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  Performance Criteria and the Design Process   

 

  Tools for Control Design and Analysis 

   Loop shaping:  Trade-offs and issues 

  Design Methods 

   Lag compensator design 

   Lead compensator design 

   Lead-Lag Design 

   PID controller design 

  Different PID structures 

   Integral windup protection 

   PID parameter selection rules 

  IMC design (Shaping S, T or Q = HS) 

   Weighted sensitivity and IMC (“Model Matching”) 

   Co-prime factorization via state space 

   Design for unstable and non-minimum phase plants 
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Tools for Control Design and Analysis 

•   Bode plots  

•   State variable analysis  

•   Computer programs  

  -  ss2tf, c2d, bode, margin, lsim or your own control simulation program, rlocus, nyquist...  

•   Root locus  

•   Nyquist 

•   Nichols 

  .  
  .  
  . 

With a system model and performance specifications in hand,  

we are now ready to design a digital control algorithm.  

  =>  But first, let's review classical series compensation design  
     methods used for continuous time systems. 

"Can't know where you're going if  
 you don't know where you've been!" 

jωhz = e
  -  G(s) vs. G(z), LGain(z)              , S(z), T(z)  
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Loop Shaping : Trade-offs and Issues 

(1)  Graphical methods to pick H(s) via Bode plot modifications.  
  (2)  s-plane methods to pick H(s) via root locus shaping.  

•   These are trial and error methods since frequency domain (s-plane) measures are not 1:1  

     with time-domain measures (e.g., step response), especially for higher order systems.  

•   Bode plot design 

At ω→ 0, G(s)H(s) → Kv/s, i.e., Kv = lim sKG(s) H(s) as s → 0. Restrictions on ss tracking  

error to a ramp input will set DC gain of GH (recall ss error to ramp input command  

r(t) = βt  is  β/Kv).  

  

At high frequencies, for noise rejection we want | G(s) H(s) | to be small  
(e.g., | G(s) H(s) | <  0.01,  ω  > ωmax).  

  

May have restrictions on ωc ~ bandwidth.  Also may wish     > 45o (or as large as possible) 
via stability criterion (viz, phase curve of GH).  

1 

3 

4 

2 

ω 
ωc 
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–40 
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Bode plot of G(jω) H(jω) 

Bode plot of  
original G(s) 

 

     

e s 1

r s 1 G s H s




ω

Since                                      restrictions on ss accuracy over mid-frequency range will give  

 

lower bound on | GH | (e.g., for <  2% relative error over [0,   ], | GH |  > 50 for ω <    ).  ω

m
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Classical Design Techniques  

 
1 + s a

H s K
1 + s b



   
•   Bode plot approach:  

Sketch Bode plot of G(s) and then add in gain plus poles and zeros of H(s) to bend/shape  
G(s)H(s) to meet specs.  

=>  "Create a fair stretch of –20dB/decade slope in the crossover  
      region by choice of H(s) with     ~ 45o ".  

  -  Must next evaluate CL poles, zeros, time-response, etc.  
•   Root locus approach:  

Bend and shape root locus (RL) of G(s) by adding (real) poles and zeros so that the RL  

passes through "desirable" regions in the s-plane.Then pick gain of H to place poles.   

Consider mainly dominant poles. 

"fair stretch" ~ ± 1 octave [ωc/2, 2ωc] or greater 

m

a)  Root locus of CL poles   
of uncompensated system  [ i.e., H(s) = K·1] 

b)  Root locus of CL poles  
  of compensated system  

  -  Must next evaluate     , bandwidth, time-response, etc.  

  

  -  Useful approximation for 2nd order continuous system (    in deg)  

σ 

jω 
Indicates CL  
poles for  

K = K nom 

σ 

jω 

m

m ζ ~ (1 +    /190o)     /130o 
m m
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  m"create a fair stretch of -20 db slope in the crossover region by choice of K & H s  with 45 "

Rule of Thumb 

==> want the system to act as a first order system near cross-over 

m==>     ~ 45o  for stability & relative stability. 

Once design is done, you must evaluate poles and zeroes, step response, etc. 

since they are not immediately evident from the frequency response plot. 

TYPES OF COMPENSATION :  Bode Plot of G(s) alone will usually not satisfy requirements 

1.  Pure Gain ( or Gain compensation)  K  ( H(s) = 1) fairly limited 

2.  Lag network  H(s)  =                     ;  α > 1 ( but rarely ever > 20 )  
1 + s / ω1 

1 + s / αω1 

1 <  α  < 20 

1 + s/ αω1             s + αω1 

1 + s/ ω1               s + ω1 
= 

   1      ( 1 – 1/α) ω1 

α         (s +ω1) 
+ = 

Typically . H(s) = α 

1 

- αω1 - ω1 

x 

jω 

σ 

Zero/Pole pattern for a lag network 

Bode Plot (magnitude) for a lag network 

for αω1 >> 1 & ω1 ≈ 0   → H(s) =  k2 + k1 /s 

≈ 1/α  +  ω1/s 

-20log10 α 

ω1 αω1 ω 

-20 db/decade 

|H
(j

ω
)|

, 
d

B
 

PI Controller 
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2 2

1 11

ωω 1 α 1 α
tan  = tan

ω/ω  + αω /ωω α + ω


 



  maxtan  is a maximum  

 

 

2

1

1 11 1 1

2 2 2 2
1 1

1 αω
αω

ω /αω ω /ω ω α
tan tan

1+ω / αω ω α + ω

 

  
 

   
 
 
 

   1 1

1 1tan ω / αω tan ω / ω   

Lag Network - 1 

max

ω1 αω1 ωmax 0o 

H(jω) 

Bode Plot (phase) for a  lag network 

ω 

max 1

-1

max

ω  = α  ω

α 1
 = sin

α + 1







Let us look at the phase 

 
2

1 1 1

1 1

d 1 α
 0    1/ω αω /ω     ω = α  ω
dω ω/ω αω /ω


    



1 α

max

1 α

1 11 α α 1
sin sin

1 α α 1

  
  

  2 

1

max

1 α
tan

2 α
  



   tan  is a monotonic function of  for all   0 ,  90   
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max maxαsin sin  = α 1   

     1 2 2

1 2

v s v s v s
=

R R  + 1/cs



 
 1

2

1 1 2

v s 1 1
 = v s +

R R R + 1/cs

 
 
 

 

   
2 2

1

1 1 2 2

1 1

1 2 1 2

v s 1 + R cs1 1 1
 =  =  =     αω =

v s 1+ R +R cs R c1 1 1 cs
R + R +

R R +1/cs R 1+R cs


   
   
   

max

max

1 sin
α

1 sin











 
1 2

1

1 2 1

R +R1
Therefore,  ω ;    α = 

R +R c R


 

1

max

max 1

1 1 2

2 1

α 1
sin

α 1

ω α  ω

ω 1/ R +R C

α 1 R /R

   
    





 

•   Easily built via an RC network: 

==> 

R1 

R2 

1/Cs 

v1(s) v2(s) 

Figure III.8 Lag Network 

==> 

The transfer function is: 

Basic equations for a lag network are: 



Lag Network - 2 
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  1

1

1  s/ω
H s      β > 1

1  s/βω




 1βω

Lead  Network  

3.   Lead Network 

x σ 
1ω

jω

Zero/Pole pattern for a lead network 

Bode Plot for a lead network. 

1ω

 H jω

1ω
ω



 20log10 β 

   20 db/dec 

0o 

20log10|H(jω)| 

ω
1ω

1ω1ω 3 <  β  < 30 

Typically 

max 1

1

max

max

max

      ω β  ω

β 1
      sin

β 1

1 sin
 β

1 sin









 


 




 



This is a generalization of PD control.   It can be built via: 

C 

V1(s) R2 
V2(s) 

Lead Network 

R1 

  1 1

1

2

2

2

1

1  s/ ω (β 1) / ω
H s

1  s/βω

        =1+ 
1 /

(β 1)
; β 1

ω

s

T s

T s N

T N

 



  







  

PD 



Copyright ©2006-2012  by K. Pattipati  10 

  1 2

2

1 22 1

1 2

1 + sR C R
V

R +RR R Cs
1+

 R + R

s  
 
 
 

β/α

 
  

  
1 2

1 2

1 2

1 + s/αω 1 + s/ω
H s  = ;     α, β 1;     αω < ω

1 + s/ω 1 + s/βω


1 1

1 2 1

2 2

where 1/

  
   ;

R C

R R R
N

R R








 

 Note that:   H jω β/α  as  ω 

ω

Lag-Lead  Network - 1 
To see this, we note: 

At low frequencies the gain is 1/β  and at high frequencies it is unity. We need to use an  

operational amplifier of gain β to recover the gain. 

