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Compensator Design via Discrete Equivalent

) X and Direct Design Methods
: 1. Stability Analysis of Discrete-time Systems
o . Jury test, Stability with respect to design parameter(s), Examples
WW 2 H(z) Design via Discrete Equivalent to H(s)
: . Different forms for discrete integration 1/s - F(z) and different H(s) equivalents
. Tustin equivalent and Tustin equivalent with prewarping
3.  Example of Discrete Equivalent Design
. H(s) design to meet specs and Discrete equivalent computations
. Evaluation of CL discrete system
4. Root Locus Design of H(z)
. Example of design approach, Evaluation, redesign
5. W-Plane Design of H(z)
. z—w and w—z mappings
. Example of design approach, Time and frequency domain evaluation
6. PID, IMC and Pole placement Controllers with Examples
7. Time Delay Systems :
. Smith predictor with Example 3
8. Implementation of High-Order Compensators :
L
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Ne 2 (l Stability of Discrete Systems l

» \We need a technique to ascertain stability of the closed-loop system, i.e., whether roots of
the CL characteristic polynomial p(z) all lie within the unit circle.

: __G(9)H(2)
)= denominator of T(z)_1 T S()H()

|zl - +TK|
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p(z)=a,z"+a,z"" +---+a, (generallya, =1)
 The technique must be simple and involve {a;} only.
Applicable to any polynomial in z.
« Continuous-time systems analysis has Routh-Hurwitz to determine whether a polynomial p(s)
has its roots in LHP. p(s)=ays" +a,s" " +---+a,
» A way to use Routh-Hurwitz test:
(1) Map unit circle into left half-plane by replacing z with some suitable function. (z — es"
will not work here since resulting p(s) will not be a polynomial.)
(2) One possibility: 1+wh/2
‘= 1—wh/2
(3) Substitute for z in p(z), multiply through by (1 —wh/2)" to obtain
p(w) = n-th order polynomial in w.
(4) Apply Routh-Hurwitz test to p(w).
Messy!
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- rkak_i(") i=0,1, -, k-1 Wherelnltlallya =8,

n "English” -« Each odd row = previous odd row —r, * previous even row.
» Each even row = preceding odd row in reverse order.
« First row has coefficients of p(z).

o « Last row has 1 element. j :
Criteria: . N

(1) Ifa, >0, then all roots of p(z) lie in unit circle if and only if a,® >0, k=n-1,n-2, ..., 0. fig i

(2) The no. of negative a,¥ = no. of roots of p(z) outside unit circle. o
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Test if first entry in each odd row > 0.
If obtain any a,¥ <0, stop; p(z) has root(s) | A | > 1.
Simple computer program, need 2 scratch vectors.

: (l Applications of Jury Test l

Example1: p(z)=z?-z+0.5

’ P -1 0.5 _
“ 2 -1 1.0 r=0.5
.05 0.75 . =-0.67
0) 0.75-0.33
=

All 3,0 >0 => system is stable (all roots in unit® ).

5 Copyright ©2006-2012 by K. Pattipati

4\

[



FEF O DL L

) foS

(l Applications of Jury Test (Cont’d) l

Example2: p(z)=z?-z+2

2 D -1 2 _
@ 7 @ ez
(1) 1-4 _ {19 a,M < 0 ==> system Is unstable.
s -3 =—-1/3
=> 2 roots outside
©) _i) unitO .
Example 3: p(z) =z -0.15z> - 0.59
3 .00 —0.15 0.00 ~-059
& 059, 0.00........ -015........; 1.00,.. . r=-0.59
2 Q.65 ~0.15 —0.09
@ 009 ... -015 ... 0.65.... r=-014
1 .64 -0.13
( ) r,,,-,,,,,,,,,,,,O,-,6,4,',,,, r=— 020 d'Jd
(0  @©8D S
All a,® >0 => system is stable. 4 'a
o
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N 4 (l Application to SVFB Example l
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The equivalent discrete system 1 1 0
q ' z(kﬂ){ Jx(k){ Ju
01 1
Y
D r
is to be controlled using the algorithm, u(k) =r(k)—[ 1 3 ] x(k)
\._Y_J
K

Check if closed-loop system is stable.
- Closed-loop system matrix ® =® —-T'K

é{; ﬂ—m[l 3]{(1) ﬂ‘ﬁ 2}{—11 —12}

- Closed-loop characteristic polynomial

- z-1 -1
z)=|z1-®|= =z"+z-1
p( ) ‘ ‘ 1 z+2
- Jury array
2 1 1 -1 —
( ) llllllll l_l];llllIIIIIIIIJ-IIIIIIIIIIIIIJ-I llllll r - _1
(1) 0 STOP

« CL system is unstable, but roots are not on unit circle.
Roots of p(z) are z, = 0.618, z, = -1.618, so a,) = 0 does not necessarily imply roots
on unit circle. (Note | z, z, | =1 here, corresponding to roots A and 1/A.)

« If some a,¥ = 0, can replace 0 — +¢ and continue further, e.g. as in Routh-Hurwitz test.

ight ©2006-2012 K. Pattipati
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(z-1/2)(z-1)
p(z)=(z-1/2)(z-1)+Kz/2=2* +[(K-3)/2]z+1/2

2 (z-1/2)(z-1)

8 Copyright ©2006-2012 by K. Pattipati

e J—| Stability with Respect to a Parameter l

2) 1 (K-3)/2 1/2 _
T K32 L. =12

(1) 3/4 (K-3)/4 e
,,,,,, (K34 . 3k "= (K=3)3

0) 3/4—(K-3)2/12

« Reconcile with root locus:
i K=6
142 - ~1+G(2)H(2) <

d
d
4 If system (or controller) has a free parameter, 3, wish to determine range of values for which
: system is stable.
N Example 1 -
3 The system G(s) = a/(s+a), a =1, is to be controlled using series compensation with
& algorithm u(k) = Ke(k) + u(k—-1) and time step h = 0.69 sec. For what range of K is CL
system stable?
~ 1-e™ 0.5
G(z)= = u(z) =Ke(z) +z7'u(z
(B3 ew| 705 D TKe@ +7h() =
1+ G (2)H(2) = —" 2

Jury criterion
=> 3/4 > (K-3)?/12
=> (K-3)?< 9

=>-3< K3< 3
=> 0< K< 6

f Unit circle

L L L L
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Example 2 -
Determine region in the a; — a, plane
for which p(z)=z? + a,;z + a, has its
roots in the unit circle.

FEF O DL L

9 Copyright ©2006-2012 by K. Pattipati

Can determine constraints that must be satisfied among a set of parameters.

