Lectures 7-8

Classical SISO (Continuous-time) Control Design Methods
Prof. Krishna R. Pattipati
Assisted by : Kihoon Choi
Dept. of Electrical and Computer Engineering
University of Connecticut
Contact: krishna@engr.uconn.edu (860) 486-2890

ECE 6095-4121
Digital Control System Design Methods: Classical and Modern

Performance Criteria and the Design Process

- Tools for Control Design and Analysis
- Loop shaping: Trade-offs and issues
- Design Methods
- Lag compensator design
- Lead compensator design
- Lead-Lag Design
- PID controller design
> Different PID structures
$>$ Integral windup protection
$>$ PID parameter selection rules
- IMC design (Shaping S, T or $Q=H S$)
- Weighted sensitivity and IMC ("Model Matching")
> Co-prime factorization via state space
\rightarrow Design for unstable and non-minimum phase plants

Tools for Control Design and Analysis

- Bode plots

$$
-\mathrm{G}(\mathrm{~s}) \text { vs. } \widetilde{\mathrm{G}}(\mathrm{z}),\left.\mathrm{LG}_{\text {ain }}(\mathrm{z})\right|_{\mathrm{z}=\mathrm{e}^{\mathrm{johh}}}, \mathrm{~S}(\mathrm{z}), \mathrm{T}(\mathrm{z})
$$

- State variable analysis
- Computer programs
- ss2tf, c2d, bode, margin, lsim or your own control simulation program, rlocus, nyquist.
- Root locus
- Nyquist
- Nichols

With a system model and performance specifications in hand, we are now ready to design a digital control algorithm.
=> But first, let's review classical series compensation design methods used for continuous time systems.
> "Can't know where you're going if you don't know where you've been!"

Loop Shaping : Trade-offs and Issues

(1) Graphical methods to pick $\mathrm{H}(\mathrm{s})$ via Bode plot modifications.
(2) s-plane methods to pick $\mathrm{H}(\mathrm{s})$ via root locus shaping.

- These are trial and error methods since frequency domain (s-plane) measures are not 1:1 with time-domain measures (e.g., step response), especially for higher order systems.
- Bode plot design

(1) At $\omega \rightarrow 0, \mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s}) \rightarrow \mathrm{K}_{v} /$ s, i.e., $\mathrm{K}_{\mathrm{v}}=\lim \mathrm{sKG}(\mathrm{s}) \mathrm{H}(\mathrm{s})$ as $\mathrm{s} \rightarrow 0$. Restrictions on ss tracking error to a ramp input will set DC gain of GH (recall ss error to ramp input command $r(t)=\beta t$ is $\left.\beta / K_{v}\right)$.
(2) Since $\left|\frac{e(s)}{r(s)}\right|=\frac{1}{|1+G(s) H(s)|}$ restrictions on ss accuracy over mid-frequency range will give lower bound on $|\mathrm{GH}|$ (e.g., for $<2 \%$ relative error over $[0, \bar{\omega}],|\mathrm{GH}|>50$ for $\omega<\bar{\omega})$.
(3) At high frequencies, for noise rejection we want $|\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})|$ to be small (e.g., $\left.|\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})|<0.01, \omega>\omega_{\max }\right)$.
(4) May have restrictions on $\omega_{c} \sim$ bandwidth. Also may wish $\phi_{\mathrm{m}}>45^{\circ}$ (or as large as possible) via stability criterion (viz, phase curve of GH).

Classical Design Techniques

- Bode plot approach:

Sketch Bode plot of $\mathrm{G}(\mathrm{s})$ and then add in gain plus poles and zeros of $\mathrm{H}(\mathrm{s})$ to bend/shape
$\mathrm{G}(\mathrm{s}) \mathrm{H}(\mathrm{s})$ to meet specs.
$=>$ "Create a fair stretch of $-20 \mathrm{~dB} /$ decade slope in the crossover region by choice of $\mathrm{H}(\mathrm{s})$ with $\phi_{\mathrm{m}} \sim 45^{\circ}$.
"fair stretch" $\sim \pm 1$ octave $\left[\omega_{c} / 2,2 \omega_{c}\right.$] or greater

- Must next evaluate CL poles, zeros, time-response, etc.
- Root locus approach:

Bend and shape root locus (RL) of G(s) by adding (real) poles and zeros so that the RL passes through "desirable" regions in the s-plane. Then pick gain of H to place poles.
Consider mainly dominant poles.

a) Root locus of CL poles of uncompensated system [i.e., $\mathrm{H}(\mathrm{s})=\mathrm{K} \cdot 1$]
b) Root locus of CL poles $H(s)=K \frac{1+s / a}{1+s / b}$
of compensated system

- Must next evaluate ϕ_{m}, bandwidth, time-response, etc.
- Useful approximation for $2^{\text {nd }}$ order continuous system (ϕ_{m} in deg)

$$
\zeta \sim\left(1+\phi_{\mathrm{m}} / 190^{\circ}\right) \phi_{\mathrm{m}} / 130^{\circ}
$$

Rule of Thumb

"create a fair stretch of -20 db slope in the crossover region by choice of $\mathrm{K} \& \mathrm{H}(\mathrm{s})$ with $\phi_{\mathrm{m}} \sim 45^{\circ}$ " ==> want the system to act as a first order system near cross-over $==>\phi_{\mathrm{m}} \sim 45^{\circ}$ for stability \& relative stability.
Once design is done, you must evaluate poles and zeroes, step response, etc.
since they are not immediately evident from the frequency response plot.
TYPES OF COMPENSATION: Bode Plot of $G(s)$ alone will usually not satisfy requirements

1. Pure Gain (or Gain compensation) $\mathrm{K}(\mathrm{H}(\mathrm{s})=1)$ fairly limited
2. Lag network $\mathrm{H}(\mathrm{s})=\frac{1+\mathrm{s} / \alpha \omega_{1}}{1+\mathrm{s} / \omega_{1}} ; \alpha>1$ (but rarely ever >20)
Typically
$1<\alpha<20$

$$
\mathrm{H}(\mathrm{~s})=\frac{1+\mathrm{s} / \alpha \omega_{1}}{1+\mathrm{s} / \omega_{1}}=\frac{1}{\alpha} \cdot \frac{\mathrm{~s}+\alpha \omega_{1}}{\mathrm{~s}+\omega_{1}}=\frac{1}{\alpha}+\frac{(1-1 / \alpha) \omega_{1}}{\left(\mathrm{~s}+\omega_{1}\right)}
$$

$$
\text { for } \alpha \omega_{1} \gg 1 \& \omega_{1} \approx 0 \rightarrow \mathrm{H}(\mathrm{~s})=\mathrm{k}_{2}+\mathrm{k}_{1} / \mathrm{s}
$$

$$
\approx 1 / \alpha+\omega_{1} / \mathrm{s} \text { PI Controller }
$$

Zero/Pole pattern for a lag network

Lag Network - 1

$\measuredangle \mathrm{H}(\mathrm{j} \omega)$

$$
\begin{aligned}
& \omega_{\max }=\sqrt{\alpha} \cdot \omega_{1} \\
& \phi_{\max }=-\sin ^{-1} \frac{\alpha-1}{\alpha+1}
\end{aligned}
$$

Bode Plot (phase) for a lag network

$$
\begin{aligned}
& \text { Let us look at the phase } \\
& \begin{aligned}
\phi & =\tan ^{-1}\left(\omega / \alpha \omega_{1}\right)-\tan ^{-1}\left(\omega / \omega_{1}\right)=\tan ^{-1} \frac{\omega / \alpha \omega_{1}-\omega / \omega_{1}}{1+\omega^{2} / \alpha \omega_{1}{ }^{2}}=\tan ^{-1}\left[\frac{\frac{\omega}{\omega_{1}} \frac{(1-\alpha)}{\alpha} \alpha \omega_{1}^{2}}{\left(\omega_{1}^{2} \alpha+\omega^{2}\right)}\right. \\
& =\tan ^{-1} \frac{\omega \omega_{1}(1-\alpha)}{\omega_{1}^{2} \alpha+\omega^{2}}=\tan ^{-1} \frac{1-\alpha}{\omega / \omega_{1}+\alpha \omega_{1} / \omega}
\end{aligned}
\end{aligned}
$$

$\tan (\phi)$ is a monotonic function of ϕ for all $\phi \in\left(0^{\circ}, 90^{\circ}\right)$
$\tan (\phi)$ is a maximum $\phi_{\text {max }}$

$$
\begin{aligned}
\Rightarrow & \frac{\mathrm{d}}{\mathrm{~d} \omega} \frac{1-\alpha}{\left(\omega / \omega_{1}+\alpha \omega_{1} / \omega\right)}=0 \Rightarrow 1 / \omega_{1}-\alpha \omega_{1} / \omega^{2} \Rightarrow \omega=\sqrt{\alpha} \omega_{1} \\
\phi_{\max } & =\tan ^{-1} \frac{1-\alpha}{2 \sqrt{\alpha}} \\
& =\sin ^{-1} \frac{1-\alpha}{1+\alpha}=-\sin ^{-1} \frac{\alpha-1}{\alpha+1}
\end{aligned}
$$

Lag Network - 2

- Easily built via an RC network:
Figure III. 8 Lag Network

$$
=\Rightarrow \frac{\mathrm{v}_{1}(\mathrm{~s})}{\mathrm{R}_{1}}=\mathrm{v}_{2}(\mathrm{~s})\left[\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}+1 / \mathrm{cs}}\right]
$$

The transfer function is:

$$
\frac{\mathrm{v}_{2}(\mathrm{~s})}{\mathrm{v}_{1}(\mathrm{~s})}=\frac{1}{\mathrm{R}_{1}\left[\frac{1}{\mathrm{R}_{1}}+\frac{1}{\mathrm{R}_{2}+1 / \mathrm{cs}}\right]}=\frac{1}{\mathrm{R}_{1}\left[\frac{1}{\mathrm{R}_{1}}+\frac{\mathrm{cs}}{1+\mathrm{R}_{2} \mathrm{cs}}\right]}=\frac{1+\mathrm{R}_{2} \mathrm{cs}}{1+\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \mathrm{cs}} \Rightarrow \alpha \omega_{1}=\frac{1}{\mathrm{R}_{2} \mathrm{c}}
$$

Therefore, $\omega_{1}=\frac{1}{\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) c} ; \quad \alpha=\frac{\mathrm{R}_{1}+\mathrm{R}_{2}}{\mathrm{R}_{1}}$
Basic equations for a lag network are:

$$
\begin{array}{lll}
\begin{array}{ll}
\phi_{\max }=-\sin ^{-1}\left[\frac{\alpha-1}{\alpha+1}\right] & \Rightarrow
\end{array} & -\alpha \sin \phi_{\max }-\sin \phi_{\max }=\alpha-1 \\
\omega_{\max }=\sqrt{\alpha} \omega_{1} \\
\omega_{1}=1 /\left(\mathrm{R}_{1}+\mathrm{R}_{2}\right) \mathrm{C} \\
\alpha=1+\mathrm{R}_{2} / \mathrm{R}_{1}
\end{array} \quad \Rightarrow \quad \alpha=\frac{1-\sin \phi_{\max }}{1+\sin \phi_{\max }},
$$

Lead Network

3. Lead Network

$$
H(s)=\frac{1+s / \omega_{1}}{1+s / \beta \omega_{1}} \quad \beta>1
$$

Zero/Pole pattern for a lead network

Bode Plot for a lead network.
This is a generalization of PD control. It can be built via:

Lead Network

$$
\begin{align*}
\mathrm{H}(\mathrm{~s}) & =\frac{1+\mathrm{s} / \beta \omega_{1}+s(\beta-1) / \beta \omega_{1}}{1+\mathrm{s} / \beta \omega_{1}} \\
& =1+\frac{T_{2} s}{1+T_{2} s / N} \\
T_{2}= & \frac{(\beta-1)}{\beta \omega_{1}} ; N=\beta-1 \mathrm{PD} \tag{PD}
\end{align*}
$$

