov[v(k)] = V 

Cov[w(k), v(k)] = N 

0

1 1 1 1 1 1

1
{lim ( ) ( )} { ( ) ( ) 2 ( ) ( ) ( ) ( )}

where ; ;

K
T T T T

K
k

T T T

J E z k z k E x k Q x k x k M u k u k Ru k
K

Q C C M C D R D D




   

  



•   H2 controller = Generalized LQG  can select W, V, N, Q, M and R arbitrarily.  Also, can  

     employ frequency weighting of cost terms as in LQR 

 

•   Kalman Filter: Define  

^  =>   x (k | k) =  x (k | k–1) + L [y(k) – C x (k | k–1)] ^ ^ -   "Update"   

L = n x m Kalman gain matrix =   CT (C CT +V )-1  

- "Prediction" 

  -  is the steady state prediction error covariance matrix given by 
1( )T T T T TEWE C C C V C      

If  w(k) and v (k-1) are 

Correlated, formulas change . 

See Bar-Shalom’s book 

Ch. 8, section 3, Page 326 

1 1; TENV C W W NV N    

1ˆ ˆ( | 1) ( 1| 1) ( 1) ( 1)x k k x k k u k ENV y k        
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•   Controller  
* 1 * 1

*

* * * * 1 *

1 1

ˆ ˆ( ) ( ) ( | 1) ( | 1)

where  satisfies the DARE

 [ ( ) ]

; 0

T T T

T T T

T T

u k R P P x k k R M x k k

P

P P P R P P Q

R M Q Q MR M

 



 

        

       

     

•   For sampled data systems, there is a technique called lifting that takes into account intra-sample 

     behavior of the continuous system.  Fairly complicated process. Suggest that you design in  

     continuous domain and use Tustin or  average gain method. 

1 1

1 1

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

Assumptions: 

(i) [  ] controllable (or stabilizable)

(ii) [  ] observable (or detectable)

(iii) Cov[ ( ) ( )]

(iv) ;

T

T T

T

x Ax t Bu t Ew t

z t C x t D u t

y t C x t Du t v t

A B

A C

EWE EN
Ew t v t

N E V

Q C C

  

 

  

 
  
 

 1

1 1 1 1; 0 & 0T T TM C D R D D Q MR M    

  state 

   defines cost function

   measurements (outputs)

x

z

y

2 controller minimizes the 2-norm of ( )

( )?

zw

zw

H T s

What is T s

H2 Controller = Generlized  LQG 
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Continuous  H2 Controller 
•   What is Tzw (s) ?  

1 1

1 1 1 1 2

1 1

3

1

3

ˆ: ( ) ( ) ( ) ( )

( ) [ ( ) ] ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) [ ( ) ] ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) [ ( ) ( )] [ (p

observer controller gives u s K x s H s y s

z s C sI A B D u s C sI A Ew s G s u s G s w s

y s C sI A B D u s C sI A Ew s v s G s u s G s w s v s

y s I G s H s G

 

 



    

      

        

  

3

1

3

1

0 2 1 3

) ( ) ( )]

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) [ ( ) ( )] [ ( ) ( ) ( ) ( ) ( )]

( ) | ( ) ( )[ ( ) ( )] ( ) ( )

m

zw v m

s w s v s

u s H s G s u s H s G s w s H s v s

u s I H s G s H s G s w s H s v s

T s G s G s I H s G s H s G s









   

    

  

•   What is H(s) ?  

1

ˆ ˆ ˆ ˆ( ) ( )

ˆ( ) ( ) ( ) ( )

x Ax Bu L y Cx Du A BK LC LDK x Ly

u s K x s K sI A BK LC LDK Ly s

         

       

•   How to get the gains K and L?  Via control and estimation Riccati equations 

1 1 1 1

1 1 1

1

1

; ;

( ) ; ;

Control CARE:      0

Estimation CARE: 0

T T T T

T T

T T

T T T

K R B P R M A A BR M Q Q MR M

L C EN V A A ENV C W W NV N

PA A P Q PBR B P

A A EWE C V C

   

  





     

      

   

    

You can shape disturbance to 

minimize sensitivity  

and shape measurement noise to  

minimize effects of noise and  

model uncertainties 

at high frequencies   
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•   H2 Design for F8 Aircraft  (Lublin, Grocott and Athans, Chapter 40 of Control Handbook) 

Application to F8 Aircraft 

) mod

0 0 1 0 0 0 0 0

1.5 1.5 0 0.0057 1.5 0.16 0.80 0
1 0

;12 12 0.6 0.0344 12 19 3 0
0 1

0.852 0.290 0 0.014 0.29 0.015 0.0087 0

0 0 0 0 0.730 0 0 1.1459

a continuous system el

x x u d y

     
     


     
             
     
         
          

2

max

1

0 0 0
( )

0 0 0

: 0.01deg / sec; Magnitude of each output to be less than 0.25 degrees for 1rad/sec for .