-

Jury array:
(2) 1 a;
' ay a
(1) 1-a,? a,(1-a,)
a,(1-a,) 1-a,2
a,%(1-a
©  1az- A
1+a,
Jury criteria: 1-a,2 >0
a,°(1-a
1+a,
dp

Recall stability conditions a

for p(s) =s?>+a,;s+a,to

.
have roots in LHPisa;,a, >0. 0 ay

a, _
r=a
1 2
f= o1
1+a,

= -1<a4a,<1

=> (1+a)*—a,* > 0
[since 1-a, > Oand 1+a, > 0]

=> —(1+a)) < a, < l+a,

L L L L
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.2 ~— A More Complicated, State —Space Example

The open-loop unstable continuous system defined by
0O 1 -1 1

x(t)=[3 -2 1 |x(t)+|1|u(t); y(t)=[1 0 2]x(t)
0 2 -1 0

Is to be controlled using a digital computer with h = 0.05.
Investigate CL stability using the SVFB algorithm

u(k) = r(k) — 0.5 X,(K) — 2 X,(K) — X3(K)

=1 -[05 2 1xK)  (K=1)
K

(1) Obtain equivalent discrete system x(k+1) = ®x(k) + I'u(k) using c2d,

1.0035 0.0453  -0.0477 0.0512
®=|0.1430 0.9105 0.0429|; I'= 0.0513
0.0071  0.0930 0.9535 0.0025

(2) Form CL system matrix, D= I'K, then use ss2tf to obtain CL transfer function

T(z) = C(zl — ®)T. Need only to obtain p(z) =| zI — @ | for closed-loop stability test.

p(z) =28 - 2.737z2 + 2.497z - 0.758
(3) Apply Jury test — p(z) has all roots in © ==> CL stable

(4) Phase margin can be evaluated by using ss2tf to obtain K(zl — @) T, then using Bode

(option 2) to plot LG(z)  _ .., - ==> Obtain o, ~ 2.8 rad/sec, O =~ 410

[

ight ©2 -2012 K. Pattipati
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N (l State-Space Example Pletsl

o
o
a a) Loop Gain XLG
o | a 20 Oo
u = [ LG(elen) .
. 3 ' 7| -90°
1
W 2 o
. = 1} 4 ~ 41
0 ; -180°
X LG(ein) :
! ~1 -270°
(‘OC
220 | [ N N N N B O 1 L1 1 1 1 111-360°
0.1 1.0 o (rad/sec) 10.0
Xi(t)

b) State time response with x(0)=[1 0 0] ,r(t)=0

/ X;(t)
/ X(t)

X3(t)
e A\ / 22
, g 42
0 05 . d o
d 'd
o
L
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.s | Fundamentals of Digital Compensator Design

"Given a G(s), or G(z), design a series compensator H(z) so that the closed-loop system
meets specs.”

Design Approaches
* H(z) design via discrete equivalent

- Idea is to use continuous time design methods to construct H(s) given G(s), then
obtain from H(s) a suitable discrete compensator H(z).

- Scheme might be expected to be useful provided,
G(2)

- Alternately, an analog H(s) compensator often exists and we desire to replace the "older"
analog system with a digital, p-processor controller.

_w =G(jo) = h~small

Problem: Given H(s) how do we obtain an H(z)?
« Direct design of H(z) given G(2).

Evaluation Tools: -
- stability tests

- loop gain analysis
- root locus
- simulation

L L L L
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(H(z) Design via Discrete Equivalent:

< H(s) — H(z

Goals:
« Simplicity

Hold equivalence methods [viz G(s) —G(z)], and impulse transformation methods
[Z{L {H(s)}}] are not simple.
« H(z) = rational transfer function
H(z) =A(z)/B(z) A(2), B(z) = polynomials
[Thus the "obvious" inverse relation s :J% log(z) is NG.]
 If H(S) = m-th order transfer function then H(z) = m-th order transfer function.

bs™ +bs"t + - + b
s"+as"t+ - +a

i.e., H(s) will invariably contain a pure gain, (and state-variable model of H(s) will have
d #0). Require

Typically, H(s) = by#0

gy BB 4B

H(2)

Desire I:I(z)

# 0
z2" +a, 2"+ - o Po

« Accuracy

Z=¢€

Idea: Replace s with some suitable rational F(z).
« Agiven H(s) can be synthesized as an interconnection of integrators = 1/s elements (recall
elementary signal flow diagram) => replace 1/s = continuous time integrator by
F(z) = transfer function of a discrete integrator.

w ~H(jo) over the frequency range of interest/importance.

L L L L
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N & (l Forms of Discrete Integration l

J
J
S __ . 92)
: e(k) F(Z) a(k) F(2) = e(z)
d g(k—1) = approximate value of I e(t)dt; g(k) = approximate value of j “ e(t)dt
‘ —o0
|
1. Forward Integration 2 Backward Integration " 3. Trapezoidal, or Tustin Integration
. e |
e(k-1) ; e(k-1) e(k)
— J > ti >§ | t
~ k-1  k N\~ k-1 k t — k-1 Kk
h h h
g(k) = g(k-1) + he(k-1) g(k) = g(k-1) + he(k) ' g(k) = g(k-1) + h/2 [e(k) + e(k-1)]
9(z) = zg(2) + zthe(z) 9(z) = z%g(z) + he(z) ' 9(2) = zg(2) + h/2 (1+z1) e(2)
h 1 i h _zh 1 h(1+z') h(z+1) 1
= F(z2) = ——~= r=> F(z2) = — = ~= 1=>F(z2)=— — | == |-=
& z-1 s | 2 1-z% z-1 s | @ 2[1—2'1] 2(2—1) S |4
z-1 : 7 — : 2(7-1 d'd
Replacements —» —— . - - ! Nl i
p n Replacement s — - Replacement s : ( Z+1j 3
aa
o
L

ight ©2 -2012 K. Pattipati
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& (l Relationship to True s—z Map l

Each method corresponds to a different rational approximation of es

(1) Forward integration:

: : z-1
z=e"=1+sh gives s = ——
(2) Backward integration:
. 1 Ives s -1
L= = v = —
e 1-sh : zh
(3) Tustin mtegrat}on
_ 1+sh/2 _ _g_l
27 gz T sh/2 VeSS = 741
Note:
» The above replacements maintain transfer function order
m m-1 . B b (z-1 i +
H(s) = 20Tty < D2
s" +a,s - +a (z-1)" +---
» Forward integration <«—»- Euler method to predict g(k)
(0 ze(t)
k k-1
o(k)-g(k-1) _ o(K) = g(k—1)+he(k—1)
h dh h ord
. : __r-thorder ~,\__m-th order
Even if H(s) = T-th order , H(z) = moth order for (2) and (3)

[OK since H(s) is almost always m-th order/m-th order].