Lag-Lead Network - 1

To see this, we note:

$$
\mathrm{V}_{2}(s)=\frac{1+\mathrm{sR}_{1} \mathrm{C}}{\left[1+\frac{\mathrm{R}_{2} \mathrm{R}_{1} \mathrm{Cs}}{\mathrm{R}_{1}+\mathrm{R}_{2}}\right]} \cdot \frac{\mathrm{R}_{2}}{\mathrm{R}_{1}+\mathrm{R}_{2}}
$$

where $\omega_{1}=1 / R_{1} C$
$\beta=\frac{R_{1}+R_{2}}{R_{2}} ; N=\frac{R_{1}}{R_{2}} \quad \begin{gathered}\text { Note: } \begin{array}{l}\text { Low frequency } \\ \text { attenuation }\end{array}\end{gathered}$
At low frequencies the gain is $1 / \beta$ and at high frequencies it is unity. We need to use an operational amplifier of gain β to recover the gain.
4. Lag-Lead Network

$$
\mathrm{H}(\mathrm{~s})=\frac{\left(1+\mathrm{s} / \alpha \omega_{1}\right)\left(1+\mathrm{s} / \omega_{2}\right)}{\left(1+\mathrm{s} / \omega_{1}\right)\left(1+\mathrm{s} / \beta \omega_{2}\right)} ; \quad \alpha, \beta>1 ; \quad \alpha \omega_{1}<\omega_{2} \quad \text { Note that: }|\mathrm{H}(\mathrm{j} \omega)|=\beta / \alpha \text { as } \omega \rightarrow \infty
$$

$|\mathrm{H}(\mathrm{j} \omega)|$, db \quad Notched filter. . . action in the middle

Lag-Lead Network - 2

If $\alpha=\beta$ the circuit can be built via:

Lead-Lag network for $\alpha=\beta$

$$
\frac{\mathrm{V}_{2}(\mathrm{~s})}{\mathrm{V}_{1}(\mathrm{~s})}=\frac{\left(\mathrm{s}+1 / \mathrm{C}_{1} \mathrm{R}_{1}\right)\left(\mathrm{s}+1 / \mathrm{C}_{2} \mathrm{R}_{2}\right)}{s^{2}+\left(1 / \mathrm{C}_{1} \mathrm{R}_{1}+1 / \mathrm{C}_{2} \mathrm{R}_{2}+1 / \mathrm{C}_{1} \mathrm{R}_{2}\right) \mathrm{s}+1 / \mathrm{C}_{1} \mathrm{R}_{1} \mathrm{C}_{2} R_{2}}
$$

This is the most flexible compensation - but requires greatest design effort.

Methods of Series Compensation

Goal: Create a fair stretch of -20dB in crossover region with $\phi_{\mathrm{m}}>\mathbf{4 5}^{\circ}$.
==> Have a well behaved phase curve !
Recall Bode approx. to $H(j \omega)=\frac{1}{1+j \omega / a} ; \quad|H(j \omega)|=\frac{1}{\sqrt{1+\omega^{2} / \mathrm{a}^{2}}}$
A) Magnitude $\omega<\mathrm{a}|\mathrm{H}(\mathrm{j} \omega)| \approx 1$
$\Rightarrow 20 \log _{10}|\mathrm{H}(\mathrm{j} \omega)|=0 \mathrm{db}$
$\omega>\mathrm{a}|\mathrm{H}(\mathrm{j} \omega)| \approx \mathrm{a} / \omega$

$$
\Rightarrow-20 \log _{10} \omega+20 \log _{10} \mathrm{a}
$$

Magnitude plot of $H(j \omega)$
B) Phase: $\phi=-\tan ^{-1} \omega / \mathrm{a}: \omega \ll \mathrm{a} \Rightarrow \phi \approx-\omega / \mathrm{a}$ rads $; \omega \gg \mathrm{a} \Rightarrow \phi \approx-\pi / \mathrm{a}+\mathrm{a} / \omega$ based on the equality $\tan ^{-1} \omega / a+\tan ^{-1} \mathrm{a} / \omega=\pi / 2 \forall \mathrm{a} \& \omega$

Phase plot of $H(j \omega)$

Useful numbers:

$\tan ^{-1} 1 / 2=26.5^{\circ}$	$\tan ^{-1} 2=63.5^{\circ}$
$\approx \frac{26.5}{180} \pi \mathrm{rads}$	$\tan ^{-1} \sqrt{3}=60^{\circ}$
$\tan ^{-1} 1 / \sqrt{3}=\pi / 6 \mathrm{rad}=30^{\circ}$	$\tan ^{-1} 4 / 3=53.1^{\circ}$
$\tan ^{-1} 3 / 4=36.9^{\circ}$	$\tan ^{-1} 1=45^{\circ}$

$\tan ^{-1} 3 / 4=36.9^{\circ}$

Let us consider all the possible methods for series compensation.

Gain Compensation

- When we use gain compensation we:

1. Can increase gain to get desired $\mathrm{K}_{\mathrm{v}} \& L F$ accuracy
2. Lower gain to get desired ϕ_{m} as phase \downarrow with increase in $\omega \uparrow$
(i.e. achieve desired degree of stability)
Rarely can we satisfy both with only K.
EXAMPLE: Consider the system: $\mathrm{G}(\mathrm{s})=\frac{100}{\mathrm{~s}(1+\mathrm{s} / 10)^{2}} \quad \begin{aligned} & \text { Design specification: } \phi_{\mathrm{m}}= \\ & \text { Let us assume that } \mathrm{K}=1 .\end{aligned}$
(1) The bode plot is done for the uncompensated system.

Bode plots of uncompensated system

System is unstable with $K=1$. Obeauency ${ }^{\text {(rad/sec) }}$. ${ }^{\text {Fiously, we must lower magnitude curve. We want gain }}$ crossover at about 4 rads/sec. Why?

Gain Compensation（Cont＇d）

Let us look at $\measuredangle \mathrm{G}(\mathrm{j} \omega)$ ：Since we want $\phi_{\mathrm{m}}=45^{\circ}$（design specification）

$$
\begin{aligned}
\measuredangle \mathrm{G}(\mathrm{j} \omega) & =-\pi / 2-2 \tan ^{-1} \omega_{\mathrm{c}} / 10=-\pi / 2-2 \omega_{\mathrm{c}} / 10=-3 \pi / 4 \\
& =\Rightarrow \omega_{\mathrm{c}}=5 \pi / 4 \approx 4 \mathrm{rads} / \mathrm{sec} \quad(3.8-3.9 \mathrm{rads} / \mathrm{sec})
\end{aligned}
$$

Then by definition of ω_{c} ，with $\omega_{c}=4 \mathrm{rads} / \mathrm{sec}$

$$
\begin{aligned}
& \mathrm{KG}(\mathrm{j} 4)=1 \quad \text { (corresponding to } 0 \mathrm{db}) \\
& |\mathrm{KG}(\mathrm{j} 4)|=1 \Rightarrow=>\mathrm{K} \cdot \frac{100}{\omega \cdot 1}=1 \Rightarrow=>\mathrm{K}=\frac{4}{100}=1 / 25
\end{aligned}
$$

where we have used the Bode＂straight line＂approximation to compute $|\mathrm{KG}(\mathrm{j} \omega)|$ i．e．$\left|1+\mathrm{j} \omega_{\mathrm{c}} / 10\right|^{2} \approx 1$ ，since $\omega_{\mathrm{c}}<10$
Looking at the bode plot of the compensated system．

Gain Compensation (Cont'd)

So, get 25% error to a ramp input. However, HF attenuation is OK.
Problems with gain compensation: (1) must have a frequency where $\varphi_{\mathrm{m}} \approx 45^{\circ}$
(2) Destroys LF accuracy.

Wouldn't it be nice if we could modify the magnitude plot as this would leave $\mathrm{K}_{\mathrm{v}}=100$, its original value. Recall that the phase shift at the crossover
frequency and therefore ϕ_{m}, depends only on the magnitude plot one decade above and below ω_{c}. This is precisely what a lag compensation does !!

Lag Compensation - 1

(a) used to lower cross over frequency by reducing gain without changing very low frequency gain \Rightarrow can get good steady state accuracy!
(b) Easy to do on a Bode diagram, since phase \measuredangle add.
(c) Must already have $\measuredangle \mathrm{G}(\mathrm{j} \omega)=-135^{\circ}$ in intended crossover region
(since lag compensation lowers phase)
Recall that the transfer function of a lag compensator is given by:

$$
\mathrm{H}(\mathrm{~s})=\frac{1+\mathrm{s} / \alpha \omega_{1}}{1+\mathrm{s} / \omega_{1}} \quad(\alpha>1)
$$

Since lag Network puts in phase lag, we better have ω_{1} and $\alpha \omega_{1}$ well below Xover frequency so as not to destroy things at $\alpha \omega_{1}$; but not too far away. One "rule of thumb" is to choose:

$$
\begin{aligned}
& \alpha \omega_{1}=\frac{\omega_{c}}{10} \\
& \text { Recall that }|H(\mathrm{j} \omega)|=\frac{\sqrt{1+\left(\omega / \alpha \omega_{1}\right)^{2}}}{\sqrt{1+\left(\omega / \omega_{1}\right)^{2}}} \Rightarrow
\end{aligned}
$$

$$
\measuredangle \mathrm{H}(\mathrm{j} \omega) \text { at } \omega=\omega_{\mathrm{c}} \text { is } \tan ^{-1} \frac{\omega_{c}}{\alpha \omega_{1}}-\tan ^{-1} \frac{\omega}{\omega_{1}}=\frac{\pi}{2}-\frac{\alpha \omega_{1}}{\omega_{c}}-\frac{\pi}{2}+\frac{\omega_{1}}{\omega_{c}}=\frac{\omega_{1}(1-\alpha)}{\omega_{c}}=-\frac{\omega_{1}(\alpha-1)}{\omega_{c}}
$$

- For the previous example, amount of gain reduction ("attenuation") $=1 / \alpha$
$\Rightarrow \alpha=25$ (Recall that $\mathrm{K}_{\mathrm{v}}=4,25 \%$ error to a ramp input)

Lag Compensation－ 2

using the rule $\alpha \omega_{1}=\omega_{c} / 10==>\omega_{1}=0.4 / 25=0.016 \mathrm{rads} / \mathrm{sec}$

$$
\alpha \omega_{1}=0.4 \mathrm{rads} / \mathrm{sec}
$$

This is a $25: 1$ ratio（a little on the high side）
Example：

$$
\mathrm{G}(\mathrm{~s})=\frac{5}{\mathrm{~s}(1+\mathrm{s} / 10)(1+\mathrm{s} / 50)}==>\mathrm{K}_{\mathrm{v}}=5 \text { with } \mathrm{H}(\mathrm{~s})=1, \mathrm{~K}=1,20 \% \text { error to ramp. }
$$

Specifications： $\mathrm{K}_{\mathrm{v}} \geq 50$（ 2% relative error to a ramp）and $\phi_{\mathrm{m}}>45^{\circ} \&$ no restriction on ω_{c}
（1）Find K to meet LF requirements：$K_{v}=\lim _{\mathrm{s} \rightarrow 0} \mathrm{sG}(\mathrm{s})=\frac{5 K}{(1)(1)} \geq 50 \Rightarrow \mathrm{~K} \geq 10$
（2）Sketch Bode plot for $\mathrm{KG}(\mathrm{s})$ to check if compensation is necessary \＆type needed，after selecting K to meet LF requirements．Usually this destroys stability and ϕ_{m} is not OK ．

Lag Compensation - 3

Now we are nearly unstable, $\phi_{\mathrm{m}} \approx 4^{\circ}$. Therefore, we want to reduce gain near crossover.
(3) Find frequency at which $\phi_{\mathrm{m}}=45^{\circ}$

Let us see what the crossover should be by setting $\measuredangle \mathrm{KG}\left(\mathrm{j} \omega_{\mathrm{c}}\right)=-3 \pi / 4\left(-135^{\circ}\right)$ for the 45° desired phase margin.
Using once again the Bode approximation (for $\omega<10$), we have:

$$
\begin{aligned}
\measuredangle \mathrm{KG}\left(\mathrm{j} \omega_{\mathrm{c}}\right) & \left.=-\pi / 2-\omega_{\mathrm{c}} / 10-\omega_{\mathrm{c}} / 50=-3 \pi / 4 \quad \text { (neglecting } \measuredangle \mathrm{H}(\mathrm{j} \omega)\right) \\
& ==>6 \omega_{\mathrm{c}} / 50=\pi / 4 \stackrel{ }{=\Rightarrow} \omega_{\mathrm{c}}=25 \pi / 12 \approx 6.5 \mathrm{rads} / \mathrm{sec} .
\end{aligned}
$$