Note:  Low frequency 

           attenuation 

4.   Lag-Lead Network 

0 

0o 

π/2 

-π/2 

Notched filter. . . . action in the middle 
|H(jω)|, db 

H(jω) 

Bode Plot for a lead-lag Network 

ω1ω

1ω
1αω

1αω

2ω

2ω

2βω

2βω

1/α
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2 1 1 2 2

2

1 1 1 2 2 1 2 1 1 2 2

V s s 1/ C R s 1/ C R

V s s 1/ C R 1/ C R 1/ C R s 1/ C R C R

 


   

If α = β the circuit can be built via:  

This is the most flexible compensation - but requires greatest design effort. 

Lead-Lag network for α = β  

C1 

R1 

V1(s) 
R2 

V2(s) 
C2 

Lag-Lead  Network - 2 
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2 2

1 1
H jω  =   ;    H jω  = 

1 + jω/a 1 + ω /a

Methods of Series Compensation 

==> Have a well behaved phase curve ! 

Recall Bode approx. to 


mGoal: Create a fair stretch of -20dB in crossover region with     > 45o. 

A)  Magnitude  ω < a    |H(jω)| ≈  1       

                          => 20 log10|H(jω)| = 0 db 

ω > a    |H(jω)| ≈  a/ ω  

 => –20 log10ω + 20 log10a 

20 log10|H(j ω)| 

0db a 

-3db @ ω = a 

-20db/decade 

log10 ω 

Magnitude plot of H(jω) 

ω a  ω/a  rads   ;  B)   Phase:      = -tan -1 ω/a : ω a  π/a  + a/ω  
1 1tan ω/a + tan a/ω π/2       a & ω  based on the equality  

Phase plot of H(jω) 

a log10ω 

0o 

–45o 

–90o 

H(jω) 

Let us consider all the possible methods for series compensation. 

1

-1

1

tan 1/ 2 26.5

26.5
             π rads

180

tan 1/ 3 π / 6 rad = 30

tan 3/ 4 = 36.9











1

1

1

1

tan 2 63.5

tan 3 60

tan 4 / 3 53.1

tan 1 45

















Useful numbers: 
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Gain Compensation 

1. Can increase gain to get desired Kv  & LF accuracy 

m2. Lower gain to get desired      as phase ↓ with increase in ω ↑ 

Rarely can we satisfy both with only K. 

EXAMPLE: G(s)  =                    
s( 1+s/10 )2 

100 

•   When we use gain compensation we: 

( i.e. achieve desired degree of stability) 

Consider the system: 
mDesign specification:      = 45o 

Let us assume that K = 1. 

Bode plots of  uncompensated system 

(1) The bode plot is done for the uncompensated system.  

System is unstable with K = 1. Obviously, we must lower magnitude curve. We want gain  

crossover at about 4 rads/sec. Why? 

-40

-20

0

20

40

M
ag

ni
tu

de
 (

dB
)

10
0

10
1

10
2

-270

-225

-180

-135

-90

P
ha

se
 (

de
g)

Bode Diagram

Gm = -14 dB (at 10 rad/sec) ,  Pm = -36.9 deg (at 20 rad/sec)

Frequency  (rad/sec)
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v2

KG s compensated system:

4
            K 4

s 1+s/10



 

Gain Compensation (Cont’d) 

G(jω )  = –π/2 –2 tan-1ωc /10  =  –π/2 – 2 ωc /10  = –3π/4 

==> ωc  = 5π/4  ≈ 4 rads/sec     ( 3.8 – 3.9 rads/sec) 

 KG(j4)  = 1    (corresponding to 0 db) 

Then by definition of ωc  , with ωc  = 4 rads/sec 

|KG(j4)| = 1 ==> K·               ==>  K =          = 1/25 
ω·1 100 

4 = 1  100 

where we have used the Bode "straight line" approximation to compute |KG(jω)| 

i.e. |1+jωc /10|2  ≈ 1, since ωc  < 10 

Looking at the bode plot of the compensated system.  

mLet us look at    G(jω): Since we want     = 45o (design specification) 

Bode plot of compensated system 

m

.1 
-10 

-20 

0 

-90o 

-180o 

2
0

 l
o

g
¡º

|G
(j

ω
)|
→

 
G

(j
ω

) 
(d

eg
)→

 

1 10 100 

1 10 100 

ω (r/s) 

-20 dB/dec 

-60 dB/dec 

-45o 

-135o 

-225o 

-270o 

 ω (r/s) 

.1 

10 

20 

30 

ωc ≈ 4 

≈ 45o { 
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m

Gain Compensation (Cont’d) 

So, get 25% error to a ramp input.  However, HF attenuation is OK. 

Problems with gain compensation: (1) must have a frequency where   φm ≈  45o 

(2) Destroys LF accuracy. 

Wouldn't it be nice if we could modify the magnitude plot as this would leave 

Kv = 100, its original value. Recall that the phase shift at the crossover  

frequency and therefore     , depends only on the magnitude plot one decade 

above and below ωc . This is precisely what a lag compensation does !!  
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2

1

2

1

1 ω/αω
Recall that H jω

1 ω/ω


 



 
   1 1-1 1c 1 1

c

1 1 c c c c

ω 1 α ω α 1ω αω ωω π π
H jω  at ω=ω  is tan tan

αω ω 2 ω 2 ω ω ω


 

       

Lag Compensation - 1 

(a)   used to lower cross over frequency by reducing gain without  

changing very low frequency gain   can get good steady state accuracy! 

(c)   Must already have    G(jω) = –135o in intended  crossover region  

(since lag compensation lowers phase) 

Recall  that the transfer function of a lag compensator is given by: 

so as not to destroy things at αω1 ; but not too far away. One “rule of thumb” is to choose:  

Since lag Network puts in phase lag, we better have ω1 and αω1 well below Xover frequency 

H(s) =                    ( α > 1)   
1 + s/ω1 

1 + s/αω1 

c

1

ω
αω

10


ω1 αω1 

–20log10α, in db 
1/α 

|H(jω)| 

Magnitude plot for a lag compensator 

- For the previous example, amount of gain reduction ("attenuation") = 1/α 

 α = 25   ( Recall that Kv  = 4,  25% error to a ramp input) 

(b)   Easy to do on a Bode diagram, since phase     add. 
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v
s 0

5
K limsG s 50    K 10

1 1

K


    

Lag Compensation - 2 

αω1  = 0.4 rads/sec 

using the rule αω1  = ωc  /10  ==> ω1 = 0.4/25  = 0.016 rads/sec 

This is a 25 : 1 ratio (a little on the high side) 

m
(2) Sketch Bode plot for KG(s) to check if compensation is necessary & type needed, after  

      selecting K to meet LF requirements. Usually this destroys stability and      is not OK.  

Example: 

Specifications: mKv  ≥ 50  (2% relative error to a ramp)  and  > 45o & no restriction on ωc 

G(s) =                                        ==> Kv  =  5  with H(s) = 1, K = 1, 
s(1 + s/10) (1 + s/50) 

20% error to ramp. 
5 

(1) Find K to meet LF requirements: 

Bode plots of uncompensated system 

-100

-50

0

50

100

M
a
g
n
itu

d
e
 (

d
B

)

10
-1

10
0

10
1

10
2

10
3

-270

-225

-180

-135

-90

P
h
a
s
e
 (

d
e
g
)

Bode Diagram

Gm = 1.58 dB (at 22.4 rad/sec) ,  Pm = 3.94 deg (at 20.4 rad/sec)

Frequency  (rad/sec)
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    c c cKG jω π / 2 ω /10 ω / 50 3π / 4  neglecting H jω     

c c
10ω = ω = 6 r/s ω = ω = 6 r/s

KGH 1    or   20log KGH 0dB 

   
    

1

1

1 jω/αω50
KG jω H jω

jω 1 + jω/10 1 + jω/50 1 jω/ω


 



m

Lag Compensation  - 3 

mNow we are nearly unstable,      ≈ 4o.  Therefore, we want to reduce gain near crossover.  