 Tustin ~ 1st order Pade approximation to z-1

15 Copyright ©2006-2012 by K. Pattipati
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Ne 2 (l Mapping of LHP to Unit Circle l

» Useful as a criterion for selecting integration scheme:
(1) Forward integration

/ Jo v
7 ) -
— > /
z = 1+sh / A stable H(s) can yield an
unstable H(z)! NOT GOOD

FEF O DL L

(2) Backward integration

2 °

Stable H(s) yields stable H(z);

AR

Z= :
1-sh some unstable H(s) can yield
stable H(z).
(3) Tustin integration
) z ’
—»
J
© 1+sh/2 /% : " -
2= an2 %/ Preferable map since stability F
areas are mapped 1:1. 0
L
16 Copyright ©2006-2012 by K. Pattipati ‘l‘ (TLLL"
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(1) Simple Lag, H(s)=K Lor K- with a, ztlJ

ts+1 sta,
~ 1 Kh/2t z+1
H(z)=K =
( ) é 27—1 +1 1+ h/2t Z_l—h/ZT
h\z+1 — Y L 1+h/2t ]
) ) K —h/t
o, ~€
(2) General First-order factor
H(s) =Kk 20 gy =k Zh
s+a, Z—o,
1 . bl
— <@g, = lead; —>a, = lag
b
0 0
—b,h/2 — ~ + b, h/2
B, b, —b,h/ a- 1—-a,h/2 , K=Kb° b,h/
b, + b;h/2 1+a,h/2 1+a,h/2

17 Copyright ©2006-2012 by K. Pattipati

Computing H(z) via Tustin Equivalent

 Since any H(s) can be decomposed (via PF expansion) into either a cascade or a sum of first
and second-order terms, equivalence can be done on a term-by-term basis.
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d
d
d
d (3) General Second-order factor
o
o b,s”+b,s+b - - 72 —B.z+
. H(s) = K 2S8%02 gy o g 2 Pl
N §"+a,sta, Z" —ao,zt+a,
L _l-ah2+ a,h’/4 o 2—a,h’/2
* 1+a,h/2+a,h?/4’ * 1+a,h/i2+a,h?/4

b, —b,h/2 + b,h?/4 2b, —b,h?/2

b A b2 b,na Db+ b2+ b,ne/a

%o b, + b,h/2 + b,h?/4
1+a,h/2 +a,h’/4

18 Copyright ©2006-2012 by K. Pattipati

% - Computing H(z) via Tustin Equivalent (Cont’d)
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Yo 44 General Algorithm for Tustin Transformation h

4
4
4 4 x(k)
. H( ) " bOSm + blsm +...+bm u(s) Augmented System:L(k)}
S) = =
: s™ +a, 8"+ +a, e(s) A 8. [A8]
N (1) Write a state variable model for H(s) in SOF with K = 1. C, o' " |o of
¥ ) X(1) = Ax() +Be(t) ; u(t)=Cx(t) + de(t) g {ﬂ;q _[c d]
—a, 1 0 - 0 b, 1
~ Multiply numerator by z
—a, 0 1 - 0 i
A-| % : , B= b.2 ; by=b,—ab,; C=[1 0 .- 0]; d=h,
: 1 :
_am o --- 0 6
(2) Take L ==>sx(s) = Ax(s) + Be(s) s e 5o b | = 2| 2= x(z) = Ax(z)+Be(z)
TR s P hlz+1) hlz+l)” a
(3) Solve above for x(z) and form: u(z) = Cx(z) + de(z)
u(z):{g(zu_A)'lé(z +1) +E}e(z); A=(1-(N2)A)" (1 + (h2)A)
) B=(1-(h2)A) Bhi2
(4) Use ss2tf to obtain coefficients @, b;, of denominator and numerator of
C(zI—A) B 42
(5) Form final: o ) : :
m g, where B, =b,+ b, ,+ da; 1 =012, ---, m-1
H(Z):KBOZ Blz_l Bm . _1 . od
2" +oaz" T et a B,=b,+da_; a =a;i=12,.,m ::
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H(s) =K BT BT e Dy W)

s +a,s" A e(s)

(1) Write a state variable model for H(s) in SOF with K = 1.
X(t) = Ax(t) + Be(t) ; u(t) = C x(t) + de(t)

A @ e @) b, |

—a, 0 1 - 0
: N |
a0 .- 0 b

(2) Take_ L ==>sx(s) :Ax(s_) + Be(§) rc’jlr_\d replace s %(ZT_lj (ZT_ljZ(Z) = Ax(z)+Be(z)

1

o o

A= B=| 2|, b =b-ab,; C=[1 0 - 0]; d=b,

(3) Solve above for x(z) and form: u(z) = Cx(z) + de(z)
u(z):{C(zl —A)-l B+ d}e(z); A=(1+hA)
A(2) B=Bh
(4) Use Leverier algorithm to obtain coefficients &, b., of denominator and numerator of

C(zI—A)' B
(5) Form final: )
_KBOZm +Bz" T + B where B, =b,+dai;i = 0,1,2, ---, m

H(z)= _ .
( ) z" +oz" et o, =a;l=12,..,m

m

Lk L L
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Y General Algorithm for Backward Integration
d
: H(e) =K 2D e
‘ s" +a,s" T ++a,  e(s)
: (1) Write a state variable model for H(s) in SOF with K = 1.
a X(t) = Ax(t) + Be(t) ; u(t) = C x(t) + de(t)
—a, 1 0 - 0] b,
Aol O 2 . B=|P2|. B b -ab, C=[L 0 - 0]; d=b,
_am o --- 0 6
§ N - 1(z-1) 1(z-1 _
(2) Take L ==>sx(s) = Ax(s) + Be(s) and replace S%F(Tj' F(TJX(Z) = Ax(z)+Be(z)
(3) Solve above for x(z) and form: u(z) = Cx(z) + de(z)
~\1 ~ ~ 1
u(z):{C(zI —A) Bz +/d}e(z); A=(1-hA)
— —~ B 4
F(z) B=(1-hA) Bh
(4) Use Leverier algorithm to obtain coefficients @&, b., of denominator and numerator of
C(zI—A)' B a'a
(5) Form final: ) j :
a _KBoZm + Bz -+ B, where B, =b, ,+dai i=0,1,2 -, m-1 -
( )_ z" +oclzm_1 +ta, B,=da_; o =a;i=12,...m =
21 Copyright ©2006-2012 by K. Pattipati ‘l‘ ‘ ‘ ‘ . :
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[ Bode Plot Comparisons

h

Usually H (Z)‘z:ej“’h =H (S)‘Szziejmh_lJ ~H(jo) for Tustin equivalence.