Use a lag network to lower gain so that $\omega_{\mathrm{c}} \approx 6.5 \mathrm{rads} / \mathrm{sec}$. However, it is better to set $\omega_{\mathrm{c}} \approx 6$. This will anticipate a few degrees of lag from $\measuredangle \mathrm{H}(\mathrm{j} \omega)$.
Recalling a lag network: $\mathrm{H}(\mathrm{s})=\frac{1+\mathrm{s} / \alpha \omega_{1}}{1+\mathrm{s} / \omega_{1}}$
(4) Find α to get desired ω_{c}.

$$
\begin{aligned}
& |\mathrm{KGH}|_{\omega=\omega_{c}=6 \mathrm{r} / \mathrm{s}}=1 \quad \text { or } 20 \log _{10}|\mathrm{KGH}|_{\omega=\omega_{c}=6 \mathrm{r} / \mathrm{s}}=0 \mathrm{~dB} \\
& |K G(\mathrm{j} \omega) H(\mathrm{j} \omega)|=\left\lvert\, \frac{50}{\mathrm{j} \omega(1+\mathrm{j} \omega / 10)(1+\mathrm{j} \omega / 50)} \cdot \frac{1+\mathrm{j} \omega / \alpha \omega_{1}}{\left(1+\mathrm{j} \omega / \omega_{1}\right)} \longleftarrow \sim 1 / \alpha\right. \text { in crossover region }
\end{aligned}
$$

Using magnitude approximation we have magnitude for $\omega=6$:

$$
\Rightarrow 50 / \omega_{c} \alpha=1 \Rightarrow 50 / 6 \alpha=1 \Rightarrow \alpha=25 / 3=8.3
$$

Lag Compensation - 4

(5) Pick ω_{1}

We want to keep lag away from the action, i.e., crossover but not far away as mid-frequency may degrade. We can do this in two ways:
(a) Pick ω_{1} so that $\alpha \omega_{1} \approx \omega_{\mathrm{c}} / 10$
(b) Pick ω_{1} so that $\partial \omega_{1} / \partial \alpha=0$ (Pick largest ω_{1} that satisfies phase margin requirements)
(a) Picking ω_{1} using $\alpha \omega_{1}=\omega_{\mathrm{c}} / 10$

So, if $\alpha \omega_{1}=\omega_{\mathrm{c}} / 10==>\omega_{1}=\omega_{\mathrm{c}} / 10 \alpha=6 /(10)(8.3)=.072 \mathrm{r} / \mathrm{s} \& \alpha \omega_{1}=(.072)(8.3)=.6 \mathrm{r} / \mathrm{s}$
Note: Setting $\boldsymbol{\alpha} \omega_{1} \approx\left(0.1 \omega_{c}, 0.2 \omega_{c}\right)$ will keep lag out of the way.
Therefore the compensator is: $\mathrm{H}(\mathrm{s})=\frac{1+\mathrm{s} / .6}{1+\mathrm{s} / .072}$
Looking at the Bode plots of the compensated system:

Lag Compensation - 5

Should also do step response, root locus and sensitivity analysis.
(b) Pick ω_{1} so that $\partial \omega_{1} / \partial \alpha=0$

Note that having a bigger $\omega_{1} \& \alpha \omega_{1}$ will mean a lower crossover frequency to makeup for phase lag introduced by $\mathrm{H}(\mathrm{j} \omega)$
We have three variables: $\alpha, \omega_{1} \& \omega_{c}$ and two equations.

1. $|\mathrm{KGH}|_{\omega=\omega_{c}}=1$ or $20 \log _{10}|\mathrm{KGH}|_{\omega=\omega_{c}}=0 \mathrm{db}$

$$
\left|K G\left(j \omega_{\mathrm{c}}\right)\right|=1 \sim \frac{50\left(\omega_{\mathrm{c}} / \alpha \omega_{1}\right)}{\omega_{\mathrm{c}}\left(\omega_{\mathrm{c}} / \omega_{1}\right)}=\frac{50}{\omega_{\mathrm{c}} \alpha} \Rightarrow \frac{50}{\omega_{\mathrm{c}} \alpha}=1 \Rightarrow \omega_{\mathrm{c}}=\frac{50}{\alpha}
$$

2. $\left.\measuredangle \mathrm{GH}\right|_{\omega=\omega_{c}}=-\pi+\phi_{\mathrm{m}}=$ given

$$
\begin{aligned}
& -\pi / 2-\omega_{\mathrm{c}} / 10-\omega_{\mathrm{c}} / 50+\left[\pi / 2-\alpha \omega_{1} / \omega_{\mathrm{c}}-\pi / 2+\omega_{1} / \omega_{\mathrm{c}}\right]=-3 \pi / 4 \\
& -\pi / 2-3 \omega_{\mathrm{c}} / 25-\omega_{1} \cdot(\alpha-1) / \omega_{\mathrm{c}}=-3 \pi / 4 \\
& ==\pi / 4=3 \omega_{\mathrm{c}} / 25+\omega_{1} / \omega_{\mathrm{c}} \cdot(\alpha-1)==>\omega_{1}=\left[\pi / 4-3 \omega_{\mathrm{c}} / 25\right] \cdot \omega_{\mathrm{c}} /(\alpha-1)
\end{aligned}
$$

Since, $\omega_{c}=50 / \alpha$, we have

$$
\Rightarrow \pi / 4=6 / \alpha+\alpha \omega_{1} / 50 \cdot(\alpha-1) \quad \Longrightarrow \omega_{1}=\frac{(\pi / 4-6 / \alpha) 50}{\alpha(\alpha-1)}
$$

Let us now pick α to maximize ω_{1} and, correspondingly, maximize the mid frequency attenuation caused by the lag compensation.
Since ω_{1} is a function of α, we have

$$
\frac{\partial \omega_{1}}{\partial \alpha}=0 \Rightarrow \frac{6}{\alpha^{2}} \frac{50}{\alpha(\alpha-1)}-\frac{(2 \alpha-1)(\pi / 4-6 / \alpha) 50}{\alpha^{2}(\alpha-1)^{2}}=0
$$

Lag Compensation - 6

$$
\left.\begin{array}{l}
\frac{300}{\alpha}-\frac{(2 \alpha-1)(\pi / 4-6 / \alpha) 50}{(\alpha-1)}=0 \\
\approx 300 / \alpha-25 \pi+600 / \alpha=0 \\
=\Rightarrow \frac{900}{25 \pi} \approx 12
\end{array}\right\}=\Rightarrow>\begin{aligned}
& \alpha=12 \\
& \omega_{\mathrm{c}}=4.16 \mathrm{rads} / \mathrm{sec} \\
& \omega_{1}=.146 \mathrm{rads} . / \mathrm{sec} \\
& \alpha \omega_{1}=1.67 \mathrm{rads} / \mathrm{sec}
\end{aligned}
$$

MUST EVALUATE ACTUAL ω_{c} and ϕ_{m}
Therefore, the compensator $\mathrm{H}(\mathrm{s})$ is $\mathrm{H}(\mathrm{s})=\frac{1+\mathrm{s} / 1.752}{1+\mathrm{s} / .146}$
Bode Diagram

Bode plots of lag compensated sytem

Lag Compensation－ 7

The simulated step responses for the compensated systems are shown in Fig III．23．However， should also draw root locus and look at sensitivity with respect to change in parameters， ［ $K, \alpha, \omega_{1}, G(s)$, etc．］

Some Comments：
Suppose we were using gain compensation，K．The frequency ω^{*} for which $\measuredangle K G(j \omega)=-135^{\circ}$ is found from：
$\measuredangle \mathrm{KG}\left(\mathrm{j} \omega^{*}\right) \sim-\pi / 2-\omega^{*} / 50=-3 \pi / 4==>\omega^{*} \approx 6.5 \mathrm{rads} / \mathrm{sec}$ and at that frequency，
$|K G(j 6.5)| \sim 50 / 6.5 \approx 7.6$
Result：
If pure gain compensation were to be used，the gain would be decreased by 7.6 ，which establishes a lower limit on the value of α to be used for the lag compensator．Also， ω^{*} establishes our upper limit on the crossover frequency ω_{c} for the lag compensator．

Review of Lag Compensation

Best way to get into it is to look at pros and cons of lag compensation. Review of lag compensation

- Determine K for suitable K_{v} or Low-frequency range accuracy
- Sketch the Bode plot of KG(s)
- Decide need for compensation
- select appropriate region for crossover where $\angle \mathrm{KG}(\mathrm{s})=-180^{0}+\varphi_{\mathrm{m}}+5^{0}-10^{0}$
- Find gain reduction α needed in crossover region
$=\Rightarrow \quad$ compute α, ω_{1} and ω_{c} $\approx 1 / \alpha$ around ω_{c}
Basic Equations: (1) $\left|\mathrm{KG}\left(\mathrm{j} \omega_{\mathrm{c}}\right) \mathrm{H}\left(\mathrm{j} \omega_{\mathrm{c}}\right)\right|=1$ solve for ω_{c} in terms of α
(2) $\measuredangle \mathrm{G}\left(\mathrm{j} \omega_{\mathrm{c}}\right)+\underbrace{\measuredangle \mathrm{H}\left(\mathrm{j} \omega_{\mathrm{c}}\right)})=-180^{0}+\phi_{\mathrm{m}}+5^{0}-10^{0}$ $-(\alpha-1) \omega_{1} / \omega_{\mathrm{c}}$ radians is generally small $\approx 6^{\circ}$ or so.
(3a) $\alpha \omega_{1}=\omega_{c} / 10$
(OR)
(3b) maximize ω_{\perp} w.r.t. $\alpha==>\partial \omega_{1} / \partial \alpha=0$

PROS and CONS of Lag Compensation:

PROS	\quad CONS
Lowers HF gain to help eliminate noise	Makes system more sluggish (adds lag, reduces BW)
Keeps good low freq. asymptote	Needs low crossover freq
High K K_{v}	May reduce Mid Freq. gain
Built of Passive RC elements	Must have ϕ_{m} OK near intended ω_{c}

Lead Compensation - 1

So lag network will not always work. Plant $\mathrm{G}(\mathrm{s})$ must have small $\measuredangle \mathrm{G}(\mathrm{s})$ already.
For example, if we have a system with $\mathrm{G}(\mathrm{s})=1 / \mathrm{s}^{2}$, lag compensation is NO Good!!
Lag: Achieves ϕ_{m} by lowering ω_{c} via gain reduction. . . indirect approach
Lead: Adds phase lead directly in cross over region (direct approach)
Recall Lead: $\mathrm{H}(\mathrm{s})=\frac{1+\mathrm{s} / \omega_{1}}{1+\mathrm{s} / \beta \omega_{1}} ; \beta>1$

Note: adds HF gain $\beta==>$ increases gain crossover frequency !!

$$
==>\text { increases BW of the system }
$$

Idea is to put ω_{c} at $\omega_{\text {max }}$ to get full benefit of phase lead.
For a given $\phi, \beta=\frac{1+\sin \phi}{1-\sin \phi}$
Lead network straddles ω_{c}

Lead Compensation - 3

Therefore, use lead compensator to give required ϕ_{m} at present $\omega_{\mathrm{c}} \approx 31.5 \mathrm{r} / \mathrm{s}$.
Recall lead compensator: $\mathrm{H}(\mathrm{s})=\frac{1+\mathrm{s} / \omega_{1}}{1+\mathrm{s} / \beta \omega_{1}}$
(3) Find amount of additional phase needed
$\angle K G=-162^{\circ}==>\phi_{\mathrm{m}}=18^{\circ}==>$ need an additional 27° phase. But, since introduction of lead compensator will increase crossover frequency we will need more phase than initially anticipated So, let us plan for increase in ω_{c} and hence more lead.
Pick $\phi_{\text {max }}=\pi / 6=30^{\circ}$ So, required $\beta=\frac{1+\sin 30^{\circ}}{1-\sin 30^{\circ}}=3$