(3) Find frequency at which     = 45o 

Use a lag network to lower gain so that ωc ≈ 6.5 rads/sec.  However, it is better to set ωc≈ 6.   

This will anticipate a few degrees of lag from    H(jω). 

Using once again the Bode approximation (for ω <  10), we have: 

==> 6ωc /50 = π/4  ==> ωc  = 25π/12  ≈  6.5 rads/sec. 

Recalling a lag network: H(s) = 
1 + s/ω1 

1 + s/αω1 

==>   50 / ωcα   = 1  ==>  50 / 6α   = 1  ==> α = 25/3 = 8.3 

Using magnitude approximation we have magnitude for ω = 6: 

(4) Find α to get desired ωc . 

~ 1/α in crossover region 

Let us see what the crossover should be by setting     KG(jωc)  =  –3π/4(–135o) for the 45o  

desired phase margin. 
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1ω / α 

We want to keep lag away from the action, i.e., crossover but not far away as mid-frequency 

may degrade. We can do this in two ways:  

     (a) Pick ω1 so that αω1 ≈ ωc /10 

(b) Pick ω1 so that               = 0  (Pick largest ω1 that satisfies phase margin requirements)    

So, if αω1 = ωc  /10 ==> ω1  = ωc /10α  = 6/(10)(8.3) = .072 r/s & αω1 = (.072)(8.3) = .6 r/s 

Note: Setting αω1 ≈ (0.1ωc,  0.2ωc) will keep lag out of the way. 

(5) Pick ω1  

(a) Picking ω1 using αω1 = ωc /10 

Therefore the compensator is: H(s) =  
1 + s/.6 
1 + s/.072 

Looking at the Bode plots of the compensated system: 

Bode plots of compensated system  

Lag Compensation - 4 
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Bode Diagram

Gm = 19.4 dB (at 21.6 rad/sec) ,  Pm = 50.3 deg (at 5.3 rad/sec)

Frequency  (rad/sec)
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c 1

c c

c c 1 c c

50 ω /αω 50 50 50
KG jω 1        1    ω

ω ω /ω ω α ω α α
     

cω = ω

 

  

 
1

2 22

2α 1 π / 4 6 / α 50ω 6 50
0    0

α α α 1α α α 1

 
   

  

Lag Compensation  - 5 

Note that having a bigger ω1 & αω1  will mean a lower crossover frequency to makeup for 

phase lag introduced by H(jω) 

We have three variables: α, ω1 & ωc  and two equations. 

1.  |KGH|       = 1  or  20 log10|KGH|        = 0 db 

Should also do step response, root locus and sensitivity analysis. 

(b)  Pick ω1 so that               = 0   
1ω / α 

cω = ω

cω=ω m2.    GH|           =  –π  +     =  given 

–π/2 – ωc/10 – ωc/50 + [ π/2 – αω1/ωc – π/2 + ω1/ωc ]  = – 3π/4 

– π/2 – 3ωc/25 – ω1 · (α – 1)/ωc  = – 3π/4     

==> π/4 = 3ωc /25  + ω1/ωc ·(α – 1)  ==> ω1 = [π/4 – 3ωc /25 ]·ωc /(α – 1) 

==> π/4  = 6/α  + αω1/50 ·(α – 1)    ==> ω1  =  
α(α – 1) 

(π/4 – 6/α) 50 
Since, ωc  =  50/α,  we have 

Let us now pick α to maximize ω1  and, correspondingly, maximize the mid frequency  

attenuation caused by the lag compensation. 
Since ω1 is a function of α, we have 
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Lag Compensation  - 6 

Therefore, the compensator H(s) is H(s) =  
1 + s/1.752 

1 + s/.146 

mMUST EVALUATE ACTUAL ωc  and  

c

1

1

ω 4.16 rads/sec

ω .146 rads./sec

αω 1.67 rads/sec







300   _   (2α–1)(π/4 –6/α) 50               

  α                     (α–1) 

≈ 300/α –  25π + 600/α  = 0 

==>          ≈ 12 
25π 

= 0                   α   = 12   

900 

==> 

Bode plots of lag compensated sytem 
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Gm = 21.3 dB (at 20.1 rad/sec) ,  Pm = 41.8 deg (at 4.16 rad/sec)
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Some Comments: 

Result: 

If pure gain compensation were to be used, the gain would be decreased by 7.6, which 

establishes a lower limit on the value of α to be used for the lag compensator. Also, 

ω*  establishes our upper limit on the crossover frequency ωc for the lag compensator. 

The simulated step responses for the compensated systems are shown in Fig III.23. However, 

should also draw root locus and look at sensitivity with respect to change in parameters,  

[K, α, ω1, G(s), etc.] 

Lag Compensation  - 7 

Suppose we were using gain compensation, K. The frequency ω* for which      

     KG(jω) = –135o is found from: 

     KG(jω*)   ~  –π/2 – ω*/50 = –3π/4  ==> ω*  ≈ 6.5 rads/sec and at that frequency, 

|KG(j6.5)| ~  50/6.5 ≈ 7.6 
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Lag Compensation  - 8 

Step responses of uncompensated system and lag compensated system 
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1ω / α=0 

Review of Lag Compensation 

m

Best way to get into it is to look at pros and cons of lag compensation. 

Review of lag compensation 

•   Determine K for suitable Kv  or Low-frequency range accuracy 

•   Sketch the Bode plot of KG(s) 

•   Decide need for compensation 

•   select appropriate region for crossover where KG(s) = -1800 + φm+ 50 -100 

•   Find gain reduction α needed in crossover region 

==>    compute α, ω1 and ωc ≈ 1/α around ωc 

Basic Equations: (1) | K G(jωc) H(jωc)|  = 1 solve for ωc in terms of α 

(2)    G(jωc) +      H(jωc)  =  –1800 +      + 50 -100 

–(α–1) ω1/ ωc radians is generally small ≈ 6o or so. 
(3a)  αω1 = ωc /10 

(3b)  maximize ω1  w.r.t. α ==> 
 (OR) 

PROS CONS 

Lowers HF gain to help eliminate noise Makes system more sluggish (adds lag, reduces BW)  

Keeps good low freq.  asymptote  Needs low crossover freq 

High Kv           

mMust have     OK near intended ωc Built of Passive RC elements 

May reduce Mid Freq. gain 

PROS and CONS of Lag Compensation: 
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Lead Compensation  - 1 

So lag network will not always work. Plant G(s) must have small    G(s) already. 

mLag : Achieves      by lowering ωc  via  gain reduction. . . indirect approach 

Lead: Adds phase lead directly in cross over region (direct approach) 

Recall Lead: H(s)  =                    ;  β  > 1 
1 + s/βω1 

1βω

1

max

β 1
sin

β 1
  


20 log10β 

maxAs β ,     90 

x 

For example, if we have a system with G(s)=1/s2, lag compensation is NO Good!!  

1 + s/ω1 

Note: adds HF gain β  ==> increases gain crossover frequency ! ! 

==> increases BW of the system 

Idea is to put ωc   at ωmax  to get full benefit of phase lead. 

Lead network straddles ωc   ω1 ωc βω1 

For a given     ,  β  =  
1 + sin 
1 – sin 
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Lead Compensation - 2 

Example: G(s)  =  
    10 

s (1 + s/10) 

Specs: 1.   Kv = 100 

2.  |KGH|  > 50  for ω < 1 , i.e.,  2% error for  sine waves of frequency ω < 1 rad/sec 

m3.        ~ 45o 

(1) Find K to meet LF requirements   

(2) Draw bode plot of KG(jω)  

Kv  = lim s·KG(s) =   
s→0 

10K 

(1)(1) 
≥ 100    ==>   K = 10 

Bode plots of uncompensated sytem 

mTo have     = 45o with a lag compensator, we could lower ωc  to about ωc ≤ 10. however, this 

would violate mid-range requirements, since gain would be reduced by a factor of 1/β. 
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c

12
c 1 1 c 1

c

ω100 1000 1000
  1    1    1    ω 1000 /1.7 24.2 r/s

ω ω ω ω βωω
10

         


  1 c  βω ω 24.2 1.7 41 r/s   

  1βω 24.2 3 72.6 r/s 

max π / 6 30  

? Lead Compensation - 3 

m    KG  = –162o  ==>      = 18o  ==> need an additional 27o phase. But, since introduction of lead 

compensator will increase crossover frequency we will need more phase than initially anticipated. 