|

Include option 3 in Bode plot program x :Z—;l, and option 4, x :g( :
z

| H(jo) | (dB)

2 H(jo) (deg)

gloh 41

Z+

D where z = ejwhj

252 + 3s + 4 Tustin _ 1.622—1.8677 + 0.8
. = — =
Bxample I HS) =23 2576 1 oo 1@ =772 06672+ 0467
2 Continuous H(jo) _
11111111111111 Tustin equivalent H(z)
—— Backward difference
oh
20 | | | | | L1 1 | | | | | | I |
r0.1 1.0 o (rad/sec) 10.0
0
d '
-90 1 1 1 [T T B O 1 1 1 L1 1 11 od o
0.1 1.0 o (rad/sec) 10.0 4 'd
Tustin equivalence is usually superior to backward difference equivalent 4 :
when comparing H(zjzze,-wh to H(jo). 5

29 Copyright ©2006-2012 by K. Pattipati
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« At which frequencies, o, does equality hold?

Tustin - H(z)| .. =H(s) Y1

S=jo

. L 2(eh 1) .
ifandonlyif —| — =
y h (e"”h +1J Jo

ej(x)h/2 . e—j(oh/Z (Dh (Dh
or — — =tan| — |=—
J(ejwh/Z +e—](nh/2) 2 2

FEF O DL L

- For 0 < ® < @/h equality holds only at ® = 0.

« Can obtain equality at one other o # 0 if we have

« s it possible to improve the match between Tustin H(z) at z = ei*hand original H(jo)?

tan(wzhj:awh; a>1 0

- 2 2(z-1
This corresponds to replacement S—>—| —
ah\z+1

 For equality at =w,, usually some important frequency, a =
— Tustin with prewarp (include as option 5 in Bode plot)

L2 (0,h/2) '(Z_lj

htan(w;h/2) \z+1

23 Copyright ©2006-2012 by K. Pattipati

tan (o,h/2)

N | 3=+

(like a "modified” h —ah)

4\
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fExample 2 — Tustin Equivalence

4 \N A ) 3
J with Prewarping
d
_282+3s+4 . _
d = =
a ~ H(S) $2+25+6 LS
o Require H(zjzze]mh = H(S)L:ja, at w = 2 (corresponds approximately to where £ H(jo) is max).
| 2
_tan 0.5 _ o, 1.563z2—1.706z + 0.742
. a="o5 1093 H@=""22 (5538, + 0452
20 ——— Continuous H(jo)
— — — —  Tustin equivalent .
o ——  Tustin with prewarp, o, = 2.0 !
= S R
— Z
N /
R 5
_20 | | | | | L 11 I: | | | | 1 1 1
01 1.0 E o (rad/sec) 10.0
& 90 :
= = =T
S 9 d '
ﬁ 4
-90 1 1 1 I I N B 1 1 I L1 1 11 d o
0.1 1.0 2.0 o (rad/sec) 10.0 < 'd
« Gives better match in region o ~ [1.2, 3]. :
24 Copyright ©2006-2012 by K. Pattipati ‘l‘ ‘ ‘ ‘ . ‘



(Example 3 — Tustin Equivalence

4 \N A ' 3 3
a with Prewarping
. 252+ 3s+4
H(s) =25 +35+4. p-q5
: (5) $2+25+6
0 « A poor choice of o, can result in substantial H(jo) vs. H(el*") mismatch for o # ;.
: eg. o,=4, a=1813> - 1558
20 )
— Continuous H(jo)
R et Tustin with prewarp, o, = 4.0
S o[
=
| | | | | | 11 1
2091 10.0
> 90
S
g0 T
T
\d _90 | | | | | L 11 | | | | | 1 1 1
0.1 1.0 o (rad/sec) 10.0
=> To avoid problems keep o, < 1/h < n/h and examine Bode plot
comparisons of H(el*") vs. H(jo).
25 Copyright ©2006-2012 by K. Pattipati ‘l
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+ Pole-zero mapping T1(s-5;) ﬂ(z—é.)

FEF O DL L

I
D

|

PN

J

T»
~

I

A

where B B
1. If H(s) has a pole at s=A;, then H(z) has a pole atz =2, = e
2. If H(s) has a zero at s = &, then H(z) has a zero at z = 5, = €3
21

3. Pick K such that H(s)_,= H(Z),.. - (use s =700 iFH(0) = 0)

 Zero-order hold
Write state model (SOF) for H(s), then H(z) = C(zl — ®)I" + d
(Has "effective" h/2 sec delay due to hold equivalence)
« Higher-order polynomial approximations to 1/s
Tustin ~ 1st order polynomial through e(k-1), e(k)
Simpson ~ 2nd order polynomial through e(k-2), e(k-1), e(k)
1 h(z2 +4z +1)

s 3z

= g(k)=g(kk-2) +g[e(k) +4e(k —1) +e(k —2)]

26
Copyright ©2006-2012 by K. Pattipati

Gives a better equivalence in H(ei®") vs. H(jw) but order of H(z) is 2m.
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Summary of Discrete Equivalence Methods

G(s) —— G(z) "Exact" equivalent

Continuous only

design

FEF O DL L

Y :
H(s) Any reasonable H(z)  Discrete compensator

approximation to H(s)

 Tustin equivalence, s—%(—lj, gives a good approximation with a minimum of effort.
Z+

This is the most commonly used scheme.

~

H(S)LZZ(HJ =H(z)

h{z+1
 Consider use of prewarping if there is a frequency o,, or frequency region about ®,, where
it is important that H(el*") ~ H(jw); e.g., in vicinity of o, for lead network, or around
crossover frequency ..

» Pole-zero mapping is frequently used (very similar in results to Tustin), but does not permit
frequency prewarping.

L L L L
[

« H(s) — H(z) equivalent transformations are very frequently used in digital filtering and
Digital filter design.

ight ©2 -2012 K. Pattipati
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Yo J—| Example of Discrete Equivalent Designl

4
4
a
:  Radar positioning system (Franklin and Powell, 1980)
x N A ) N
| u S+1 g y = Antenna position (deg)
N voltage - y
~

: 1/
Drive motor, G(s) 56 +T1/T); =10 sec

» Closed-loop requirements

Command + €

input

H(S) — G(S) 2 y

i 0.1
Gs) = s(s+0.1)

Desire ~ 15% overshoot to a step command input (=>{~ 0.5) and

t(1%) ~ 10 sec ( => {w,~ 0.5) with a phase margin ¢,, > 50°.