Plan for an extra $5^{0}-10^{0}$
(4) Pick ω_{1}

Place $\omega_{\mathrm{c}} \approx \sqrt{\beta} \omega_{1}$. So, What to pick for ω_{1} ?
Must be careful, since $\omega_{1} \& \beta \omega_{1}$ are where the action is, unlike lag which is way out.
To find cross over $|\mathrm{KGH}|_{\omega_{c}}=1$ note: $|\mathrm{H}|_{\omega_{\mathrm{c}}}=\omega_{\mathrm{c}} / \omega_{1}$ for $\omega_{1}<\omega_{\mathrm{c}}<\beta \omega_{1}$

$$
\begin{aligned}
& \Rightarrow \frac{100}{\omega_{\mathrm{c}}} \frac{\omega_{\mathrm{c}}}{10} \cdot \frac{\omega_{\mathrm{c}}}{\omega_{1}}=1 \Rightarrow \frac{1000}{\omega_{1} \cdot \omega_{\mathrm{c}}}=1 \Rightarrow \frac{1000}{\sqrt{\beta} \omega_{1}^{2}}=1 \Rightarrow \omega_{1}=\sqrt{1000 / 1.7}=24.2 \mathrm{r} / \mathrm{s} \\
& \Rightarrow \sqrt{\beta} \omega_{1}=\omega_{\mathrm{c}}=(24.2)(1.7)=41 \mathrm{r} / \mathrm{s} \\
& \text { Equivalently, find } \omega_{c} \text { where } \\
& \left|K G\left(j \omega_{c}\right)\right|=\frac{1}{\sqrt{\beta}}=\frac{\omega_{1}}{\omega_{c}}
\end{aligned}
$$

$$
\beta \omega_{1}=(24.2)(3)=72.6 \mathrm{r} / \mathrm{s}
$$

Lead Compensation - 4

Substituting the values of β and ω_{1}, the compensator $\mathrm{H}(\mathrm{s})$ is:

$$
\mathrm{H}(\mathrm{~s})=\frac{1+\mathrm{s} / 24.2}{1+\mathrm{s} / 72.6}
$$

Look at the Bode plots of the compensated system:

Bode plots of lead compensated sytem

Review of Lead Compensation

1．Determine K for K_{v} or mid－range gain
2．Sketch Bode of $\mathrm{KG}(\mathrm{s}) \&$ decide compensation
3．Pick ϕ_{m} required（ plan for increased ω_{c} ）
4．Equations $|\mathrm{KGH}|=1 \& \omega_{\mathrm{c}}=\sqrt{\beta} \omega_{1}$

$$
\text { use }|\mathrm{H}|_{\omega=\omega_{\mathrm{c}}}=\frac{\omega_{\mathrm{c}}}{\omega_{1}}=\frac{1}{|K G|_{\omega=\omega_{\mathrm{c}}}} \& \beta=\frac{1+\sin \phi}{1-\sin \phi}
$$

PROS

Higher BW \＆faster response

CONS

－Added gain increases crossover freq． \Rightarrow we need more added phase than anticipated．
－Can＇t use lead if decrease in ϕ_{m} due to higher crossover＞amount increased by lead network
－Usually don＇t like ω_{c} too big（noise BW）

Lag/Lead Compensation - 1

Recall that lead compensation increases the crossover frequency while lag compensation decreases it. Note that the advantages of a lag tend to be the disadvantages of a lead. So, good to use together as they are complementary.

$$
H(s)=\frac{\left(1+\mathrm{s} / \alpha \omega_{1}\right)\left(1+\mathrm{s} / \omega_{2}\right)}{\left(1+\mathrm{s} / \omega_{1}\right)\left(1+\mathrm{s} / \beta \omega_{2}\right)} \quad \alpha, \beta>1 \quad ; \alpha \omega_{1}<\omega_{2}
$$

If $\beta / \alpha<1$, then $|\mathrm{H}(\mathrm{j} \omega)|<1 \forall \omega, \mathrm{H}(\mathrm{s})$ can be realized by a passive RC network
$\frac{V_{2}(s)}{V_{1}(s)}=\frac{\left(1+R_{1} C_{1} s\right)\left(1+R_{2} C_{2} s\right)}{\left(R_{1} C_{1} R_{2} C_{2}+R_{3} C_{1} R_{2} C_{2}\right) s^{2}+\left(R_{1} C_{1}+R_{2} C_{2}+R_{3} C_{1}+R_{2} C_{1}\right) s+1} C_{2}$
Comparing the last equations we have:
$\alpha \omega_{1}=\frac{1}{\mathrm{R}_{1} \mathrm{C}_{1}}, \omega_{2}=\frac{1}{\mathrm{R}_{2} \mathrm{C}_{2}}, ~ \underset{\alpha}{\beta}=\frac{1}{1+\mathrm{R}_{3} / \mathrm{R}_{1}}$ etc
Often see $\alpha=\beta=\Rightarrow R_{3}=0$

Lag/Lead Network

Lag/Lead Compensation - 2

Note:

- Get added phase lead from lead part (keep crossover between ω_{2} and $\beta \omega_{2}$)
- keep crossover low from lag part since don't really offset high frequency gain by much (β / α)
- Design technique is almost total trial \& error to pick $\omega_{1}, \omega_{c}, \alpha, \beta, \omega_{2}$ etc.

Design approach:

1. Pick K for LF accuracy \& plot $\mathrm{K} G(\mathrm{j} \omega)$
2. Locate approximate ω_{1} via mid frequency requirements
3. Locate approximate $\beta \omega_{2}$ via HF requirements
4. Put in $\alpha \omega_{1}, \omega_{2}$ to locate crossover frequency to get good $\phi_{\mathrm{m}} \&$ "fair stretch of -20 db slope" near crossover.
Example: $\quad G(s)=\frac{10}{s(1+\mathrm{s} / 10)}$
Specifications: $1 . \mathrm{K}_{\mathrm{v}}=100$
5. $\phi_{\mathrm{m}} \sim 45^{\circ}$
6. $<2 \%$ error for sinusoidal inputs up to $\omega=1 \mathrm{rads} / \mathrm{sec}$.
7. sinusoidal inputs of greater than $100 \mathrm{rads} / \mathrm{sec}$ should be attenuated to less than 5% at the output.
Design: - $\operatorname{spec} 3 \Rightarrow|K G H|>50$ for $\omega<1$, or $20 \log _{10}|K G H|>34 \mathrm{db}$ for $\omega<1$

- $\operatorname{spec} 4 \Rightarrow \frac{|\mathrm{y}|}{|\mathrm{r}|}=\frac{|\mathrm{KGH}|}{|1+\mathrm{KGH}|}=.05$ for $\omega>100 \mathrm{rads} / \mathrm{sec} \Rightarrow<-26 \mathrm{~dB}$
- $K=10$ for correct K_{v}

Lag／Lead Compensation－ 4

－Design 1：Let $\omega_{c}=10 \mathrm{rad} /$＇sec
Lead $: H_{\text {Lead }}(s)=\frac{0.1091 \mathrm{~s}+1}{0.09168 \mathrm{~s}+1} ;$ Lag $: \quad H_{\text {Lag }}(s)=\frac{\mathrm{s}+1}{7.737 \mathrm{~s}+1}$
$H(s)=H_{\text {Lag }}(s) H_{\text {Lead }}(s) ; \varphi_{m}=45^{0}$
Fail： 25 dB ＠ $1 \mathrm{rad} / \mathrm{sec} ;-36.3 \mathrm{~dB} @ 100 \mathrm{rad} / \mathrm{sec}$ ．Need higher ω_{c}
－Design 2：Let $\omega_{c}=17.5 \mathrm{rad} / \mathrm{sec}$
Lead $: H_{\text {Lead }}(s)=\frac{0.08194 s+1}{0.03985 s+1} ;$ Lag $: \quad H_{\text {Lag }}(s)=\frac{0.5714 s+1}{2.331 s+1}$
$H(s)=H_{\text {Lag }}(s) H_{\text {Lead }}(s) ; \phi_{m}=45.6^{0}$
Pretty close：33．2dB＠ $1 \mathrm{rad} / \mathrm{sec} ;-26.6 \mathrm{~dB} @ 100 \mathrm{rad} / \mathrm{sec}$ ．

Bode Diagram

$\mathrm{Gm}=\operatorname{lnf} \mathrm{dB}(\mathrm{at} \operatorname{lnf} \mathrm{rad} / \mathrm{sec}), \mathrm{Pm}=45 \mathrm{deg}($ at $10 \mathrm{rad} / \mathrm{sec})$

Numerical Optimization（e．g．，via genetic algorithm）：
$\min _{K, \alpha, \beta, \omega_{1}, \omega_{2}} \int_{0}^{\infty}\left|t^{\alpha} e(t)\right|^{p} d t ; \alpha=0, p=1 \Rightarrow I A E ; \alpha=0, p=2 \Rightarrow I S E$ $\alpha=1, p=1 \Rightarrow$ Integral absolute time－weighted error（IATE） $\alpha=1, p=2 \Rightarrow$ Integral squared time－weighted error（ISTE） subject to ：

$$
\begin{aligned}
& \text { (i) } 180^{0}+\angle G\left(j \omega_{c}\right) H\left(j \omega_{c}\right) \geq \phi_{m} \quad \text { (v) } B^{-} \leq u(t) \leq B^{+} \\
& \text {(ii) } K \lim _{s \rightarrow 0} s G(s) \geq K_{v} \\
& \text { (iii) } K\left|G(j \omega) \frac{\left(1+j \omega / \alpha \omega_{1}\right)}{\left(1+j \omega / \omega_{1}\right)} \frac{\left(1+j \omega / \omega_{2}\right)}{\left(1+j \omega / \beta \omega_{2}\right)}\right| \geq G_{m f} \forall \omega \leq \omega_{m f} \\
& \text { (iv) } K\left|G(j \omega) \frac{\left(1+j \omega / \alpha \omega_{1}\right)}{\left(1+j \omega / \omega_{1}\right)} \frac{\left(1+j \omega / \omega_{2}\right)}{\left(1+j \omega / \beta \omega_{2}\right)}\right| \leq G_{h f} \forall \omega \geq \omega_{h f}
\end{aligned}
$$

Additional Examples - 2

(3) The phase margin requirement is not met. By using a lag compensator, we can lower the crossover frequency to obtain the desired phase margin.
(4) Determine ω_{c}

$$
\begin{aligned}
& -\pi / 2-\omega_{\mathrm{c}} / 10-\omega_{\mathrm{c}} / 10=-3 \pi / 4 \\
& \omega_{\mathrm{c}} / 5=\pi / 4 \Rightarrow \omega_{\mathrm{c}}=5 \pi / 4=3.93 \mathrm{r} / \mathrm{s}
\end{aligned}
$$

(5) Pick α

$$
\left.|K G(j \omega) H(j \omega)|\right|_{\omega_{c}=3.93} ^{=1} \frac{10}{\omega_{\mathrm{c}} \alpha}=1 \Rightarrow=>\alpha=2.86
$$

(6) Pick ω_{1}

$$
\alpha \omega_{1}=\omega_{c} / 10 \quad \Rightarrow \quad \omega_{1}=.122
$$

Therefore the compensator is

$$
\mathrm{H}(\mathrm{~s})=\frac{(1+\mathrm{s} / .35)}{(1+\mathrm{s} / .122)}
$$

With this compensator the crossover frequency is $3.2 \mathrm{r} / \mathrm{s}$ giving a phase margin of 50°.
Shown in figure is the root locus of the closed loop system. Also shown in figure
is the simulated step response of the system. Should also examine sensitivity.