1
Recall ( ) ( )[ ( ) ( ) ( )] [ ( ) ( )] 0.25  for 1rad/sec

| ( ) |

Al

d d

x v t

Specs V d

y s S s G s d s v s want S j G j
w j



   


 
 

 

 

     

max max

2

1 1

1

1 10 1
so, want [ ( )] [ ( ) ( ) ( )]

| ( ) | | ( ) |

0.1( 100)
) one loop shaping design:  select ( ) .  This keeps | ( ) | 15.8  for 0 1 rad/sec.

( 1.25)

    inverse of ( ) is 

m

T j S j G j H j
e j V w j

s
b w s w j dB

s

w s

      
  

 

    


   



1

2

a lead network  small at low frequencies rejects disturbances.

    Pass unit intensity white noise through ( ) to get 

500( 3.5)
   select ( ) 0.5 / 3.5 for >5.  Pass unit intensity

3.5( 1000)

w s d

s
V w s s

s


 




  


2 white noise through ( ) to get ( )

   Also, select control weight  = 0.01

   Augmented system will have 8 states (5+1+2).

V w s v t

R
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•   Controller gains 

Application to F8 Aircraft 

[-9.6256   -2.0029   -0.9889   -0.0002    0.1241   -0.0503 0.5181   -4.3297

        -0.1784    8.2263   -0.0025    0.0056    1.3109    0.1561  0.0818  -22.0555]

K 

•   Transpose of Observer gains 

[ 0.0224   -0.0051    0.0279   -0.0025   -0.0242   -0.0213 3.5696    0.0044

         -0.0101    0.0041   -0.0260    0.0008    0.0145    0.0175  0.0044    3.5802]

TL 

•   Disturbance rejection for  1 rad/sec  and sigma plot of closed-loop transfer function 
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•   Discrete gains via Tustin transformation of H(s) or via average gain method  

•   Best to simulate as a 2n-dimensional (16 in this case) system 

MATLAB routines: 

•  care 

•  lqg 

•  h2lqg 

•  h2syn 
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•   Controller transfer function H(s).  Use Tustin to transform it to H(z) 

Mixed Sensitivity Loop Shaping  

7 6 5 4 3 2

8 7 6 5 4

Transfer function from output 1 to input...

1.595 s  - 229.5 s  - 3500 s  - 3.072e004 s  - 9.832e004 s  - 2.611e005 s  - 3.284e005s- 4389
      #1:

s  + 41.54 s  + 889.3 s + 1.093e004 s  + 7.88e004 s  + 3 2

7 6 5 4 3 2

8 7 6 5

3.106e005 s  + 4.363e005 s + 2.049e005 s + 2733

0.114 s  - 177 s  - 4350 s  - 5.487e004 s - 3.251e005 s  - 1.248e006 s  - 1.706e006 s- 2.229e004 
     #2: 

s  + 41.54 s  + 889.3 s  + 1.093e004 s + 7.88e0 4 3 2

7 6 5

                                                           
04 s  + 3.106e005 s  + 4.363e005 s + 2.049e005 s + 2733 

Transfer function from output 2 to input...

-15.38 s  - 57.2 s  + 2723 s  + 2
      #1:

4 3 2

8 7 6 5 4 3 2

7 6 5

.061e004 s - 1105 s  - 3.722e004 s  - 813 s + 5.344

s  + 41.54 s  + 889.3 s + 1.093e004 s  + 7.88e004 s  + 3.106e005 s  + 4.363e005 s + 2.049e005 s + 2733

-78.9 s  - 2307 s  - 3.449e004 s  - 2.
     #2: 

4 3 2

8 7 6 5 4 3 2

453e005 s - 5.87e005 s  - 4.829e005 s  - 3040 s+ 166.5     

s  + 41.54 s  + 889.3 s  + 1.093e004 s + 7.88e004 s  + 3.106e005 s  + 4.363e005 s + 2.049e005 s + 2733 

 
•   Mixed sensitivity H2 Loop-shaping 

1

2
( )

3 2

( ) ( )

min ( ) ( ) ( )

( ) ( )
H s

w s S s

w s S s H s

w s T s

2

1 2 32 2

4 3 2

5 4 3 2

10( 1) 0.1( 1000)
( ) ; ( ) ; ( ) 0.1; ( )

( 1) 100 1 ( 50)