[

ight ©2 -2012 K. Pattipati
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L °* L] ,
13Ye# “|Example of Discrete Equivalent Design (Cont’d)
a
oe + "Solution”, H(s) = lead NW =125 (0,=01,p=10K=1)
|
L \_\20
W 0BT X~_ o ——  Bode plot of G(5s)
S
| 10 Bode plot of
0dB T &3 o compensated
0.1 AR 10.0 G(s)H(s)
- T asymptotic
205le - ap)[gro[g(imation
; Closed-loop
0.1 1.0 10.0 o.~ 0.8 rad/sec
-90° 4 T A oo ¢, =51
T~ S S \ 1
- oT NS =
135 ! ~o_ G(s)H(s) G +1)
-180° + = Jd'a
4
« Not a good CL design - not a large enough region of —20dB slope around Crossover, j :
o, # (02\/6 , etc. 4
L
29 Copyright ©2006-2012 by K. Pattipati ‘l‘ ‘ ‘ ‘ . ‘



( Time Domain Response

4 eYeg 3 :
a of Continuous Design
a
"  Root Locus jo i
‘ ‘ ».“’.
G > - <“®%— o
0.1 -1.0
& | 5
A
(@) Root locus of uncompensated system (b) Root locus of compensated system
_ 0.1K _ K
1 +KG(s)=1+ 5(s+0.1) 1+ KG(S)H(s)=1+ S(s+1)

» CL Step response

y P.O. ~ 16%

[

C ight ©2006-2012 by K. Pattipati
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e J—| Discrete Equivalent Computationsl

4
4
: « Select time step h = 1.0 sec.
o Note: State model of system with X, =v, X, =V:
u 0.1 0 0.1
X (1) = t t); y=[0 1fx(t
; (0| 1o o0+ 5 [u) s y=[0 x(o)
|A|=+1.01/220.7 ; [, (A)=0.1
so h = 1.0 is compatible with criterion h <%
« Zero-order hold equivalent, G(z)
z +0.967

G(Z) =0.048 (Z—l)(Z—OQOS)

 Tustin equivalent

A@) = H(S)|s:z(§jj _ 7(2 —0.905] _ 7(1—0.90521 ] _u(z)

z—-0.333 1-0.333z" ) e(2)
- Algorithm
u(k) = 7e(k) — 6.335e(k—1) + 0.333u(k-1)
+ e(k) | - ulk)| =

() Qf fe) MY 6@ ey T
43
4 3
Examine CL step response, LG,;,(z), etc., for discrete system. o
L
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® = Response of y(t) at sample points kh

FEF O DL L

% overshoot is ~ 50%! (Y., = 1.5) This corresponds to { ~ 0.22; continuous design had { ~ 0.5.

« What happened ?
- Clearly, there has been a decrease in @n.
- H(e*") = H(jo), at least in o, crossover region.
- Problem is that G(ei®") # G(jo) in crossover region.
 Heuristic analysis
- to a first (crude) approximation G(el*h) =~ edoh2G(jw), i.e., sampling introduces
a delay of h/2 sec.
- at o, get a decrease in ¢, 0f 57.3w /2 deg.=> 23° loss of phase margin here!

- ¢,,0f discrete system ~ 51° — 23° = 28° corresponds to £ ~ 0.25 (for a 2nd order
continuous system).

ight ©2 -2012 K. Pattipati
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1QYe Continuous vs. Discrete System Loop Gain
4
: - Shows aliasing properties of discrete LG for o > n/h = 3.14
N - Repetition for ® > 2n/h; LG(z) has poles at @ = 2N=n/h (z = 1)
N 20
|
. .
g of l
~ — Continuous G(jo)H(jw) |
=] 0= S :
-20 [ Discrete G(z)H(z) :
—_0.336z + 0.325 i
Lo = 31033 |
(DCZO.SI
4051 | 1.0  (rad/sec) 10
0 |
= i
;8/ -90 i
O ! o
- L 28°{,
N -180 i
| | | | | 1 1 1 | | | | | | | I |
210 0.1 1.0 o (rad/sec) 10

33 Copyright ©2006-2012 by K. Pattipati

4\

[



FEF O DL L

Methods to Improve Discrete CL Performance

* Pick the time step, h, so as not to reduce the phase margin much:

A¢,, =57.3 (0/2) deg < 5-10°
Choosing h in this manner will generally be smaller than when you select h =~ 0.2/|| A |,

especially for a lead NW (but not necessarily a lag). But note that very small h may cause
CPU timing and other problems.

Use Tustin with prewarp

Not particularly useful here, but could be used to assure H(z) gives little or no magnitude
and/or phase distortion in the crossover region.

» Redesign H(s) to give additional positive phase

- Precompensate for eventual phase decrease in G(z).

- For given h = 1.0, need a continuous system phase margin of ~ 70°! : an unreasonable
H(s) design.

- Good approach if Ag < 15°,

» Design H(z) directly in the z-plane

- G(2) is fundamentally different than G(s).
- Avoids small time step constraints needed to make Tustin equivalent H(z) perform

satisfactorily
- Less guesswork to modify design.

- May be possible to use H(z) as a starting point.

=> Use Tustin if o h is small, otherwise consider direct design of H(z).

Lk L L

[

ight ©2 -2012 K. Pattipati
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e J—| Direct Design Compensation Methods l

+

R(K) »(%e(k)» Ho Y ce) Ly

FEF O DL L

« These schemes work directly with G(z) to design H(z) and so are not limited by the

requirement that h ~ small.

(i) Root locus design methods
Compensator design in z-plane using standard root locus design procedures to move
CL poles.

(if) w-plane design methods
This is the equivalent to classical frequency (o) domain design procedures where w is
a rational approximation to (1/h)In(z).

(iii) Fixed-form parametric design
Assumes a structural form for H(z), e.g., PID, and adjusts free parameters.

(iv) Miscellaneous approaches

 Closed-loop transfer function

T(2) = G(z)H(z) _ y(2) d'd
- = - d'd

1 +~G(z)H(z) r(z) ) .-
(1) Zeros of T(z) are the zeros of G(z)H(z) = zeros of G(z) plus those added by H(z). 43
(2) Poles of T(z) are the roots of 1+G(z)H(2). :

C ight ©2006-2012 by K. Pattipati
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- rRoc)t Locus Design of H(z)

H(z) =k ZBZ=8) (2 70) o)
(Z—Kl)(Z—XZ)---(Z—km)

Pick poles and zeros of H(z) so that roots locus of 1+KG(z)H,(z) with respect to gain K
passes through the region in z-plane where damping, ¢, and natural frequency, o,, are suitable.
- Do plot on z-plane with , o, overlay.
- Pick 9;, A, real, generally with | A; | <1.
- Any added zeros 6; must have an associated pole (no free zeros).
Generally a first or second order H(z) suffices, e.g.,
H(z)= Ki_sl — KH, (2)
- if A, <8, => lead compensator ' ‘ Remember ‘
- ifA, > 8, => lag compensator s=0=2z=1
Then pick K so that (dominant) closed-loop poles are at some desired location on the root
locus and specs are met.