Additional Examples - 3

- Root locus of closed-loop system

- Simulated step responses of closed-loop system

Additional Examples - 4

EXAMPLE 2
Design a suitable compensator which meets the specs for the following system:

$$
\mathrm{G}(\mathrm{~s})=\frac{\mathrm{K}}{\mathrm{~s}(\mathrm{~s}+5)(\mathrm{s}+10)} \quad \begin{array}{ll}
\text { (1) } \mathrm{K}_{\mathrm{v}}=100 \\
\text { (2) } \phi_{\mathrm{m}}=45^{\circ}
\end{array}
$$

(1) We must make $\mathrm{K}=5000$ in order to get $\mathrm{K}_{\mathrm{v}}=100$.

$$
K G(s)=\frac{5000}{s(s+5)(s+10)}
$$

(2) Bode Plot KGH

Bode Diagram
$\mathrm{Gm}=-16.5 \mathrm{~dB}$ (at $7.07 \mathrm{rad} / \mathrm{sec}), \mathrm{Pm}=-40.4 \mathrm{deg}$ (at $15.9 \mathrm{rad} / \mathrm{sec}$)

Additional Examples - 5

The phase margin specification is not satisfied. Moreover, it is not possible to design a lead compensator since the phase shift is very large for negative gain. A lag compensator does exist, but it requires a pole very near the origin, with a pole-zero ratio of more than thirty. In practice, a pole very close to origin is not desirable, since the corresponding compensator would require an RC network with a large time constant.
A lag-lead compensator can, however, be obtained by selecting a crossover frequency between 4 and 10. For $\omega_{c}=8$, the following compensator is obtained, with $\alpha=\beta=13.09$.

$$
\mathrm{H}(\mathrm{~s})=\frac{(\mathrm{s}+3.422)(\mathrm{s}+.7587)}{(\mathrm{s}+44.5)(\mathrm{s}+.058)}
$$

This compensator gives the desired phase margin of 45°. The simulated step response are Shown in the figure.

Additional Examples－ 7

－Simulated step responses of closed－loop system

\pm \vdots \vdots \vdots \vdots

1

Additional Examples－ 9

Since the phase margin is 0° ，a lag compensator will not work．By using a lead compensator We can add 45° phase at the crossover frequency．
（3）Determine β
Anticipating a few degrees of phase due to the compensator：
［Note this is not necessary since $\measuredangle \mathrm{G}(\mathrm{j} \omega)$ is flat everywhere！］

$$
\beta=\frac{1+\sin 48^{\circ}}{1-\sin 48^{\circ}} \Rightarrow \beta=6.786
$$

（4）$|\mathrm{KGH}|=1$ using $|\mathrm{H}|=\omega_{\mathrm{c}} / \omega_{1}$ and $\omega_{\mathrm{c}}=\sqrt{\beta} \omega_{1}$

$$
\begin{array}{rll}
\frac{10}{\left(\omega_{c}\right)^{2}} \cdot \frac{\omega_{c}}{\omega_{1}}=1 & \Rightarrow & \omega_{1}^{2}=10 / \sqrt{\beta} \\
& =\Rightarrow & \omega_{1}=1.959 \\
& =\Rightarrow & \beta \omega_{1}=13.29
\end{array}
$$

Therefore the compensator is：

$$
H(s)=\frac{(1+\mathrm{s} / 1.959)}{(1+\mathrm{s} / 13.29)}
$$

With this compensator the crossover frequency is $5.1 \mathrm{r} / \mathrm{s}$ resulting in a phase margin of 48° ．
The root locus of the closed loop system is shown in figure and the step response is shown in the next figure．

Critique of Bode-based H(s) Designs

- Classical design techniques are simple to use.
- graphical techniques
- some trial and error
- Designs are easy to implement via analog circuitry.
- Consider Lag-lead compensator when neither alone will suffice.
\Rightarrow pick $\omega_{2}, \beta, \omega_{1}, \alpha$
- Most-used design technique
- there are many such compensators "out there"
- can they be modified for digital implementation?

But there are limitations -

$$
\mathrm{H}(\mathrm{~s}) \rightarrow \tilde{\mathrm{H}}(\mathrm{z})
$$

- Simple lag, lead, etc., may not be sufficient.
- High-order compensator design via Bode, or root locus, is a challenging process, especially for humans.
- Compensation does not use all available info
- uses only $y(t)$, not states $\underline{x}(t)$
- Difficult to extend procedure to multi-input, multi-output systems.
(Personally, I prefer Bode design approach over root locus.)

PID（Proportional－Integral－Derivative）Controllen

－Most common packaged form of controller
－Very popular in process control industry
－Continuous PID， $\mathrm{u}(\mathrm{s})=\mathrm{H}(\mathrm{s}) \mathrm{e}(\mathrm{s})$ ，

$\mathrm{T}_{1}=$ integral or reset time
（big number usually）
$\mathrm{T}_{2}=$ derivative time
$\mathrm{N} \approx 2 \rightarrow 20$（usually fixed） （derivative gain）
－Integral term not necessary if there is an integrator $(\mathrm{k} / \mathrm{s})$ in the loop already．
－Equivalent to lead compensator（PD part）＋integral term

PD：	$1+\frac{\mathrm{T}_{2} \mathrm{~s}}{1+\mathrm{T}_{2} \mathrm{~s} / \mathrm{N}}$		$\frac{1+\mathrm{s} / \omega_{2}}{1+\mathrm{s} / \beta \omega_{2}}$	$\beta \omega_{2}=\frac{N}{T_{2}}$
with	$\left.\begin{array}{l} \mathrm{N}=\beta-1 \\ \mathrm{~T}_{2}=\frac{\beta-1}{\beta \omega_{2}} \end{array}\right\}$	or	$\left\{\begin{array}{l} \beta=N+1 \\ \omega_{2}=\frac{N}{(N+1) T_{2}} \end{array}\right.$	$\begin{aligned} & \omega_{2}=\frac{N}{(N+1) T_{2}} \\ & \beta=N+1 \end{aligned}$

－Various＂tuning rules＂for $\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~K}$ exist．
－Ziegler and Nichols（1942）
－Not all parts are necessary for good control（e．g．，P，PI，PD，．．．）

PID Controller Configurations－ 1

－Implementation－＂Textbook＂Sum up 3 parts separately：

$$
U I(t)=\frac{1}{T_{1}} \int_{0}^{t} e(\tau) d \tau ; U P(t)=e(t) ; \frac{d}{d t} U D(t)=-\frac{N}{T_{2}} U D(t)+N \frac{d}{d t} e(t)
$$

－Alternate Implementations for proportional and derivative actions
$U P(t)=b r(t)-y(t) ; \frac{d}{d t} U D(t)=-\frac{N}{T_{2}} U D(t)+N \frac{d}{d t}[c r(t)-y(t)]$

Two DOF P－I－D
$b=$ set point weighting for proportional control $(b<1) \Rightarrow$ extra zero for $N \rightarrow \infty \Rightarrow \%$ overshoot goes down
$c=$ set point weighting for derivative control（often set to zero）
－with b and c ，you have two degrees of freedom in a PID $u(s)=H_{r}(s) r(s)-H(s) y(s)$ where $H_{r}(s)=K\left[b+\frac{1}{T_{1} s}+c \frac{T_{2} s}{1+T_{2} s / N}\right]$ \＆
$H(s)=K\left[1+\frac{1}{T_{1} s}+\frac{T_{2} s}{1+T_{2} s / N}\right] \Rightarrow T(s)=\frac{G(s) H_{r}(s)}{1+G(s) H(s)}$
$\Rightarrow H_{r}(s)$ gives extra zeros as roots of $T_{1} T_{2}\left(c+\frac{b}{N}\right) s^{2}+\left(T_{1} b+\frac{T_{2}}{N}\right) s+1=0$

$$
b=c=0 \Rightarrow \text { zero at }-\frac{N}{T_{2}} \rightarrow-\infty \text { as } N \rightarrow \infty
$$

$$
\Rightarrow \text { no extra zeros }
$$

$$
\begin{aligned}
& c=0 \Rightarrow \text { zeros at }-\frac{1}{b T_{1}} \text { and }-\frac{N}{T_{2}} \\
& \Rightarrow \text { one zero at }-\frac{1}{b T_{1}} \text { as } N \rightarrow \infty
\end{aligned}
$$

PID Controller Configurations - 2

- $c=0 \Rightarrow$ derivative of output form
- If r suddenly changes, e.g., a step change, then $d e / d t$ may be large and UD will have a "spike" at time t. This is undesirable.
- So, modify UD computation to use only dy/dt.
- Since $y(t)$ cannot change too much, UD will be OK.
-CL stability is unaffected (stability not a function of r).
- Often times, $\mathrm{y}(\mathrm{t})$ is filtered via $G_{f}(s)=1 /\left(1+s T_{f}\right)$
- $b=c=0 \Rightarrow$ "set-point on I" structure
- Move P to act only on y also, UP $=-\mathrm{y}(\mathrm{k})$
- Only integral compensation uses error signal.
- Popular in process control (keeps control signal very smooth).
- Series form $(N \rightarrow \infty)$

$H(s)=K\left[1+\frac{1}{T_{1} s}+T_{2} s\right]=K^{\prime}\left(1+\frac{1}{T_{1}^{\prime} s}\right)\left(1+T_{2}^{\prime} s\right)$
$\Rightarrow T_{1}=T_{1}^{\prime}+T_{2}^{\prime} ; K=K^{\prime} \frac{T_{1}}{T_{1}} ; T_{2}=\frac{T_{1}^{\prime} \cdot T_{2}^{\prime}}{T_{1}}$
$\Rightarrow K^{\prime}=\frac{K}{2}\left(1+\sqrt{1-4 T_{2} / T_{1}}\right) ; T_{1}^{\prime}=\frac{K^{\prime} T_{1}}{K} ; T_{2}^{\prime}=\frac{T_{1} T_{2}}{T_{1}^{\prime}}$
Note $: T_{1}>T_{1}^{\prime}, K>K^{\prime}$ while $T_{2}<T_{2}^{\prime}$$\quad \begin{aligned} & \Rightarrow T_{1}^{\prime 2}-T_{1}^{\prime} T_{1}+T_{1} T_{2}=0 \\ & \Rightarrow \frac{T_{1}^{\prime}}{T_{1}}=\frac{1}{2}\left(1+\sqrt{1-4 T_{2} / T_{1}}\right)\end{aligned}$
$+$

Integral Windup Modifications - 1

- A problem that arises when u is limited, e.g.,

$$
\mathrm{B}^{-} \leq \mathrm{u}(\mathrm{t}) \leq \mathrm{B}^{+}
$$

(symmetric limits are most common, $\mathrm{B}^{-}=-\mathrm{B}^{+}$)

- Limits are imposed by the system under control, e.g., actuator constraints.
- Match these limits in controller software:

$$
\begin{aligned}
& \text { if }\left(\mathrm{u} \geq \mathrm{B}^{+}\right) \text {set } u=\mathrm{B}^{+} \text {, flag }=+1 \\
& \text { if }\left(\mathrm{u} \leq \mathrm{B}^{-}\right) \text {set } u=\mathrm{B}^{-} \text {, flag }=-1 \\
& \text { else flag }=0
\end{aligned}
$$

- The control probably saturated because $\mathrm{e}(\mathrm{t})$ was large.
- Because u is limited the error e will not be reduced to zero as fast (slower system).
- This is not indicative of a steady-state e.
=> Turn off/skip the integration of $\mathrm{e}(\mathrm{t})$ in UI if the last control value was at a limit
Conditional integration: if $(f l a g=0)$ do integration, else skip integration
- Integral protection
- Value of UI does not change if/when u is saturated.
- Include PID structures in Cntrl subroutine, OPT = 4 (parallel),5 (derivative),6 (set point), 7(2 DOF),.....

Integral Windup Modifications - 2

- Tracking or back calculation to avoid windup

- Further integration term modifications
- UI removes ss error, but introduces -90° phase lag $=>\mathrm{T}_{1} \sim$ large.
- Common to limit $|\mathrm{UI}|$, e.g., $|\mathrm{UI}|<\mathrm{M}$.
- Consider integrating only when e is small (pros \& cons)
- Alternate implementation forms
- "velocity" form: computes Δu. Best implemented digitally (see Lectures 9 and 10)
-"bumpless" transfer: for changing manual \leftrightarrow auto mode. This is accomplished via "velocity" form and tracking form
- Systems with delays
- Couple P-I(-D) with a Smith predictor
- Systems with oscillatory and unstable poles
- If you have to use PID, use set point on I structure. Need more complicated controllers.

Example (Aström and Wittenmark)

- Lack of integral protection will often result in large overshoots in system response.
- Since long periods of + (or -) e will cause UI to build up large values. Then e reverses...
- Ex. A motor with transfer function $\mathrm{G}(\mathrm{s})=1 / \mathrm{s}(\mathrm{s}+1)$ is to be controlled using a PI controller*

$$
\mathrm{u}(\mathrm{~s})=\mathrm{K}\left[1+\frac{1}{\mathrm{~T}_{1} s}\right] \mathrm{e}(\mathrm{~s})
$$

with $\mathrm{K}=0.4, \mathrm{~T}_{1}=5 \mathrm{sec}$

- Examine step response when $|u(t)| \leq 0.2$, with and without integral windup protection.