So, let us plan for increase in ωc and hence more lead. 

mTherefore, use lead compensator to give required      at present ωc  ≈ 31.5 r/s.    

Recall lead compensator: H(s) =  
1 + s/ω1 

1 + s/βω1 

Pick So,  required  β =  
1 + sin 30o 

1 – sin 30o = 3 

(3) Find amount of additional phase needed 

1βωPlace ωc ≈         .  So, What to  pick for ω1? 

Must be careful, since ω1 & βω1 are where the action is, unlike lag which is way out.  

(4) Pick ω1 

To find  cross over  |KGH|    = 1  note:  |H|    = ωc  /ω1   for  ω1< ωc < βω1 ωc ωc 

Plan for an extra 

5 0-100 

1

Equivalently, find  where

1
      | ( ) |

c

c

c

KG j
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Lead Compensation -  4 

Substituting the values of β and ω1, the compensator H(s) is: 

H(s) =   
1 + s/72.6 

1 + s/24.2 

Look at the Bode plots of the compensated system: 

Bode plots of lead compensated sytem 
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m

m

Note: 

There is an  increase in ωc  over the original crossover of 31.5 rad/sec. Recheck      at new 

crossover frequency, i.e., did we plan ahead OK? 

    KGH =  –π/2 – tan-1(41/10) + tan-1(41/24) – tan-1(41/72) ~  – 136o.  So,      = 44o 

 Shown below are the simulated step responses for the compensated and uncompensated 

system. Should also look at the root locus as well. 

Lead Compensation - 5 
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c 1ω βω

c

c

c

ω=ω
1 ω=ω

ω 1 1+sin
H  =   &   β = 

ω 1 sinKG








Review of Lead Compensation 

1. Determine K for Kv  or mid-range gain 

2.  Sketch Bode of KG(s)  & decide compensation 

m3.  Pick      required ( plan for increased ωc) 

4.  Equations   | KGH | = 1  &  

use 

cω

m

PROS CONS 

Higher  BW &  faster response •   Added gain increases crossover freq. 

 we need more added phase than anticipated. 

•   Can't use lead if decrease in     due to higher  

     crossover > amount increased by lead network  

•   Usually don't like       too big (noise BW) 

Need system where     KG does not go down rapidly beyond crossover 
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Lag/Lead Compensation - 1 

H(s)  =  
(1 + s/αω1)  ( 1 + s/ ω2) 

(1 + s/ ω1)  ( 1 + s/ βω2) 
α,  β  > 1    ;  αω1 <  ω2 

Recall that lead compensation increases the crossover frequency while lag compensation  

decreases it. Note that the advantages of a lag tend to be the disadvantages of a lead. So, 

good to use together as they are complementary.  

Bode plot for a lag-lead compensator 

ω1 αω1 ω2 βω2 |H(jω)| 
ω 

β/α 

1/α 

-π/2 

π/2 

    H(jω) ω 

If β/α  <  1 , then |H(jω)| < 1  V  ω, H(s) can be realized by a passive  RC network 

R3 

C2 

R2 
R1 

C1 

V1 V2 

Often see  α = β  ==> R3  = 0 

V2(s)                                      ( 1 + R1C1s ) ( 1 + R2C2s ) 

V1(s)       ( R1C1R2C2 + R3C1R2C2) s
2  + (R1C1 + R2C2 + R3C1 + R2C1)s  + 1 

= 

Comparing the last equations we have: 

Lag/Lead Network 

αω1  =  
1 

R1C1 

ω2  =  
1 

R2C2 

, β            1         

α       1 + R3/R1 

etc  =  , 
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Lag/Lead Compensation - 2 
Note: •   Get  added phase lead from lead part (keep crossover between ω2 and βω2) 

•   keep crossover low from lag part since don't really offset high frequency gain  

     by much (β/α) 
•   Design technique is almost total trial & error to pick ω1 , ωc , α,  β, ω2  etc. 

Design approach: 

1. Pick K for LF accuracy & plot K G(jω) 

2. Locate approximate ω1 via mid frequency requirements 

3. Locate approximate βω2 via HF requirements 

m4. Put in αω1, ω2 to locate crossover  frequency to get good       & “fair stretch of –20 db  

    slope” near crossover. 

•   spec 4 =>          =                       = .05  for  ω > 100 rads/sec  <-26dB 

Example: G(s)  =  
10 

s(1 + s/10) 

1. Kv  = 100 

m2.      ~ 45o 

3.  < 2 % error for sinusoidal inputs up to ω = 1 rads/sec. 

4.  sinusoidal inputs of greater than 100 rads/sec should be attenuated to less 

     than 5% at the output.  

•   spec 3 =>  | KGH |  > 50 for ω < 1,  or  20 log10|KGH|  > 34 db  for ω < 1 

•   K = 10  for correct  Kv 

Design: 

Specifications: 

 | r |       | 1 + KGH | 

| y |  | KGH | 
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Lag/Lead Compensation - 3 

I have found the following iterative process to work well for lead-lag design.  

 Step 1: Select a cross-over frequency, c 

 Step 2: Do the lead design to satisfy phase margin requirements 

Step 3:  Do the lag design to maintain phase margin 

Step 4:  Go to step 1 and repeat with a different c  until the mid-frequency and high-frequency 

constraints are met 

KG(s)  =  
100 

s(1 + s/10) 

K = 10 
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Lag/Lead Compensation - 4 

  Design 1:  Let c = 10 rad/’sec 

0

0.1091 s + 1  s + 1
: ( ) ; :   ( )

0.09168 s + 1 7.737 s + 1

( ) ( ) ( ); 45

Fail:  25dB @ 1 rad/sec; -36.3dB@ 100 rad/sec. Need higher 

Lead Lag

Lag Lead m

c

Lead H s Lag H s

H s H s H s 
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  Design 2:  Let c = 17.5 rad/sec 

0

0.08194   1  0.5714   1
: ( ) ; :   ( )

0.03985   1 2.331   1

( ) ( ) ( ); 45.6

Pretty close:  33.2dB @ 1 rad/sec; -26.6dB@ 100 rad/sec. 

Lead Lag

Lag Lead m

s s
Lead H s Lag H s

s s

H s H s H s 
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1 2 0, , , ,

Numerical Optimization (e.g., via genetic algorithm):

min | ( ) | ; 0, 1 ; 0, 2

1, 1 Integral absolute time-weighted error ( )

1, 2  Integral squared time-weighted err

p

K
t e t dt p IAE p ISE

p IATE

p



   
 







     

  

  



0

0

1 2

1 2

1 2

1 2

or ( )

:

( )180 ( ) ( )                 ( ) ( )

( ) lim ( )

(1 / ) (1 / )
( ) | ( ) |

(1 / ) (1 / )

(1 / ) (1 / )
( ) | ( )

(1 / ) (1 /

c c m

v
s

mf mf

ISTE

subject to

i G j H j v B u t B

ii K sG s K

j j
iii K G j G

j j

j j
iv K G j

j j

  

   
  

   

   


   

 



   



 
  

 

 

 
|

)
hf hfG    
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Additional Examples - 1 

EXAMPLE 1 

Consider a unity feedback system with the following plant transfer function: G(s) =  
s(1 + s/10)2 

1 

Design a suitable compensator such that the overall control system meets  

the following specs: m(1) Kv  ≥ 10 ,  (2)     ≥ 45o. 

(1)  Kv  = lim  sKG(s)  ≥ 10  K = 10 
s → 0 

(2) Bode plots of KG(s)  

Bode plot of uncompensated system 
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Additional Examples - 2 

(3)  The phase margin requirement is not met.  By using a lag compensator, we can lower the  

       crossover frequency to obtain the desired phase margin. 