-1
G(2)H, (2)
Next evaluate time response, loop gain KG(z)H,(z) at z = ei®h, etc.

Adjust A;, 9; (and K) until system meets specs.
=> trial and error design

Z=Z e

L L L L
[

C ight ©2006-2012 by K. Pattipati
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term of the form (- a)k — 1, —a, +a?, — a3,
- If can’t avoid then try to keep |a| small.

N

ez f, Some Helpful Hints for RL Design l

« Recall — Root locus bends towards zeros, away from poles.
J Added zero Added pole

:%%*6

« If zero ss error to a constant input is required, G(z)H(z) must have a pole at z = 1.
« Try not to have CL poleson -1 <z < 0. If there is a pole at z = —a then y(k) or u(k) has a

... point-to-point oscillation.

\/» \.\/\,

This response has \
no continuous counterpart

(~ aliasing phenomenon).

37 Copyright ©2006-2012 by K. Pattipati
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« “Nice” region in z-plane, especially for dominant pair. ﬂ

o

JX
\V,
()
(U)]
L L L L
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1 Y2 f, Antenna Positioning Control |
o h=1 ~
. G(s)= 2 5 G(z)=0.048 20
o s(s+0.1) (z—-1)(z-0.905)
N Specs: PO to step input = 15%, t,,~ 10sec, ¢, =50°
L « Uncompensated root locus (pole already at z = 1 via G)
W
Not very good!
- Need a zero on [0, 1] to bend RL inward more.
- Place associated pole on [-1, 0], away from
added zero.
To have t|, =5/Cw, #~10 = need o, ~ 0.5 for dominant CL poles
= need [z]=e™*" ~0.6, with {=0.5t0 PO ~ 15%
. i - 1 _xz2—05
First design trial; H(z) = K ST 06
Not too bad --- With K~=20 obtain a dominant
CL pair with { ~ 0.5. - .
- Also geta CL pole at z=-0.2 4
(will this give a problem?) 4 4
- Examine CL response via simulation. 4 :
u(k) = 20e(k) — 10e(k-1) — 0.6u(k-1) »
38 Copyright ©2006-2012 by K. Pattipati ‘l‘ ‘ ‘ ‘ . ‘



z—-0.5
z+0.6

H(z) = 20

FEF O DL L

39 Copyright ©2006-2012 by K. Pattipati

[ Time Response l

PO ~ 75%
m indicates y(kh) sample

» Requires movement of pole at —0.6 closer to z = 0.

L 2 4 6 8 10 12 14 16 t(sec)
20%
15F
10%
5.0_55 2 _|_|_| ............. 1 PR
U 4 6 8 10 12 14 16 t(sec)
53
10T o =11 ¢ =264
-15F C.L poles at -0.22, 0.28+j.51 42
£ 4
-20 B W
» Need to reduce gain, move zero at 0.5 closer to pole at z = 0.905. 42
o
L
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[ Root Locus Re-Design

d S Ve 2 3
a After much trial and efror
4 » Use zero to cancel pole at z = 0.905. Place pole so that root locus goes through nice region
: (Iz] <0.6, {~0.5).
[ z—0.905
H(z)=K——
: (2) 2+0.2
K ~9 gives CL poles at 0.18 +0.44 =>{~ 0.54.
i
u %
ST
0 _g_I—' . : } : t — t(sec)
I 4 6 8 10 12 14 16
SF
_10_:-_
« Good delsign, but K, has gone from 1.0 (continuous design) to 0.71, j :
since E(l—z‘l)G(z)H(z) _ =K,=07L . %
0.432z+0.418 4 'd
» Bode plot of LG(z2) = a . ~ 0.71rad/sec, ¢ ~ 56° o
40 Copyright ©2006-2012 by K. Pattipati ‘l‘ ‘ ‘ ‘ . :



[ AnExample ofa

4 eYeg
o
: Reduce PO further we can move the zero of H(z) close to the pole at z = 0.905 and move
r the pole of H(z) further out towards z = —1.
L —-0.
; H(z) =K
oy z+0.8
with K =9 obtain a highly damped system with CL poles:
z=0.7+j0.1and z=-0.75 (w.=0.5 rad/sec ¢, = 62°)
15
y
1
m Indicates y(kh) samples
0.5
0 t(sec)
10+ 2 4 6 8 10 12 14 16
u ¥
%
0:::::::::::::::::::::.:_:I;I'Thd'_;..::}t(sec)
E p | p —8 10 12 14 16 d'Jd
10+ an
 Intersample “ripples” in y(t) and oscillatory u(k) are indicative of CL poles on negative 4 :
real axis. n
41 Copyright ©2006-2012 by K. Pattipati ‘l‘ ‘ ‘ ‘ . ‘
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& [ w — Plane Design l

Attempt to use Bode design techniques to obtain H(z) starting with G(z).
Cannot go into s-plane to design H(s) and then get H(z).

- Map from z — s plane not rational

- Need a rational approximation to z = esh

e Define “w — plane” with w ~ S

1+wh/2 2(z-1
7z=— " W
1-wh/2 h

- Onunit circle, v :%tan(%h] ~ ® when oh<<1

Rational mapping

Gy = DT v D
2" +a,2" "+ +a,

- G(w) will always be n-th order/n-th order

- Unit disk |z| <1 mapped into LHP Re(w) <0

n n-1
N c~5(W):cow +C,W" T 4o+ C

w" +d,w"t +--+d

n

iIf oh <<1

:ejmh

é(w)\wzjv ~G(z),

- To first approximation (o << x/h)
é(w)‘W:jV = G(s)e ™"
« Can include as an additional option in Bode plot subroutine

s=jw

42 Copyright ©2006-2012 by K. Pattipati
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Ne 2 (l Design Approach l

d
d
: G(s) — G(2) H(z)
1 ,_L+wh/2 Wzg(z_—l
: ~1-wh/2 hiz+1
G(w > H
" ( )Bode Plot Design Techniques (W)
« z—to—w Transformation
it KTT(z+5,)
G(Z): IT(ln—k
(z-1) Jl;[l(z+kj)
then, m W M m W
KH(1+6i)(1—j H[1+ J
_ i=1 2/h i=1 2/h)| (1+5,)/(1-3,
) (2m)[(2+3,)/(1-5,)]

W

Lljl(uxj )}hkwk J111{1 - EOIEAIEN]