* Note: The I part of the controller is not really needed here since $\mathrm{G}(\mathrm{s})$ contains a $1 / \mathrm{s}$.

But it is only an example.

PID Initial Tuning Rules

- Ziegler-Nichols tuning formulas (1942). Can be used on a physical process directly.
- Although no need to model $\mathrm{G}(\mathrm{s})$, the formulas are based on $G(s)=\frac{k_{e^{e}} e^{-L L}}{1+s T} \ldots F O P D T \bmod e l$ Transient Response Method (Reaction Curve Method)
Obtain unit step response of open-loop system. [G(s) must be open-loop stable].

	K	T_{1}	$\mathrm{~T}_{2}$
P	$1 / \mathrm{RL}$	-	-
PI	$0.9 / \mathrm{RL}$	3 L	-
PID	$1.2 / \mathrm{RL}$	2 L	0.5 L

Ultimate Sensitivity Method (Instability Method of Ziegler-Nichols)
dead time (FOPDT) model

1. Use a P controller $(u=K e)$ to stabilize system.
2. Slowly increase gain K until the system is on the stability boundary $\Rightarrow K_{\max }$.
3. Obtain time period of oscillations, $\mathrm{T}_{\mathrm{p}}=2 \pi / \omega_{\mathrm{p}} \Rightarrow \angle \mathrm{K}_{\max } \mathrm{G}\left(\mathrm{j} \omega_{\mathrm{p}}\right)=-180^{\circ}$ and $\left|\mathrm{K}_{\max } \mathrm{G}\left(\mathrm{j} \omega_{\mathrm{p}}\right)\right|=1$

	K	T_{1}	$\mathrm{~T}_{2}$
P	$0.5 \mathrm{~K}_{\max }$	-	-
PI	$0.45 \mathrm{~K}_{\max }$	$\mathrm{T}_{\mathrm{p}} / 1.2$	-
PID	$0.6 \mathrm{~K}_{\max }$	$\mathrm{T}_{\mathrm{p}} / 2$	$\mathrm{~T}_{\mathrm{p}} / 8$

- A "guideline" for selecting sampling interval, h

$$
\left.\mathrm{h} \sim 0.03 \mathrm{~T}_{\mathrm{p}} \text { to } 0.05 \mathrm{~T}_{\mathrm{p}} \text { (20-30 times max frequency }\right)
$$

Recent Tuning Methods

- Find the best-fit FOPDT model to a plant transfer function (must be open-loop stable)
$\min _{L, T} J=\int_{0}^{\infty}\left|t^{\alpha}\left[g(t)-\frac{G(0)}{T} \mathrm{e}^{-(t-L) / T} U(t-L)\right]\right|^{p} d t ; R=K / T=G(0) / T ; g(t)=$ impulse response of OL system
- $\alpha=0$ and $p=2 \Rightarrow$ Integral squared error (ISE)
- $\alpha=0$ and $p=1 \Rightarrow$ Integral absolute error (IAE)
- Use Ziegler-Nichols tuning formulas using identified parameters.
- Frequency Response Method

Get $K_{\text {max }}\left(=\right.$ gain margin) and ω_{p} from the Bode plot of $G(j \omega)$ where $\angle G\left(j \omega_{p}\right)=-180^{\circ}$.
Evidently, $k_{g}=G(0)=d c$ gain
From the FOPDT model to be matched, $G(0) e^{-j \omega_{p} L} /\left(1+j \omega_{p} T\right)=-1 / K_{\text {max }}+j 0$

$$
\begin{aligned}
& \frac{G(0)\left[\cos \omega_{p} L-\omega_{p} T \sin \omega_{p} L\right]}{1+\left(\omega_{p} T\right)^{2}}=-\frac{1}{K_{\max }} \\
& \sin \omega_{p} L+\omega_{p} T \cos \omega_{p} L=0
\end{aligned}
$$

- Match first and second order derivatives of $G(s)$

Can show that if $G_{a}(s)=\frac{k_{g} e^{-s L}}{1+T s} \Rightarrow \frac{d G_{a} / d s}{G_{a}(s)}=-L-\frac{T}{1+T s} ; \frac{d^{2} G_{a} / d s^{2}}{G_{a}(s)}-\left(\frac{d G_{a} / d s}{G_{a}(s)}\right)^{2}=\left(\frac{T}{1+T s}\right)^{2}$
So, $L+T=-\left.\frac{d G_{a} / d s}{G_{a}(s)}\right|_{s=0} \approx-\left.\frac{d G / d s}{G(s)}\right|_{s=0} ; T^{2}+(L+T)^{2}=\left.\left.\frac{d^{2} G_{a} / d s^{2}}{G_{a}(s)}\right|_{s=0} \approx \frac{d^{2} G / d s^{2}}{G(s)}\right|_{s=0} ; k_{g}=G(0)$

Shaping Closed-loop Transfer Function

- Guillemin-Truxal Procedure

$$
T(s)=\frac{G(s) H(s)}{1+G(s) H(s)} \Rightarrow H(s)=\frac{T(s)}{1-T(s)} \cdot \frac{1}{G(s)}
$$

- (\#poles -\#zeros) of $T(s) \geq$ (\#poles -\#zeros) of $G(s)$
- $G(s)$ must be stable and minimum phase

- Example

$$
\begin{aligned}
& G(s)=\frac{4}{s(s+1)(s+5)} \\
& \text { Want } T(s)=\frac{210(s+1.5)}{(s+1.75)(s+16)\left(s^{2}+3 s+11.25\right)} \\
& H(s)=\frac{T(s)}{1-T(s)} \frac{1}{G(s)}=\frac{52.5(s+1.5)}{(s+14.86)} \text { after cancelling terms }
\end{aligned}
$$

Inverse-based Controller \& Disturbance Rejection

- Fix Loop Gain
- Recall like to have - 20 dB slope near cross-over. So, select $L G_{\text {ain }}=\omega_{c} / s \Rightarrow H(s) \approx G^{-1}(s) \omega_{d} / s$
- Recall

$$
\begin{aligned}
& y / d=G_{d}(s) /\left(1+L G_{\text {ain }}(s)\right) \Rightarrow\left|1+L G_{\text {ain }}(s)\right|>\left|G_{d}(s)\right| \Rightarrow \mid \underline{L G_{\text {ain }}(s)|\approx| G_{d}(s) \mid \text { near } \omega_{c}} \\
& \Rightarrow|H(s)|>\left|H_{\min }(s)\right| \approx G^{-1}(s) G_{d}(s) \mid
\end{aligned}
$$

- For disturbance rejection in the steady state, need a zero at $s=0$

$$
\text { so, } H(s)=K\left(1+\frac{1}{T_{i} s}\right) G^{-1}(s) G_{d}(s)
$$

- Example (Skogestad \& Postelthwaite)
$G(s)=\frac{200}{(10 s+1)} \frac{1}{(0.05 s+1)^{2}} ; G_{d}(s)=\frac{100}{(10 s+1)}$
(i) $\operatorname{From}\left|\underline{L G_{a i n}}(\mathrm{~s})\right| \approx G_{d}(s)=\frac{100}{(10 s+1)}$

$$
\begin{aligned}
& \text { Specs: } \\
& \text { rise time, } t_{r}=\frac{1.8}{\omega_{c}} \leq 0.3 \mathrm{sec} \Rightarrow \omega_{c} \geq 6 \mathrm{rad} / \mathrm{sec} \\
& \text { overshoot } \leq 5 \% \Rightarrow \zeta \approx 0.7 \\
& \left|y_{d}(\mathrm{t})\right| \leq 0.1 \text { after } 3 \text { seconds } \Rightarrow \operatorname{Re}(p) \leq-1
\end{aligned}
$$

$\Rightarrow H(s) \approx G^{-1}(s) G_{d}(s)=\frac{1}{2}(0.05 s+1)^{2} \approx \frac{1}{2}$
(ii) $H(s)=\frac{1}{2}\left(1+\frac{1}{T_{i} s}\right) ; \frac{1}{T_{i}} \approx 0.1 \omega_{c} \Rightarrow T_{i} \approx 1 / 0.6$
$\phi_{m} \approx 24^{0} \ldots$ too small
(iii) add lead to $H(s)$ and increase gain $\Rightarrow H(s)=\left(1+\frac{0.6}{s}\right) \frac{0.05 s+1}{0.005 s+1}$

Internal Model Control (IMC)

- Two-step process
- Nominal Performance: Design $\tilde{Q}(s)$ to yield optimal tracking and disturbance rejection (ignore m / s noise and model uncertainty)
- Robust Stability and Performance: Use an IMC filter $f(\mathrm{~s})$ so that $Q(s)=\tilde{Q}(s) f(s)$ is proper and trade-off performance with smoothness of control action and robustness to m / s noise and model uncertainty

Re call $y(s)=T(s)[r(s)-v(s)]+G_{d}(s) S(s) d(s)$
$T(s)=\frac{G(s) Q(s)}{1+Q(s)[G(s)-\bar{G}(s)]} \Rightarrow Q(s)=\frac{H(s)}{1+\bar{G}(s) H(s)}$ or $H(s)=\frac{Q(s)}{1-\bar{G}(s) Q(s)}$
When $\bar{G}(s)=G(s), T(s)=G(s) Q(s)$ and $S(s)=1-G(s) Q(s) \Rightarrow Q(s)=H(s) S(s)=H(s)[1-T(s)]$
$\Rightarrow H(s)=\frac{Q(s)}{1-T(s)}=\frac{1}{G(s)}\left(\frac{T(s)}{1-T(s)}\right) \ldots$ Guillemin -TruxalProcedure

IMC Design Process

- Design for Nominal Performance:

1. Factor the OL system model into an invertible minimum-phase part $G_{m}(\mathrm{~s})$ and a a non-invertible all-pass part $G_{a}(\mathrm{~s})$

$$
G(s)=G_{m}(s) G_{n m}(s)=G_{m}(s) G_{a}(s) ; \quad G_{n m}(s)=e^{-s L} \prod_{i} \frac{-s+z_{i}}{s+z_{i}}=G_{a}(s)
$$

2. Let $T(\mathrm{~s})=f(\mathrm{~s}) G_{a}(\mathrm{~s}) \Rightarrow Q(\mathrm{~s})=T(s) / G(s)=f(s) / G_{m}(s) \Rightarrow H(\mathrm{~s})=Q(s) /[1-T(s)]$

$$
H(s)=\frac{f(s)}{G_{m}(s)} \frac{1}{1-f(s) G_{a}(s)}=\frac{1}{G_{m}(s)} \frac{1}{f^{-1}(s)-G_{a}(s)}
$$

$$
\begin{aligned}
& f(s)=\frac{1+\beta s}{(1+\lambda s)^{n}} \text { for tracking steps } \Rightarrow f(0)=1 \\
& f(s)=\frac{1+n \lambda s}{(1+\lambda s)^{n}} \text { for tracking ramps } \Rightarrow f(0)=1, d f /\left.d s\right|_{s=0}=0 \\
& n \text { is selected to make } Q(s) \text { proper. }
\end{aligned}
$$

- Design for Robust Stability and Robust Performance:

Recall from $R S$ discussion, $\left|\frac{G(j \omega)-\bar{G}(j \omega)}{\bar{G}(j \omega)}\right| \leq w_{T}(\omega) \Rightarrow|T(j \omega)| \leq \frac{1}{w_{T}(\omega)}$
Pick λ (and β for tracking steps) to satisfy RS constraints.