–π/2 – ωc /10 – ωc /10  = – 3π/4  

ωc /5  =  π/4   ==>  ωc = 5π/4 = 3.93 r/s 

(4)  Determine ωc 

(5)  Pick α 

|KG(jω)H(jω)|    = 1 

ωc = 3.93 

10 
ωc α 

= 1==> α = 2.86 

(6)  Pick ω1 

αω1 = ωc /10      ==>     ω1 = .122 

Therefore the compensator is 

H(s) =  
(1 + s/.35) 

(1 + s/.122) 

With this compensator the crossover frequency is 3.2 r/s giving a phase margin of 50o.   

Shown in figure is the root locus of the closed loop system.  Also shown in figure  

is the simulated step response of the system.  Should also examine sensitivity.  
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Additional Examples - 3 
•   Root locus of closed-loop system  

•   Simulated step responses of closed-loop system 
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Additional Examples - 4 

Design a suitable compensator which meets the specs for the following system: 

m
G(s) =  

s(s+5)(s+10) 

K (1) Kv  = 100 

(2)      = 45o 

(1) We must make K = 5000 in order to get Kv  = 100. 

KG(s) =  
s(s+5)(s+10) 

5000 

(2) Bode Plot KGH 

Bode plot of uncompensated system 

EXAMPLE 2 
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      The phase margin specification is not satisfied.  Moreover, it is not possible to design a  

lead compensator since the phase shift is very large for negative gain.  A lag compensator  

does exist, but it requires a pole very near the origin, with a pole-zero ratio of more than thirty.   

In practice, a pole very close to origin is not desirable, since the corresponding compensator  

would require an RC network with a large time constant.  

A lag-lead compensator can, however, be obtained by selecting a crossover frequency between  

4 and 10.  For ωc  = 8, the following compensator is obtained, with α = β = 13.09. 

H(s) =  
(s+44.5)(s+.058) 

(s+3.422)(s+.7587) 

This compensator gives the desired phase margin of 45o.  The simulated step response are 

Shown in the figure.  

Additional Examples - 5 



Copyright ©2006-2012  by K. Pattipati  42 

Additional Examples - 6 
•   Bode plot 
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Additional Examples - 7 
•   Root locus of closed-loop system 

•   Simulated step responses of closed-loop system 
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Additional Examples - 8 

A unity feedback system has the following transfer function: G(s) =  
1 

s2 

Specs:   (1) Ka  ≥ 10  

m           (2)      ≥ 45o 

(1) Ka  = lim s2KG(s)  ≥  10  ==> K = 10 

(2) Bode of KG 

Find a compensator to meet the following specifications: 

s → 0 

Bode plot of uncompensated system 

EXAMPLE 3 
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1β  ω

1ω 1.959
 

c

2

1c

ω10
 = 1

ωω


1βω 13.29

2

1ω 10 / β

Additional Examples - 9 

Since the phase margin is 0o, a lag compensator will not work.  By using a lead compensator 

We can add 45o phase at the crossover frequency. 

(3) Determine β 

Anticipating a few degrees of phase due to the compensator: 

[Note this is not necessary since     G((jω) is flat everywhere!] 

β =  
1 + sin 48o 

1 – sin 48o 
==>   β = 6.786 

(4) |KGH| = 1 using |H| = ωc /ω1 and ωc  = 

Therefore the compensator is: 

H(s) =  
(1 + s/1.959) 

(1 + s/13.29) 

With this compensator the crossover frequency is 5.1 r/s resulting in a phase margin of 48o.   

The root locus of the closed loop system is shown in figure  and the step response is  

shown in the next figure. 

==> 

==> 

==> 
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•   Root locus of closed-loop system 

•   Step responses of uncompensated system and lead compensated system 

Additional Examples - 10 
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Critique of Bode-based H(s) Designs 

•   Classical design techniques are simple to use. 

  -  graphical techniques 

  -  some trial and error 

•   Designs are easy to implement via analog circuitry. 

•   Consider Lag-lead compensator when neither alone will suffice. 

    pick ω2, β, ω1, α  

•   Most-used design technique 

  -  there are many such compensators "out there" 

  -  can they be modified for digital implementation? 

H(s) →  H(z) 
But there are limitations - 

•   Simple lag, lead, etc., may not be sufficient. 

•   High-order compensator design via Bode, or root locus, is a challenging process, especially 

     for humans. 

•   Compensation does not use all available info 

  -  uses only y(t), not states  x(t) 

•   Difficult to extend procedure to multi-input, multi-output systems. 

    (Personally, I prefer Bode design approach over root locus.)   
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2 2

2 2

T s 1 s/ω
PD:                     1+        

1 T s/N 1 s/βω




 

 
22

22

β = N + 1N β 1

    or     Nβ 1
ωT

N + 1 Tβω

  
 

  
  

 

PID (Proportional-Integral-Derivative) Controller 

with 

•   Continuous PID, u(s) = H(s)e(s), 

-  Very popular in process control industry 

•   Equivalent to lead compensator (PD part) + integral term 

T1 = integral or reset time  

        (big number usually) 

•   Most common packaged form of controller 

•   Integral term not necessary if there is an integrator (k/s) in the loop already. 

   2

1 2

T s1
u s K 1    e s

T s 1 T s/N

 
   

 
Proportional 

Term 
Integral 

Term 

Derivative 

Term 

N ≈ 2 → 20 (usually fixed)  

       (derivative gain) 

T2 = derivative time 

•   Not all parts are necessary for good control (e.g.,  P,  PI,  PD, …) 

-  Ziegler and Nichols (1942) 

•   Various “tuning rules” for  T1,  T2,  K exist. 

2

2

2

2( 1)

1

N

T

N

N T

N
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PID Controller Configurations - 1 

P-I-D all in forward loop 

e(t) 
u(t) 

≡ 

1

1

sT

2

21 /

sT

sT N

1 K 

UI(t) 

UD(t) 

UP(t) 

y 

r 

D 

P 

I 

K 
u e 

Sum up 3 parts separately: •   Implementation – “Textbook” 

0
1 2

1
( ) ( ) ; ( ) ( ); ( ) ( ) ( )

t d N d
UI t e d UP t e t UD t UD t N e t

T dt T dt
     

•   Alternate Implementations for proportional and derivative actions 

2

( ) ( ) ( ); ( ) ( ) [ ( ) ( )]

 int     ( 1) %

   int      (    

d N d
UP t br t y t UD t UD t N cr t y t

dt T dt

b set po weighting for proportional control b extra zero for N overshoot goes down

c set po weighting for derivative control often set to z

     

   

 )ero

•   with b and c, you have two degrees of freedom in a PID 
2

1 2

2

1 2

2 2
1 2 1

1
( ) ( ) ( ) ( ) ( ) ( ) [ ] &

1 /

( ) ( )1
( ) [1 ] ( )

1 / 1 ( ) ( )

( ) gives extra zeros as roots of ( ) ( ) 1 0

r r

r

r

T s
u s H s r s H s y s where H s K b c

T s T s N

T s G s H s
H s K T s

T s T s N G s H s

Tb
H s TT c s T b s

N N

    


    
 

     

2

1 2

1

0

1
0

1

N
b c zero at as N

T

no extra zeros

N
c zeros at and

bT T

one zero at as N
bT

      



   

  

Two DOF P-I-D 

y r 

H (s) 

G (s) 
Hr(s) 

u 
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•   c = 0  derivative of output form   

-CL stability is unaffected (stability not a function of r). 

- Often times, y(t) is filtered via  

“derivative of output form” 

-  If r suddenly changes, e.g., a step change, then de/dt may be large and UD will have a 

  “spike” at time t. This is undesirable.   

 - So, modify UD computation to use only dy/dt. 

-  Since y(t) cannot change too much, UD will be OK. 

 

y 

r 

P 

I 

K 
u e 

-D 

•   b= c = 0  “set-point on I” structure 

-  Move P to act only on y also, UP = –y(k) 

-  Popular in process control (keeps control signal very smooth). 

-  Only integral compensation uses error signal. 