0.9756 s  + 99.51 s  + 2635 s  + 4975 s + 2439
( )

s  + 147 s + 3310 s  + 1.695e004 s  + 6.124e004 s + 610.7

s s s
G s w s w s w s

s s s

H s

 
   

  



s=zpk('s');

G=10*(s-1)/(s+1)^2;

W1=0.1*(s+100)/(100*s+1); W2=0.1; W3=s^2/(s+50)^2;

P=augtf(G,W1,W2,W3);

[K,CL,GAM]=h2syn(P);

L=G*K; S=inv(1+L); T=1-S;

sigma(L,'k-.',S,'r',T,'g')
10
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H  Controller Design - 1 

•   H assumes disturbances to be bounded signals with finite energy (unlike  H2  which  

    assumes them to be white noise processes).  

1 1

2

2

2

2 2 2 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( ) ( )

Assumptions: 

(i) [  ] controllable (or stabilizable)

(ii) [  ] observable (or detectable)

(iii) 
T T

T T

T T

x Ax t Bu t Ew t

z t C x t D u t

y t C x t Du t D w t

A B

A C

E EE ED
V E D

D D E D D

  

 

  

  
       

   
2 2

1

1 1 1 1 1 1

0; 0

(iv) ; ; 0 & 0

T

T T T T

D D

Q C C M C D R D D Q MR M

 

     

  state 

   defines cost function

   measurements (outputs)

x

z

y

controller ensures the -norm of ( ) ?zwH T j   

•   What is H(s) ?  

2

1

2

ˆ ˆ ˆ( ) ( ) ( ) ( )

ˆ ˆ: [ ( ) ( )]

( ) ( ) ( ) ( ) ( )

( ) ( )

w t W x t and u t K x t

Estimate x A BK E Z L D W Z L C DK x Z L y

u s H s y s K sI A Z L y s

where A A E Z L D W BK Z L C DK

 

        



   

       

   

      

    

     

Lublin, Grocott and Athans,  

Chapter 40 of Control Handbook 
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H  Controller Design - 2 

1 1 1 1

2 2 2 2 2

1 1 1 1

2 2 2 2 2 2 2

1

2

1 1
; ( )( ) ; ; ( )

; ; ( ) ; ( )

1
Control CARE:      ( ) 0

Estima

T T T T T T

n

T T T T T T

T T T

K R B P R M L C ED D D W E P Z I P

A A BR M Q Q MR M A A ED D D C W I D D D D

P A A P Q P BR B EE P

 



   

        

   



   

         

       

    

1

2 2 1 12

1
tion CARE: ( ) 0

T
T T T TA A EWE C D D C C C





   

 
       

 

•   is such that it satisfies the following conditions:  

1 12

2

max

 ( ) 0

( ) The closed-loop control matrix is stable

( ) 0

1
( ) The closed-loop estimation matrix  is stable

( ) | ( ) |

T

i P

ii A EW BK

iii

iv A Z L C C C

v P



 



 



  

 



 

 

  

 

•   How to get the gains K , L   and  W  : Via -coupled Riccati equations 
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H Control Design Examples 
•   Example (Loop shaping)  

gs=tf([400],[1 2 400])

s=tf('s')

W1=tf(100*conv([0.005 1],[0.005 1]),conv([0.2 1],[0.2 1]))

% W1=100*(0.005s+1)^2/(0.2*s+1)^2

W2=0.01

W3= tf([1 0 0],conv([1,200],[1 200]))

P=augtf(gs,W1,W2,W3)

[K,CL,GAM,INFO] = hinfsyn(P)

2

2 2

1 2 32 2

2 2

2 2

400
( ) ;

2 400

100(0.005 1)
( ) ; 0.01; ( )

(0.2 1) ( 200)

302897.6238 (s+200)  (s+47.14) (s  + 2s + 400)
( )                           

(s+5432) (s+134.5) (s+5)  (s  + 502.1s + 7.049e004)

G s
s s

s s
W s W W s

s s

H s


 


  

 

        
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• The system is robust to wide range of damping term in G(s). More robust by reducing W2  
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H Control Design Examples 

•   Example 2 (X-29 Aircraft)  

1 2 3

2

20( 3)( 35)
( ) ; 3

( 10 / 6)( )( 20)( 35)

( 10)
( ) ; 0.01; ( ) []

( 0.01)(1 0.0001 )

-1773398.1663 (s+8472) (s+35) (s+20) (s+5) (s+1.499)
( )

(s+1e004) (s+9421) (s+3) (s+0.01) (s  + 116.8s 

s s
G s p

s p s p s s

s
W s W W s

s s

H s

 
 

   


  

 

   
+ 1.048e004)

• Check that the system is robust to changes in p.  It is stable even if p=6 
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