IMC Design Examples - 1

Example 1: consider a minimum phase system given by
$G(s)=\frac{1000}{s(s+10)}=G_{m}(s) \Rightarrow G_{a}(s)=1$
Want: $(i) K_{v} \geq 100 ;(i i) 20 \log _{10}|G(j \omega) H(j \omega)|>34 d B$ for $\omega<1 \mathrm{rad} / \mathrm{sec}$, (iii) $\phi_{m} \geq 45^{0}$
(iv) $20 \log _{10}|G(j \omega) H(j \omega)|<-26 d B$ for $\omega>100 \mathrm{rad} / \mathrm{sec}$

Design 2
To track steps, select $T(s)=f(s)=\frac{1+\beta s}{(1+\lambda s)^{3}} ; \beta=3 \lambda$ to track ramps
$Q(s)=\frac{s(s+10)(1+\beta s)}{1000(1+\lambda s)^{3}}$
$\Rightarrow H(s)=\frac{s(s+10)(1+\beta s)}{1000\left[(1+\lambda s)^{3}-(1+\beta s)\right]}=\frac{(s+10)(1+\beta s)}{1000 \lambda^{3}\left[s^{2}+\frac{3}{\lambda} s+\frac{1}{\lambda^{3}}(3 \lambda-\beta)\right]}$ 要斋
Design 1: $\lambda=0.1$ and $\beta=0.3 \Rightarrow H(s)=\frac{(s+10)(1+0.3 s)}{s(s+30)}$

$\omega_{c}=10 \mathrm{rad} / \mathrm{sec} ; \phi_{m}=53.1^{0} ; 20 \log _{10}|G(j \omega) H(j \omega)|_{\omega=1}=30.1 d B ; 20 \log _{10}|G(j \omega) H(j \omega)|_{\omega=100}=-31.1 d B$
Design $2: \lambda=0.08$ and $\beta=0.24 \Rightarrow H(s)=\frac{1.9531(s+10)(1+0.24 s)}{s(s+37.5)}$
$\omega_{c}=12.5 \mathrm{rad} / \mathrm{sec} ; \phi_{m}=53.1^{0} ; 20 \log _{10}|G(j \omega) H(j \omega)|_{\omega=1}=34.4 d B ; 20 \log _{10}|G(j \omega) H(j \omega)|_{\omega=100}=-28.2 d B$

IMC Design Examples - 2

Example 2: (ideal PID controller) consider a second order system with transport delay

$$
G(s)=\frac{\omega_{n}^{2} e^{-s \tau}}{s^{2}+2 \zeta \omega_{n}+\omega_{n}^{2}} \Rightarrow G_{m}(s)=\frac{\omega_{n}^{2}}{s^{2}+2 \zeta \omega_{n}+\omega_{n}^{2}} \text { and } G_{a}(s)=e^{-s \tau}
$$

To track steps, select $T(s)=f(s) G_{a}(s)=\frac{e^{-s t}}{(1+\lambda s)}$

$$
\begin{aligned}
& H(s)= \frac{1}{G_{m}(s)} \frac{1}{[f(s)]^{-1}-G_{a}(s)}=\frac{s^{2}+2 \zeta \omega_{n}+\omega_{n}^{2}}{\omega_{n}^{2}} \cdot \frac{1}{1+\lambda s-e^{-s \tau}} \approx \frac{s^{2}+2 \zeta \omega_{n} s+\omega_{n}^{2}}{\omega_{n}^{2}} \cdot \frac{1}{(\lambda+\tau) s} \\
& \Rightarrow H(s)=\frac{2 \zeta}{\omega_{n}(\lambda+\tau)}+\frac{1}{(\lambda+\tau) s}+\frac{s}{\omega_{n}^{2}(\lambda+\tau)} \quad \text { Ideal PID controller } \\
& \approx \frac{2 \zeta}{\omega_{n}(\lambda+\tau)}\left[1+\frac{1}{\left(2 \zeta / \omega_{n}\right) s}+\frac{1}{2 \zeta \omega_{n}} s /\left(\frac{1}{1+s / 2 \zeta \omega_{n} N}\right)\right] \\
& \text { makes the controller causal }
\end{aligned}
$$

IMC Design Examples - 3

Example 3: (Distillation column reboiler) consider a non-minimum phase system given by
Chapter 10, section 7 by Braatz in Levine, 1996

$$
\begin{aligned}
& G(s)=\frac{-3 s+1}{s(s+1)} \\
& \text { Want }\left|\frac{G(j \omega)-\bar{G}(j \omega)}{\bar{G}(j \omega)}\right| \leq\left|\frac{2 j \omega+0.2}{j \omega+1}\right| \Rightarrow|T(j \omega)| \leq\left|\frac{j \omega+1}{2 j \omega+0.2}\right| \\
& \text { Know } G_{m}(s)=\frac{3 s+1}{s(s+1)} \text { and } G_{a}(s)=\frac{-3 s+1}{3 s+1}
\end{aligned}
$$

To track ramps, select $T(s)=f(s) G_{a}(s)=\frac{(-3 s+1)(3 \lambda s+1)}{(3 s+1)(1+\lambda s)^{3}}$
$Q(s)=\frac{T(s)}{G(s)}=\frac{f(s)}{G_{m}(s)}=\frac{s(s+1)(3 \lambda s+1)}{(3 s+1)(1+\lambda s)^{3}}$
$H(s)=\frac{1}{G_{m}(s)} \frac{1}{[f(s)]^{-1}-G_{a}(s)}=\frac{s(s+1)}{3 s+1} \cdot \frac{1}{\frac{(1+\lambda s)^{3}}{(3 \lambda s+1)}-\frac{-3 s+1}{3 s+1}}$
$\Rightarrow H(s)=\frac{(3 \lambda s+1)(s+1)}{3 \lambda^{3} s^{3}+\left(9 \lambda+\lambda^{2}\right) \lambda s^{2}+(9+12 \lambda) \lambda s+6}$
Plot of $T(s)$ for $\lambda=5.4$
$\underset{\text { Bode Degagam }}{\text { Upper bound on }|T|}$

CLTF $|T|$

IMC Design Examples - 4

Example 4: Generic IMC procedure on unstable systems leads to unacceptable overshoots in step response and resonant peaks.
Consider an unstable system given by

$$
\begin{aligned}
& G(s)=\frac{6}{s-2} \Rightarrow G(s)=G_{m}(s) G_{a}(s) \text { where } G_{m}(s)=\frac{6}{s-2} ; G_{a}(s)=1 \text { 岁 } \\
& \text { Let } T(s)=f(s)=\frac{(1+\alpha s)}{(1+\lambda s)^{2}} \text {. } \\
& \text { Need } T(2)=1 \text { (Recall } G H=\infty @ \text { a pole of } G(s)) \\
& \Rightarrow \alpha=2 \lambda+2 \lambda^{2}=2 \lambda(1+\lambda) \\
& Q(s)=\frac{T(s)}{G(s)}=\frac{(2 \lambda(1+\lambda) s+1)(s-2)}{6(1+\lambda s)^{2}} \\
& H(s)=\frac{Q(s)}{1-G(s) Q(s)}=\frac{1}{G_{m}(s)} \frac{1}{[f(s)]^{-1}-G_{a}(s)} \\
& =\frac{(s-2)}{6} \cdot \frac{1}{\left[\frac{(1+\lambda s)^{2}}{(2 \lambda(1+\lambda) s+1)}-1\right]} \\
& \Rightarrow H(s)=\frac{[2 \lambda(1+\lambda) s+1]}{6 \lambda^{2} s} \Rightarrow L G=\frac{[2 \lambda(1+\lambda) s+1]}{\lambda^{2} s(s-2)} \\
& \text { System: ts } \\
& \text { Frequency (rad/sec): } 10.3 \\
& \text { Magnitude (dB): } 1.57
\end{aligned}
$$

Bode Diagram

- Generic IMC procedure gives resonant peak at $1 / \lambda \Rightarrow$ overshoot in step response
- Select $1 / \lambda=5 p$ (pole location), closed-loop BW is approximately $28 \mathrm{rad} / \mathrm{sec} \cong 3 / \lambda$
- How to get rid of resonance: Use a different filter (see Campi, Lee and Anderson, Int. J. of Nonlinear and Robust Control, Vol. 4, pp. 757-775, 1994.). There exist better methods.

Weighted Sensitivity \& IMC - 1

- Recall Youla Parameterization $H(s)=Q(s)[I-G(s) Q(s)]^{-1}=Q(s) S^{-1}(s) \Rightarrow Q(s)=H(s) S(s)$
- For stable and proper transfer functions, one can define a transfer function

$$
T(s)=f(s)=\frac{1}{(\lambda s+1)^{k}} \text { or } \frac{1+k \lambda s}{(\lambda s+1)^{k}} ; k \geq 1=G(s) Q(s) \Rightarrow Q(s)=G^{-1}(s) T(s)
$$

- So, weighted sensitivity $W_{s}(s) S(s)=W_{s}(s)[I-G(s) Q(s)]=W_{s}(s)[I-T(s)]$
- One can show (Doyle et al., Chapter 10) that as $\lambda \rightarrow 0$

$$
\begin{aligned}
& \quad \lim _{\lambda \rightarrow 0}\|G(j \omega)[I-T(j \omega)]\|_{\infty}=\max _{\omega} \lim _{\lambda \rightarrow 0}|G(j \omega)[I-T(j \omega)]|=0 \\
& \left.\quad \text { Can find } \lambda \ni \| W_{s}(j \omega) S(j \omega)\right]\left\|_{\infty}=\right\| W_{s}(j \omega)[I-T(j \omega)] \|_{\infty}<1 \quad \text { Recall Nominal performance constraint } \\
& \text { Idea of proof: for small } \omega \leq \omega_{1},|T(j \omega)| \approx 1 \Rightarrow|1-T(j \omega)| \approx \varepsilon \Rightarrow \max _{\omega \leq \alpha_{1}}|G(j \omega)(1-T(j \omega))| \leq \varepsilon\|G\|_{\infty} \\
& \text { for } l \text { arge } \omega>\omega_{1}, \max _{\omega>\omega_{1}}|G(j \omega)(1-T(j \omega))| \leq 2 \max _{\omega>\omega_{1}}|G(j \omega)| \\
& \text { so, by selecting } \lambda \text { sufficiently small, we can make } \varepsilon \text { small and } \max _{\omega>\omega_{1}}|G(j \omega)| \text { small. }
\end{aligned}
$$

Design Procedure:

- Given a weighting matrix $W_{s}(s)$ and $G(s)$
- Set $k=$ relative degree of $G(\mathrm{~s})=$ degree of denominator of $G(s)$
- Choose λ so that $\left\|W_{s}(s) S(s)\right\|_{\infty}<1$
- Set $Q(s)=G^{-1}(s) T(s)$
- Set $H(s)=Q(s)[I-G(s) Q(s)]^{-1}$

Weighted Sensitivity \& IMC Example - 2

- Example:
$\bullet G(s)=\frac{1}{s+1}+\frac{0.1 s}{s^{2}+.02 s+0.25}=\frac{1.1 s^{2}+0.12 s+0.25}{s^{3}+1.02 s^{2}+0.27 s+0.25}$
- $W_{s}(s)=0.5 \frac{(s+0.5)}{(s+0.01)}$
- $k=3 \Rightarrow T(s)=\frac{1}{(\lambda s+1)^{3}}$
- $\lambda=0.1 \Rightarrow S(s)=\frac{0.001 s^{3}+0.03 s^{2}+0.3 s}{0.001 s^{3}+0.03 s^{2}+0.3 s+1}$
- $W_{s}(s) S(s)=\frac{0.0005 s^{4}+0.01525 s^{3}+0.1575 s^{2}+0.075 s}{0.001 s^{4}+0.03001 s^{3}+0.3003 s^{2}+1.003 s+0.01}$
- $\left\|W_{s} S\right\|_{\infty}=0.6428$
- $Q(s)=G^{-1}(s) T(s)=\frac{909.09(s+1)\left(s^{2}+0.02 s+0.25\right)}{(s+10)^{3}\left(s^{2}+0.1091 s+0.2273\right)}$

- $H(s)=Q(s)[1-G(s) Q(s)]^{-1}=\frac{909.09(s+1)\left(s^{2}+0.02 s+0.25\right)}{\substack{s\left(s^{2}+0.1091 s+0.2273\right)\left(s^{2}+30 s+300\right)}}$

$\mathrm{Gm}=19.1 \mathrm{~dB}$ (at $17.3 \mathrm{rad} / \mathrm{sec}$), $\mathrm{Pm}=71.2 \mathrm{deg}($ at $3.27 \mathrm{rad} / \mathrm{sec})$

Co－prime Factorization：Unstable \＆Non－minimum Phase Systems－ 1

－For unstable and／or non－minimum phase systems，inversion leads to non－ minimum phase and／or unstable $Q(s)$ ．Need a generalization in this case．