PID Controller Configurations - 2 

y 

r 

-P 

I K 
u e 

-D 

“set-point on I structure” 

( ) 1/ (1 )f fG s sT 

•  Series form (N  )  

 

' '

2 2'

1 1

' '
' ' 1 1 2

1 1 2 2'

1 1

' '1 1 2
2 1 1 2 '

1

' '

1 1 2 2

1 1
( ) [1 ] (1 )(1 )

.
; ' ;

'
' 1 1 4 / ; ;

2

: , '

H s K T s K T s
T s T s

T T T
T T T K K T

T T

K T TTK
K T T T T

K T

Note T T K K while T T

     

    

     

  

e(t) 
u(t) 

'

1

1

1 sT

'

2

'

2

1

1 /

sT

sT N



K’ 

+ 

Added to make it 

causal 

“series form with automatic reset” 
 

' ' 1 2
1 1 2 1 '

1

'2 '

1 1 1 1 2

'

1
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Integral Windup Modifications - 1 

•   Limits are imposed by the system under control, e.g., actuator constraints. 

(symmetric limits are most common,  B- =  – B+) 

•   A problem that arises when u is limited, e.g., 

•   The control probably saturated because e(t) was large. 

-  Match these limits in controller software: 

B–  ≤  u(t)  ≤  B+ 

-  Value of UI does not change if/when u is saturated. 

if (u ≥ B+) set u = B+,  flag = +1 

if (u ≤ B–) set u = B–,  flag = –1 

else  flag = 0 

•   Include PID structures in Cntrl subroutine, OPT = 4 (parallel),5 (derivative),6 (set point), 

    7(2 DOF),….. 

•   Integral protection 

Conditional integration:  if (flag = 0) do integration, else skip integration 

=>  Turn off/skip the integration of e(t) in UI if the last control value was at a limit 

-  This is not indicative of a steady-state e. 

-  Because u is limited the error e will not be reduced to zero as fast (slower system). 
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-  UI removes ss error, but introduces  –90o phase lag => T1  ~  large. 

   v(t) = u(t)  no feedback 

   v>u  makes UI less positive 

   v<u  makes UI less negative 

    Td < Tt < Ti 

-  Consider integrating only when e is small (pros & cons) 

-  Common to limit |UI|, e.g., |UI|  <  M. 

-“bumpless” transfer:  for changing manual  ↔  auto mode.  This is accomplished via  

   “velocity” form and tracking form 

•   Alternate implementation forms 

-  “velocity” form: computes Δu.  Best implemented digitally (see Lectures 9 and 10) 

Integral Windup Modifications - 2 

•   Tracking or back calculation to avoid windup 

e(t) 
u(t) 

1

tT

+ K/Ti 

+ 

+ 
1/s + 

P DU U

IU

+ 
+ 

- 

v(t) 

•   Further integration term modifications 

•   Systems with delays 

-  Couple P-I(-D) with a Smith predictor 

•   Systems with oscillatory and unstable poles 

  -  If you have to use PID, use set point on I structure.  Need more complicated controllers. 
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1

1
u s K 1 e s

T s

 
  

 

•   Ex.  A motor with transfer function G(s) = 1/s(s+1) is to be controlled using a PI controller* 

-  Since long periods of + (or –) e will cause UI to build up large values. Then e reverses… 

•   Lack of integral protection will often result in large overshoots in system response. 

* Note: The I part of the controller is not really needed here since G(s) contains a 1/s. 

              But it is only an example. 

-  Examine step response when |u(t)|  ≤  0.2, with and without integral windup protection. 

with K = 0.4,  T1 = 5 sec 

Example (Astrom and Wittenmark) 

(a)  No limit on u 

(b)  Limited control  

       no ∫-protection 

(c)  Limited control  

       with ∫-protection 

Output Signals 

(a)  No limit on u 

(b)  Limited control  

       no ∫-protection 
(c)  Limited control  

       with ∫-protection 

Control Signals 
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PID Initial Tuning Rules 

•   Ziegler-Nichols tuning formulas (1942).  Can be used on a physical process directly.   

h  ~  0.03Tp  to  0.05Tp  (20-30 times max frequency) 

•   Although no need to model G(s), the formulas are based on  

•   A “guideline” for selecting sampling interval, h 

3.  Obtain time period of oscillations,Tp = 2/p  Kmax G(jp)=-1800 and | KmaxG(jp)|=1. 

Steepest Slope, R 
t 

y 

1.  Use a P controller (u=Ke) to stabilize system. 
2.  Slowly increase gain K until the system is on the stability boundary  Kmax. 

Ultimate Sensitivity Method (Instability Method of Ziegler-Nichols) 

L = Delay time 

Obtain unit step response of open-loop system. [G(s) must be open-loop stable]. 

Transient Response Method (Reaction Curve Method) 

  P     1/RL              -                - 

 PI    0.9/RL           3L              - 

PID  1.2/RL           2L           0.5L 

K                T1             T2 

  P      0.5Kmax        -                - 

 PI      0.45Kmax    Tp/1.2         - 

PID    0.6Kmax       Tp/2        Tp/8 

K                T1            T2 

( ) ... mod
1

sL

gk e
G s FOPDT el

sT






/  for first order  plus

dead time (FOPDT) model

gR k T RL
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Recent Tuning Methods 

•   Find the best-fit FOPDT model to a plant transfer function (must be open-loop stable)  

( )/

0,

(0)
min | [ ( ) e ( )] | ; / (0) / ; ( )t L T p

L T

G
J t g t U t L dt R K T G T g t impulse response of OL system

T




      

-   = 0 and p =2  Integral squared error (ISE) 

-   = 0 and p =1  Integral absolute error (IAE) 

-  Use Ziegler-Nichols tuning formulas using identified parameters.  

•   Frequency Response Method  
0

max

max

Get (=gain margin) and  from the Bode plot of ( ) where ( ) 180 . 

Evidently, (0)

From the FOPDT model to be matched, (0) /(1 ) 1/ 0

(0)[cos sin ]
        

p

p p

g

j L

p

p p p

K G j G j

k G dc gain

G e j T K j

G L T L



  



  



  

 

   


2

max

1

1 ( )

        sin cos 0

p

p p p

T K

L T L



  

 


 

Use Ziegler-Nichols tuning formulas 

using identified parameters.  

•   Match first and second order derivatives of G(s) 
2 22 2

2 2 2 2
2 2

0 0 0 0

/ / /
Can show that if ( ) ;

1 ( ) 1 ( ) ( ) 1

/ // /
, | | ; ( ) | | ; (0)

( ) ( ) ( ) ( )

sL

g a a a
a

a a a

a a
s s s s g

a a

k e dG ds d G ds dG dsT T
G s L

Ts G s Ts G s G s Ts

dG ds d G dsdG ds d G ds
So L T T L T k G

G s G s G s G s
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Shaping Closed-loop Transfer Function 

•   Guillemin-Truxal Procedure 

  

 

 

 

•   Example  

( ) ( ) ( ) 1
( ) ( ) .

1 ( ) ( ) 1 ( ) ( )

G s H s T s
T s H s

G s H s T s G s
  

 

2

4
( )

( 1)( 5)

210( 1.5)
( )

( 1.75)( 16)( 3 11.25)

( ) 1 52.5( 1.5)
( )  after cancelling terms

1 ( ) ( ) ( 14.86)

G s
s s s

s
Want T s

s s s s

T s s
H s

T s G s s
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Lead Compensation 
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Inverse-based Controller & Disturbance Rejection  

•   Fix Loop Gain  

- Recall like to have -20 dB slope near cross-over. So, select LGain=c/s H(s)≈G -1(s) c/s 

- Recall 

 

 

- For disturbance rejection in the steady state, need a zero at s=0 

 

 

•   Example (Skogestad & Postelthwaite) 

1

min

/ ( ) / (1 ( )) |1 ( ) | | ( ) | | ( ) | | ( ) |  near 

| ( ) | | ( ) | | ( ) ( ) |

aind ain ain d d c

d

y d G s LG s LG s G s LG s G s

H s H s G s G s





      

  

11
, ( ) (1 ) ( ) ( )d

i

so H s K G s G s
T s

 

2

1 2

0

200 1 100
( ) ; ( )

(10 1) (0.05 1) (10 1)

100
( ) From | (s)| ( )

(10 1)

1 1
( ) ( ) ( ) (0.05 1)  

2 2

1 1 1
(ii) ( ) = (1 ); 0.1 1/ 0.6

2

24 ... too small

(iii) add lead to ( ) and i

d

ain d

d

c i

i i

m

G s G s
s s s

i LG G s
s

H s G s G s s

H s T
T s T

H s







 
  

 


    

   



0.6 0.05 1
ncrease gain ( ) (1 )

0.005 1

s
H s

s s


  



:

1.8
rise time,  = 0.3sec 6rad/sec 

overshoot 5% 0.7

| (t)| 0.1 after 3 seconds Re( ) 1

r c

c

d

Specs

t

y p






  

  

   

Step Response
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System: td
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Amplitude: 0.0703

Disturbance rejection 
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Internal Model Control (IMC)  

•   Two-step process 

- Nominal Performance: Design       to yield optimal tracking and disturbance rejection 

   (ignore m/s noise and model uncertainty) 

- Robust Stability and Performance: Use an IMC filter f (s) so that                     is  proper  

  and trade-off  performance with smoothness of control action and robustness to m/s noise  

  and model uncertainty 

 

d


Q(s) G(s) 



Gd (s) 






r
u y

v

(unknown) 

( )G s


d

Re ( ) ( )[ ( ) ( )] ( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

1 ( )[ ( ) ( )] 1 ( ) ( ) 1 ( ) ( )

( ) ( ), ( ) ( ) ( ) ( ) 1 ( ) ( ) ( ) ( ) ( ) ( )[1 ( )]

( )
( )

1 ( )

dcall y s T s r s v s G s S s d s

G s Q s H s Q s
T s Q s or H s

Q s G s G s G s H s G s Q s

When G s G s T s G s Q s and S s G s Q s Q s H s S s H s T s

Q s
H s

T s

  

   
   

       

  


1 ( )
 Guillemin TruxalProcedure

( ) 1 ( )

T s

G s T s

 
 

 

( )Q s

( ) ( ) ( )Q s Q s f s

Youla Parameterization 
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IMC Design Process 

( ) ( ) 1
Recall from  discussion, | | ( ) | ( ) |

( )( )

Pick  (and  for tracking steps) to satisfy RS constraints.

T

T

G j G j
RS w T j

wG j

 
 



 


  

•  Design for Nominal Performance: 

1.  Factor the OL system model into an invertible minimum-phase part Gm (s) and a 

        a non-invertible all-pass part Ga (s) 

 

2.  Let T(s) = f (s) Ga (s)  Q(s) = T(s)/G(s) =  f (s)/ Gm (s)  H(s) = Q(s)/[1-T(s)] 

 

( ) ( ) ( ) ( ) ( ); ( ) ( )sL i
m nm m a nm a

i i

s z
G s G s G s G s G s G s e G s

s z

  
   




1

( ) 1 1 1
( )

( ) 1 ( ) ( ) ( ) ( ) ( )m a m a

f s
H s

G s f s G s G s f s G s
 

 

0

1
( )  for tracking steps (0) 1

(1 )

1
( )  for tracking ramps (0) 1, / | 0

(1 )

 is selected to make ( ) proper.

n

sn

s
f s f

s

n s
f s f df ds

s

n Q s











  




   



•  Design for Robust Stability and Robust Performance: 
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IMC Design Examples - 1 

Example 1:  consider a minimum phase system given by 

 

0

10

10

3

1000
( ) ( ) ( ) 1

( 10)

: ( ) 100; ( )20log | ( ) ( ) | 34 1 / sec, ( ) 45

          ( ) 20log | ( ) ( ) | 26 100 / sec

1
To track steps, select ( ) ( ) ; 3

(1 )

m a

v m

G s G s G s
s s

Want i K ii G j H j dB for rad iii

iv G j H j dB for rad

s
T s f s
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IMC Design Examples - 2 

Example 2:  (ideal PID controller) consider a second order system with transport delay 

 2 2

2 2 2 2

2 2 2 2

1 2 2

( ) ( ) ( )
2 2

To track steps, select ( ) ( ) ( )
(1 )

2 21 1 1 1
( ) . .

( ) [ ( )] ( ) 1 ( )

2 1
( )

( ) (

s
sn n

m a

n n n n

s

a

n n n n

s

m a n n

n

e
G s G s and G s e

s s

e
T s f s G s

s

s s s
H s

G s f s G s s e s

H s








 

   



   

    



   






 

   
   

 


   
  

   

  
 2) ( )

2 1 1 1
[1 / ]

( ) (2 / ) 2 1 / 2

n

n n n n

s

s

s
s s N

   



      


 

 
    

  

makes the controller causal 

Ideal PID controller 
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IMC Design Examples - 3 

Example 3:  (Distillation column reboiler) consider a non-minimum phase system given by  

 

3

3 1
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IMC Design Examples - 4 

Problems: 

•  Generic IMC procedure gives resonant peak at 1/  overshoot in step response 

•  Select 1/ = 5p (pole location), closed-loop BW is approximately 28 rad/sec  3/  

•  How to get rid of resonance: Use a different filter  (see Campi, Lee and Anderson, Int. J. of 

    Nonlinear and Robust Control, Vol. 4, pp. 757-775, 1994.).  There exist better methods. 

2

2

Consider an unstable system given by 

6 6
( ) ( ) ( ) ( ) ( ) ; ( ) 1

2 2

(1 )
Let ( ) = ( )= .

(1 )

Need (2) 1 (Recall @  a pole of ( ))
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Example 4:  Generic IMC procedure on unstable systems leads to unacceptable overshoots in 

step response and resonant peaks.  
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Do a regular 

Bode design instead 

(Gain compensation or 

Lead Design) 
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Weighted Sensitivity & IMC - 1 

Design Procedure: 

•  Given a weighting matrix Ws(s) and G(s) 

•  Set k = relative degree of G (s) = degree of denominator of G(s) 

•  Choose  so that  

•  Set 

•   Set   

0 0
lim || ( )[ ( )] || max lim | ( )[ ( )] | 0G j I T j G j I T j
 

   
 

   

• Recall  Youla Parameterization 

 

• For stable and proper transfer functions, one can define a transfer function 

 

 

 

• So, weighted sensitivity  

• One can show ( Doyle et al., Chapter 10) that as  0  

       

1 1( ) ( )[ ( ) ( )] ( ) ( ) ( ) ( ) ( )H s Q s I G s Q s Q s S s Q s H s S s     

11 1
( ) ( ) ; 1 ( ) ( ) ( ) ( ) ( )

( 1) ( 1)k k

k s
T s f s or k G s Q s Q s G s T s
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|| ( ) ( )] || || ( )[ ( )] || 1s sCan find W j S j W j I T j        

1( ) ( ) ( )Q s G s T s

1( ) ( )[ ( ) ( )]H s Q s I G s Q s  

Recall Nominal performance constraint 

1

1 1

1

1

Idea of proof: , | ( ) | 1 |1 ( ) | max | ( )(1 ( )) | || ||

arg ,max | ( )(1 ( )) | 2max | ( ) |

so,  by selecting  sufficiently small, we can make  small and max

for small T j T j G j T j G

for l e G j T j G j
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| ( ) |  small.G j
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Weighted Sensitivity & IMC Example - 2 

•   Example: 
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Co-prime Factorization: Unstable & Non-minimum 

 Phase Systems - 1 

• For unstable and/or non-minimum phase systems, inversion leads to non-

minimum phase and/or unstable Q(s).  Need a generalization in this case. 

1If ( ) is given (not necessarily stable or minimum phase), then it can be written as ( ) ( ) ( )

where ( ) and ( ) are (co-prime) transfer functions No pole-zero cancellation, proper & stable

G s G s N s M s

N s M s





( )
If ( ) :1 ( ) ( )

( )

For stability, need poles in LHP 1 ( ) ( ) 0

( ) ( ) ( ) ( ) 0

Suppose we find ( ) and ( ) such that (s) ( ) ( ) ( ) 1 (calle

H

H

H H

N s
H s characteristic polynomial G s H s

M s

G s H s s RHP

M s M s N s N s s RHP

X s Y s X N s Y s M s

  

    

    

  d  identity),

where ( ), ( ), ( ) and ( ) are proper and stable.  Then, 

( ) ( ) ( ) ( )
Then, ( )  is such that the closed-loop system is stable.

( ) ( ) ( ) ( )

Also, ( ) ( ) ( ) ( )

H

H

H H

Bezout

N s M s X s M s

N s X s M s Q s
H s

M s Y s N s Q s

M s M s N s N s


 



  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1

( ) is co-prime as well  stable and proper

Y s M s N s Q s M s N s X s N s M s Q s

H s

   

 

1Note ( ) (1 . ) = ( - ). min || ( ) ||

 unstable systems, can approximately minimze min || (1 ( )) ||

s
Q

s
Q

N X MQ
S s M Y NQ W M Y NQ

M Y NQ

For W MY T s
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Co-prime Factorization: Unstable & Non-minimum 

 Phase Systems - 2 

• Co-prime factorization of G(s) is easy, but solving Bezout identity is not. 