- Useful formula when G(z) has only real poles and zeros
(if) Stat-space approach in general case
- Need a general technique that is computer-oriented

« W-—to-z Transformation
- Identical to Tustin transform on H(w)

43 Copyright ©2006-2012 by K. Pattipati
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N (l General z — to — w Plane Mapping l

4
4
o .
« Given X(t) = Ax(t) + Bu(t)
- v y System to be controlled
r y(©) = Cx(1) }o
L determine G(w)
: 1. Obtain equivalent discrete system in usual manner A i L.
x(k+1) - ® X(k) + Fu(t) 3 . ugmente ystem.L},mput =u
_ G(z)=C(zl-®) I
y(k) = C x(k) o, T, & 2F
2. z —transform: zx(z) = @ x(z) + T'u(z) [c o [P M|
1+wh/2 T 0 0
3. Letz= P
1-wh/2 L=l ;C,=[C 0]
(1 +wh/2) x(w) = (1 —wh/2)®x(w) + (1-wh/2)Tu(w) |, =~
y(w) = C x(w) S=p@rl) (@)
4. Solve for y(w) 5 R F=(®+1)'T
f2 | N\ 1 | 2
y(w)=C wl—ﬁ(<b+1) (©-I)| (@+I) T W u(w)
— —— =
G(w) Jd'd
- Use Leverier with @ and T" to obtain C(wl — ®)1T, then include (2/h — w) factor. j :
- Note non-minimum phase zero at w = 2/h. a0
 Follow general Tustin state-space approach for w — to — z plane H(w) — H(z). -
44 Copyright ©2006-2012 by K. Pattipati ‘l‘ ‘ ‘ ‘ . :



(Antenna Positioning Controller:

4 R oY -
a G(s) = 0.1/s(s+0.1
< 40 g N N _
" o . G(2) = 0.048 (z+0.97) - G(w) = 0.1 (1+ w/120) (1- wf2)
r S 504 (z-1) (z—0.905) (h=1.0) w(1l+ w/0.1)
= g 1.0 2.0 Po
| 55 0 — e v(rad/sec)
W 5 0.1 o, \ 10.0
— 20 1 -40
-20 —— Compensated design
g 3 1+ w/0.14
o _ .
= HW) =10 =1, w42
S . 3 1+ w/o,
L -180 y K T+ wio,
I}
4 = KHy(w)
2700 { @B @
« Use lead compensation to keep bandwidth up.
« Make o, as large as possible with a ¢~ 55°
« Use limit value of B = 30 (corresponds to A¢,.= 69°). :
=, ~0.77 (where £G(jv)=-180" +¢, —69" =—194") "
= 0,=0,/4p=0.14, o, =42 J
- Pick Ksothat K|G(w)H,(w) =1 = K=10 a
w=j0.77 ‘
45 Copyright ©2006-2012 by K. Pattipati ‘l‘ ‘ ‘ ‘ . ‘



e J—| w — to — z (Backward) Transformation |

H(z) _ 1.01+w/0.14‘ _ .52—0.87
1+w/4.2 Wzg(z;lj z+0.35

h\ z+1

« H(1) =1 => No reduction in low frequency gain

FEF O DL L

K, = (Z—_l)é(z) H(z)| _,=1.0 (same as continuous design)

15 PO ~ 15%

5%

L L L L
[

-10+

i : —0.905

- Very similar to RL design, H(z) = gZ— I
z+0.2

ight ©2 -2012 K. Pattipati
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N 2 (l Frequency Domain Evaluationl

» Examine actual LG(z) _ .. to find true o, P

LG(2) = G(2)H(2) = 0504 (z+0.967)(z—-0.87)

(z-1)(z-0.905)(z + 0.35)

« Compare with G(W)H(w), w = jv

20

FEF O DL L

— Actual G(z) II-:.::-l

7z = glwh

------ w—plane design

ILGyin| (dB)
=2
|

-20
-

-90

(deg)

A I_I:Ja]r

270 1 ] ] ] 1 L 11 ] 1 ] 1 L 1 1
O | .0 w, v {rad/sec) 1.0

 Discrete loop gain is very similar to root locus design with ~3dB higher very low frequency gain
« W — plane design approximation is OK for v~ ® < 1/h

« Actual 9n=56° .~ 0.73 (system will tolerate a maximum loop delay t,,,,= #n/®,=1.34 sec)

ight ©2 -2012 K. Pattipati
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+Ye# “ Root Locus vs. w — Plane Design Comparison
:  Either approach, used correctly, will give a good design.
o Root Locus Design
: - RL plot more difficult to draw than Bode plot
. - Hard to see where to place poles and zeros of H(z) to properly shape RL as desired.
- Seems to require more trial and error than does Bode approach.
- Need overlay of { — o, contours on RL plot.
- Difficult to make engineering approximations.
- If h ~ small, the RL tends to crowd into region around z = 1.
Bode/ w — Plane Design
- Easier to work with and to modify than is RL.
- Requires z — w mapping on G, then reverse map on H.
- Still need to evaluate frequency plot of LG in z-domain, since w #s.
- No guarantee that a good w — plane design will yield a good z — plane design (unless v < 1/h) i< =
- Gives no explicit knowledge of CL pole locations. j :
a0
o
4g CoPyroht ©2006-2012 by K. Pattipat «‘\‘ L L LN :



N 4 fl Digital PID Controller'

d
d
4 - Discrete equivalent obtained from backward difference (other methods are also used),
: s — (z—1)/hz:
L -1
3 u(z)=K|14 =12 T (2 e(2)
. T,(z-1) (h+T2j L T,
N Nh+T,
— \.W_J —
» General parametric form Y
51
u(z)=Kl1+ L Tw 17z g
T, 1-z h 1-vyz
~— —_—— —_—
. s T,Nh
to be determined: K, T4, T,4 and possibly vy, (y = T,q /Nh), T,y = T 2+Nh
» Implementation — “Textbook” Sum up 3 parts separately: ’
o N _1 UI(K) o |
T, 1-z* y
r e
u _|
e(k)———] 1 PUPK s = —O e i
T, 1-z° I » D j:
h 11—~z "t D(k
h 1-vz (9 P-1-D all in forward loop < 'd
UI(K) = (/T g)e(k) + Ul(k-1) ; UP(k) = e(k) ; UD(K) = (T,4/h)[e(k) — e(k—1)] + yUD(k—1) 4 :
then u(k) = K[UI(k) + UP(k) + UD(K)] -

ight ©2 -2012 K. Pattipati
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N2 (l PID Algorithm lmplementation'

« Algorithm at step k e=r-y
Ul = (h/Ty)e + Ul
UP=¢e
Ub = (TZd/h)[e o eIast] i YUD
elast: c
u=K(UIl+ UP+ UD)

FEF O DL L

 Derivative on output
- If r suddenly changes from time k-1 to time k, e.g., a step change, then e(k) — e(k—1) may
be large and UD will have a “spike™ at step k: This is undesirable.