If $G(s)$ is given（not necessarily stable or minimum phase），then it can be written as $G(s)=N(s) M^{-1}(s)$ where $N(s)$ and $M(s)$ are（co－prime）transfer functions \Rightarrow No pole－zero cancellation，proper \＆stable
If $H(s)=\frac{N_{H}(s)}{M_{H}(s)} \Rightarrow$ characteristic polynomial ： $1+G(s) H(s)$
For stability，need poles in LHP $\Rightarrow 1+G(s) H(s) \neq 0 \forall s \in R H P$
$\Rightarrow M_{H}(s) M(s)+N(s) N_{H}(s) \neq 0 \forall s \in R H P$
Suppose we find $X(s)$ and $Y(s)$ such that $X(\mathrm{~s}) N(s)+Y(s) M(s)=1$（called Bezout identity）， where $N(s), M(s), X(s)$ and $M(s)$ are proper and stable．Then，
Then，$H(s)=\frac{N_{H}(s)}{M_{H}(s)}=\frac{X(s)+M(s) Q(s)}{Y(s)-N(s) Q(s)}$ is such that the closed－loop system is stable．
Also，$M_{H}(s) M(s)+N(s) N_{H}(s)=Y(s) M(s)-N(s) Q(s) M(s)+N(s) X(s)+N(s) M(s) Q(s)=1$ $\Rightarrow H(s)$ is co－prime as well \Rightarrow stable and proper

Note $S(s)=\left(1+\frac{N}{M} \cdot \frac{X+M Q}{Y-N Q}\right)^{-1}=M(Y-N Q) . \Rightarrow \min _{Q}\left\|W_{s} M(Y-N Q)\right\|_{\infty}$
For unstable systems，can approximately minimze $\min _{0}\left\|W_{s} M Y(1-T(s))\right\|_{\infty}$

Co-prime Factorization via State Space Methods - 1

- State feedback and observer feedback allows us to compute co-prime factorization and the solution of Bezout identity rather easily
- Given $G(s)$, find state space representation (e.g., SCF, SOF, minimal, balanced). Valid for MIMO systems as well.

$$
\begin{aligned}
& \underline{\dot{x}}=A \underline{x}+B \underline{u} \\
& \underline{y}=C \underline{x}+D \underline{u}
\end{aligned}
$$

$$
G(s)=C(s I-A)^{-1} B+D \triangleq\left[\begin{array}{ll}
A & B \\
C & D
\end{array}\right]
$$

- Choose a feedback matrix, K such that $A-B K$ is stable. So, if we define signals

$$
\begin{aligned}
& \underline{v}=\underline{u}+K \underline{x} \Rightarrow \underline{\dot{x}}=(A-B K) \underline{x}+B \underline{v} \text { and } \underline{u}=-K \underline{x}+\underline{v} \\
& \underline{\dot{x}}=(A-B K) \underline{x}+B \underline{v} ; \underline{y}=(C-D K) \underline{x}+D \underline{v} \\
& s o, \underline{u}(s)=M(s) \underline{v}(s) \Rightarrow M(s)=I_{m}-K(s I-A+B K)^{-1} B \triangleq\left[\begin{array}{cc}
A-B K & B \\
-K & I_{m}
\end{array}\right] \\
& \quad \underline{y}(s)=N(s) \underline{v}(s) \Rightarrow N(s)=D+(C-D K)(s I-A+B K)^{-1} B \triangleq\left[\begin{array}{cc}
A-B K & B \\
C-D K & D
\end{array}\right] \\
& \Rightarrow G(s)=N(s) M^{-1}(s)
\end{aligned}
$$

Co-prime Factorization via State Space Methods - 2

- Choose a feedback matrix L such that $A-L C$ is stable.

Recall observer equation: $\underline{\hat{\hat{x}}}=A \underline{\hat{\hat{x}}}+B \underline{u}+L(\underline{y}-C \underline{\hat{x}}-D \underline{u})$
$\Rightarrow \underline{\dot{\hat{x}}}=(A-L C) \underline{\hat{x}}+L \underline{y}+(B-L D) \underline{u}$
Split observer equations into two parts (recall superposition): $\underline{\hat{x}}=\underline{\hat{x}}_{1}+\underline{\hat{x}}_{2}$

$$
\begin{aligned}
& \dot{\underline{\hat{x}}}_{1}=(A-L C) \underline{\hat{x}}_{1}+L \underline{y} ; \underline{v}_{1}=K \underline{\hat{x}}_{1} \Rightarrow \underline{v}_{1}(s)=X(s) \underline{y}(s) \\
& \Rightarrow X(s)=K(s I-A+L C)^{-1} L \triangleq\left[\begin{array}{cc}
A-L C & L \\
K & 0
\end{array}\right] \\
& \dot{\hat{x}}_{2}=(A-L C) \underline{\hat{x}}_{2}+(B-L D) \underline{u} ; \underline{\underline{v}}_{2}=\underline{u}+K \underline{\hat{x}}_{2} \Rightarrow \underline{v}_{2}(s)=Y(s) \underline{u}(s) \\
& \Rightarrow Y(s)=I_{m}+K(s I-A+L C)^{-1}(B-L D) \triangleq\left[\begin{array}{cc}
A-L C & B-L D \\
K & I_{m}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \underline{u}(s)=M(s) \underline{v}(s) \\
& \underline{y}(s)=N(s) \underline{v}(s) \\
& \underline{v}_{1}(s)=X(s) \underline{y}(s) \\
& \underline{v}_{2}(s)=Y(s) \underline{u}(s) \\
& \underline{v}_{1}(s)+\underline{v}_{2}(s)=\underline{v}(s)
\end{aligned}
$$

Evidently, $\underline{v}_{1}+\underline{v}_{2}=\underline{u}+K \underline{\hat{x}}=\underline{v}$ in the steady state
Look at signals now: $\underline{v}_{1}(s)=X(s) \underline{y}(s)=X(s) N(s) \underline{v}(s)$

$$
\begin{aligned}
& \underline{v}_{2}(s)=Y(s) \underline{u}(s)=Y(s) M(s) \underline{v}(s) \\
\text { so, } & \underline{v}_{1}(s)+\underline{v}_{2}(s)=[X(s) N(s)+Y(s) M(s)] \underline{v}(s)=\underline{v}(s) \\
\Rightarrow & X(s) N(s)+Y(s) M(s)=I_{m}
\end{aligned}
$$

Design Examples - 1

- Example 2: Minimize weighted sensitivity $\left\|W_{s} S\right\|_{\infty}$ for $G(s)=\frac{1}{(s-2)^{2}} ; W_{s}(s)=\frac{100}{(s+1)}$
- \quad State space equation (SCF)

$$
\underline{\dot{x}}=\left[\begin{array}{cc}
0 & 1 \\
-4 & 4
\end{array}\right] \underline{x}+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u ; y=\left[\begin{array}{cc}
1 & 0
\end{array}\right] \underline{x}
$$

- Find gains K such that $A-B K$ has poles in LHP. Let us place poles at $-1+\mathrm{j}$ and $-1-\mathrm{j} . K=\left[\begin{array}{ll}-2 & 6\end{array}\right]$
- Find $N(\mathrm{~s})$ and $M(\mathrm{~s})$

$$
N(s)=C(s I-A+B K)^{-1} B=\frac{1}{s^{2}+2 s+2} ; M(s)=1-K(s I-A+B K)^{-1} B=\frac{s^{2}-4 s+4}{s^{2}+2 s+2}
$$

- Find observer gains L such that $A-L C$ has poles in LHP. Place poles at $-2+2 \mathrm{j}$ and $-2-2 \mathrm{j}$.

Twice as fast as controller. $L=\left[\begin{array}{ll}8 & 36\end{array}\right]$

- Find $X(s)$ and $Y(s)$

$$
X(s)=K(s I-A+L C)^{-1} L=\frac{200(s-1)}{s^{2}+4 s+8} ; Y(s)=1+K(s I-A+L C)^{-1} B=\frac{s^{2}+10 s+54}{s^{2}+4 s+8}
$$

λ	Norm
0.1	222.49
0.01	22.63
0.001	2.26
0.0003	0.679

- Choose λ so that the infinity norm of $\left\|W_{s} Y M(1-T)\right\|_{\infty}<1$
$Q(s)=Y(s) N^{-1}(s) T(s)=\frac{1.1 \times 10^{7}\left(s^{2}+2 s+2\right)\left(s^{2}+10 s+54\right)}{(s+3333)^{2}\left(s^{2}+4 s+8\right)}$
$H(s)=\frac{X(s)+M(s) Q(s)}{Y(s)-N(s) Q(s)}=\frac{1.1 \times 10^{7}\left(s^{2}+1.921 s+1.911\right)\left(s^{2}+4.079 s+8.373\right)}{s(s+6667)\left(s^{2}+10 s+54\right)}$
$\phi_{m}=76.3^{0} @ 1.62 \mathrm{rad} / \mathrm{sec}$

Design Examples - 2

- Example 2: Minimize weighted sensitivity $\left\|W_{s} S\right\|_{\infty}$ for
$G(s)=\frac{-6.475 s^{2}+4.0302 s+175.77}{5 s^{4}+3.5682 s^{3}+139.5021 s^{2}+0.0929 s+10^{-6}}$
poles: $0,-0.0007,-0.3565 \pm 5.27 j$; zeros: $-4.9081,5.5308$
settling time $\approx 8 \mathrm{sec} ; \%$ overshoot $\leq 10 \% \Rightarrow \zeta=0.6 ; \omega_{n}=0.96 \Rightarrow T(s) \approx \frac{1}{s^{2}+1.2 s+1}$
$\Rightarrow S(s)=\frac{s(s+1.2)}{s^{2}+1.2 s+1} \Rightarrow W_{s}(s) \approx \frac{s^{2}+1.2 s+1}{(s+0.001)(s+1.2)(0.001 s+1)}$ stable and strictly proper
- \quad Since $G(s)$ is stable, $N(s)=G(s), M(s)=1, X(s)=0, Y(s)=1$ so that $N X+M Y=1$
- Find $Q_{i m}$ (not necessarily proper) such that $\left\|W_{s} M\left(Y-N Q_{i n}\right)\right\|_{\infty}=\left\|W_{s}\left(1-G Q_{i m}\right)\right\|_{\infty}$ is minimum Recall at RHP zero, $G=0 \Rightarrow\left|W_{s}(5.5308)\right|=1.0210 \Rightarrow$ set $W_{s}=\frac{0.9}{1.021} W_{s}=\frac{0.8815 s^{2}+1.058 s+0.8815}{(s+0.001)(s+1.2)(0.001 s+1)}$
- From $\left|W_{s}(5.5308)\right|=0.9, Q_{i n}=\frac{-0.001021 s^{5}-0.01814 s^{4}+0.0586 s^{3}+1.015 s^{2}-4.1 s+3.995}{s^{2}+1.22 s+1}=\frac{W_{s}(s)-0.9}{W_{s}(s) G(s)}$
- Select $J(s)=\frac{1}{(\lambda s+1)^{2}}$ and $\min _{\lambda}\left\|W_{s}\left(1-G Q_{i n} J\right)\right\|_{\infty}$

$$
\begin{array}{l|l|l|}
\text { Select } J(s)=\frac{1}{(\lambda s+1)^{2}} \text { and } \min _{\lambda}\left\|W_{s}\left(1-G Q_{i m} J\right)\right\|_{\infty} & \lambda & \text { Norm } \\
\hline Q(s)=Q_{i m}(s) J(s)=\frac{-0.001021 s^{5}-0.01814 s^{4}+0.0586 s^{3}+1.015 s^{2}-4.1 s+3.995}{6.4 \times 10^{-5} s^{5}+0.004877 s^{4}+0.1258 s^{3}+1.149 s^{2}+1.32 s+1} & 0.1 & 1.1199 \\
H(s)=\frac{-15.95 s^{5}-283.5 s^{4}+915.6 s^{3}+15860 s^{2}-64060 s+62420}{s^{5}+76.2 s^{4}+1982 s^{3}+18300 s^{2}+21030 s+19.14} \begin{array}{|l|l|}
\hline \phi_{m}=57.8^{0} @ 0.669 \mathrm{rad} / \mathrm{sec} \\
\gamma_{m}=18.9 d B @ 3.08 \mathrm{rad} / \mathrm{sec}
\end{array} & 0.0 .02 & 1.0759 \\
\hline
\end{array}
$$