1If ( ) is given (not necessarily stable or minimum phase), then it can be written as ( ) ( ) ( )

where ( ) and ( ) are (co-prime) transfer functions No pole-zero cancellation, proper & stable

G s G s N s M s

N s M s





Examples: Getting co-prime factorization of ( ) is easy.

  If ( ) is stable and proper, ( ) ( ), ( ) 1

  If ( ) is unstable and proper, divide numerator and denominator by a common stable polynomial.

 

G s

G s N s G s M s

G s

  



2 2

1 1 ( 1)( 2)
   Example:  ( ) ( ) , ( )

( 1)( 2) ( ) ( )

  If ( ) is unstable and non-minimum phase, leave non-minimum phase part in ( ) and divide

    numerator and denominator by a common s

s s
G s N s M s

s s s s

G s N s

 

 
   

   



2 2

table polynomial.

( 1) ( 1) ( 2)
    Example: ( ) ( ) , ( )

( 2) ( ) ( )

s s s s
G s N s M s

s s s s 
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Co-prime Factorization via State Space Methods - 1 

• State feedback and observer feedback allows us to compute co-prime factorization and 

       the solution of Bezout identity rather easily  

• Given G(s), find state space representation (e.g., SCF, SOF, minimal, balanced).  Valid 

for MIMO systems as well. 

 

 

 

• Choose a feedback matrix, K such that A-BK is stable.  So, if we define signals  

 

  

x Ax Bu

y Cx Du

 

 

1( ) ( )
A B

G s C sI A B D
C D

  
    

 

1

1

1

( )  and  =  +

( ) ; ( )

, ( ) ( ) ( ) ( ) ( )

     ( ) ( ) ( ) ( ) ( )( )

( ) ( ) ( )

m

m

v u K x x A BK x Bv u K x v

x A BK x Bv y C DK x Dv

A BK B
so u s M s v s M s I K sI A BK B

K I

A BK B
y s N s v s N s D C DK sI A BK B

C DK D

G s N s M s
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Co-prime Factorization via State Space Methods - 2 

• Choose a feedback matrix L such that A-LC  is stable.   

 

 

 

 

  1 2

1 1 1 1 1

ˆ ˆ ˆRecall observer equation:  ( )

ˆ ˆ( ) ( )

ˆ ˆ ˆSplit observer equations into two parts (recall superposition):

ˆ ˆ ˆ ( ) ; ( ) ( ) ( )

( ) (

x Ax Bu L y C x Du

x A LC x L y B LD u

x x x

x A LC x L y v K x v s X s y s

X s K sI A

    

     

 

     

    1

2 2 2 2 2

1

1 2

1

)
0

ˆ ˆ ˆ( ) ( ) ; ( ) ( ) ( )

( ) ( ) ( )

ˆ,  in the steady state

Look at signals now: ( ) ( ) ( ) ( ) ( )

m

m

A LC L
LC L

K

x A LC x B LD u v u K x v s Y s u s

A LC B LD
Y s I K sI A LC B LD

K I

Evidently v v u K x v

v s X s y s X s N s v





 
 
 

       

  
       

 

   

 

2

1 2

( )

                                  ( ) ( ) ( ) ( ) ( ) ( )

                             so, ( ) ( ) [ ( ) ( ) ( ) ( )] ( ) ( )

                             ( ) ( ) ( ) ( ) m

s

v s Y s u s Y s M s v s

v s v s X s N s Y s M s v s v s

X s N s Y s M s I

 

   

  

1

2

1 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

u s M s v s

y s N s v s

v s X s y s

v s Y s u s

v s v s v s
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Design Examples - 1 

• Example 2: Minimize weighted sensitivity               for 

• State space equation (SCF) 

 

 

 

• Find gains K such that A-BK  has poles in LHP.  Let us place  poles at -1+j and -1-j. 

• Find N(s) and M (s) 

 

 

• Find observer gains L such that A-LC has poles in LHP.  Place poles at -2+2j and -2-2j. 

Twice as fast as controller. 

• Find X(s) and Y(s) 

 

 

 

• Select 

 

• Choose  so that the infinity norm of 

                                : 

 

 

 

  

 

  

 
0 1 0

; 1 0
4 4 1

x x u y x
   

     
   

|| ||sW S  2

1 100
( ) ; ( )

( 2) ( 1)
sG s W s

s s
 

 

 2 6K  

2
1 1

2 2

1 4 4
( ) ( ) ; ( ) 1 ( )

2 2 2 2

s s
N s C sI A BK B M s K sI A BK B

s s s s

   
        

   

 8 36L 

2
1 1

2 2

200( 1) 10 54
( ) ( ) ; ( ) 1 ( )

4 8 4 8

s s s
X s K sI A LC L Y s K sI A LC B

s s s s

   
        

   

2 2

2 2

1 2
( ) ( )

( 1) ( 1)

s s
T s S s

s s

 

 


  

 

|| (1 ) || 1sW YM T  

 Norm 

0.1 222.49 

0.01 22.63 

0.001 2.26 

0.0003 0.679 

7 2 2
1

2 2

1.1x10 ( 2 2)( 10 54)
( ) ( ) ( ) ( )

( 3333) ( 4 8)

s s s s
Q s Y s N s T s

s s s

    
 

  
7 2 2

2

( ) ( ) ( ) 1.1x10 ( 1.921 1.911)( 4.079 8.373)
( )

( ) ( ) ( ) ( 6667)( 10 54)

X s M s Q s s s s s
H s

Y s N s Q s s s s s

    
 

   

076.3 @1.62 / secm rad 
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Design Examples - 2 

• Example 2: Minimize weighted sensitivity               for 

 

 

 

 

 

 

 

• Since 

 

• Find Qim (not necessarily proper) such that                                                  is minimum 

        Recall at RHP zero, G=0  

 

• From 

 

• Select 

 

 

 

|| ||sW S 

2

4 3 2 6

2

2

6.475 4.0302 175.77
( )

5 3.5682 139.5021 0.0929 10

: 0, -0.0007, -0.3565 5.27 ; : 4.9081,5.5308

1
settling time 8sec; % overshoot 10% =0.6; 0.96 ( )

1.2 1

( 1.2)
( )

n

s s
G s

s s s s

poles j zeros

T s
s s

s s
S s

s

 



  


   

 

     
 


 



2 1.2 1
( )  stable and strictly proper

1.2 1 ( 0.001)( 1.2)(0.001 1)
s

s s
W s

s s s s

 
 

   

( ) is stable, ( ) ( ), ( ) 1, ( ) 0, ( ) 1 so that 1G s N s G s M s X s Y s NX MY     

|| ( ) || || (1 ) ||s im s imW M Y NQ W GQ   

20.9 0.8815 1.058 0.8815
| (5.5308) | 1.0210  set 

1.021 ( 0.001)( 1.2)(0.001 1)
s s s

s s
W W W

s s s

 
   

  

5 4 3 2

2

( ) 0.90.001021 0.01814 0.0586 1.015 4.1 3.995
| (5.5308) | 0.9,

1.22 1 ( ) ( )

s
s im

s

W ss s s s s
W Q

s s W s G s

     
  

 

2

1
( ) min || (1 ) ||

( 1)
s imJ s and W GQ J

s 
 

  Norm 

0.1 1.1199 

0.08 1.0759 

0.04 0.9880 

0.02 0.9367 

5 4 3 2

5 5 4 3 2

0.001021 0.01814 0.0586 1.015 4.1 3.995
( ) ( ) ( )

6.4x10 0.004877 0.1258 1.149 1.32 1

                                                    

im

s s s s s
Q s Q s J s

s s s s s

     
 

    

5 4 3 2

5 4 3 2

15.95 283.5 915.6 15860 64060 62420
( )

76.2 1982 18300 21030 19.14

s s s s s
H s

s s s s s

     


    

057.8 @0.669 / sec

18.9 @3.08 / sec

m

m

rad

dB rad
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