- Modify UD computation to use only Ay = y(k) — y(k-1),
UD(K) = — (To¢/h)[y(K) — y(k-1)] + yYUD(k -1) |

u
This is “derivative of output form”. — — K>
Since y(k) cannot change very much —
from step k-1 to k, UD will be OK. P D

- CL stability is unaffected (stability not a function of r).

» “Set-point on I’ structure
- Move P to act only on y also, UP = —y(Kk)
- Only integral compensation uses error signal.

L L L L
[

- Popular structure in process control (keeps control signal very smooth).

C ight ©2006-2012 by K. Pattipati
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N 4 f, Integral Windup Modifications l

A problem that arises when u is limited, e.g.,
B- < uk) < B
(symmetric limits are most common, B-= — B*)

FEF O DL L

« Limits are imposed by the system under control, e.g., actuator constraints.
- Match these limits in controller software:
if (u>B*)setu=B* flag=+1
if(u<B)setu=B-, flag=-1
else flag=10
» The control probably saturated because e(k) was large.
- Because u is limited the error e will not be reduced to zero as fast (slower system).
- This is not indicative of a steady-state e.
=> Turn off/skip the integration of e(k) in Ul if the last control value was at a limit
if (flag = 0) Ul = Ul + (h/Ty)e
if (flag # 0) Ul = UI

* Integral protection
- Value of Ul does not change if/when u is saturated.

L L L L
[

 Include PID structure in Cntrl routine as an option during evaluation

ight ©2 -2012 K. Pattipati
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Yo J—| Example (Astrom and Wittenmark) l

d
d
:  Lack of integral protection will often result in large overshoots in system response.
r - Since long periods of + (or —) e will cause UI to build up large values. Then e reverses...
L « EX. A motor with transfer function G(s) = 1/s(s+1) is to be controlled using a digital Pl
: controller* nq
u(z)=K|1l+———|e(2)
T, 1-2
with K=0.4, T,,=5sec, h=0.5sec.
- Examine step response when |u(k)|] < 0.2, with and without integral windup protection.
2+
Yy T o (b) Limited control
ot (@) Nolimitonu no J-protection
1§ é ---------------- — &
05 __ (c) Limited control
I with J-protection .
T d'd
0 t(sec)
2 4 6 8 10 12 14 16 ey
* Note: The I part of the controller is not really needed here since G(s) contains a 1/s. 4 :
But it is only an example. n

ight ©2 -2012 K. Pattipati
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Lecture5_Simulink/saturation_updated_final2.mdl
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« Parameters for different approximations

& == e L T,
8:32 Ul+a,e+a, €past u(s) = K[ +E+m]e(3)
=e
UD = 'Sd [y - ypast] +yUD Ta =T
T,Nh
Cpast = € 2d =
u=K(Ul + UP + UD) T, + Nh
hiT,, h/2T, h/2T,
o, h/T 4 0 h/2T 4 h/2T 4
v 1-Nh/T, T,4/Nh (2T,-Nh)/(2T +Nh)= e NN/,
=2-Nh/T,4 (8T5q-Nh)/(To+Nh =el-NNT__
8 N T,g/h 2N/(1+Nh/T,) T,(1-eNVT )/h=
( Tsz )(1_e(l—Nh/T2d))
_ _ Nh—T,, u
» \elocity algorithm (compute Au) 5
e=r-y AUD = -84 [y — 2Ypast +Ypastpas] + v AUD iy
AUl = Qy €+ Ay epast epast =€, ypastpast ypast' ypast y 4 :
AUP = e-gpa Au=K(AUI+AUP+AUD) .
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N2 f, IMC Design Approach - 1 l

« IMC design approaches for stable and possibly non-minimum phase systems
. cQplit G,k P@) _ b (2)b ()™ (2)
Step 1: Split G(z)=: 2 -

a(z)
Here b*s = Part of b(z) with zeros having positive real parts and inside unit circle

as follows:

FEF O DL L

b- = Part of b(z) with zeros having negative real parts ( inside and outside unit e)
br™* = Part of b(z) with zeros having positive real parts and outside unit circle
« Step 2: (i) Replace part with zeros having negative real part with a DC gain (set z=1)
(i1) Replace non-minimum phase zeros with their reciprocals

(iii) Add filters of the formF(z) =(11_0;_1)k;k >1 50 that Q(2)=G*(2)F(2) is proper
4
* Step 3: H(2)=Q()[L-G(2)Q()]*

« Example
_ - _ _ i 1M1 _ -1
G(s)—— 531 _ 0.055ec = G(z) = 0040678z =1.163) _ 0.0406781 (1-1.163z )1 _,1b@
s*+55+6 (z—-0.9048)(z—0.8607) (1-0.9048z 1)(1-0.8607z") = a(z)

b** =-0.040678;b™ =1;b"* (z) = (1-1.163z") = replace by (1-1.163z) =z (z ' -1.163)

o o Select a based on
@F(Z) _ (1-0.9048z")(1-0.8607z"") F(2)= (z—0.9048)(z - 0.8607) 1«

50.Q(2)= b(z) ~0.040678(z " —1.163) 0.0473(z—0.8598) z-a other criteria, e.g.,
' ' ' ' phase margin, d '
_10.5708(2~09048)(z—08607). et e .
(z-0.8598)(z-0.5) 5 &
< . _10.5708(z —0.9048)(z — 0.8607)
H(2) =Q(2)[1-G(2)Q(2)] " = (2+0.07013)(z 1) 4 :
» Step response exhibits an undershoot as one would expect from a non-minimum phase system B

ight ©2 -2012 K. Pattipati
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4 RUeVesL
Jd
4 L4 Bode D
J - Gm=6.61dB (at 7.79 rad/soece) s ?’rgnra:ngoA deg (at 1.4[5 rad/sec) i
‘ 60 [~ \ -
| . -
O : .|¢,=60.4" @1.45rad / | .
= Jv. =6.61dB @ 7.79rad / sec S
. /o m ‘\_)_k é_ B
20 ' | <
g 180
f{ ° 1(;'A u;" urf’ 10 08, ois 1 1T5 i 25
Frequency (rad/sec) Time (sec)
« Example 2 N o = -
G(s) 1 = 2500 = G(2) = 0.00729(z +0.9109) N
(10s +1)(25s +1) (z-0.9231)(z - 0.8187) |
-1 =il
$0.G(2) = 0.00729z 71(1+0'91092 ?1 _,:b@) .
(1—0.9231z7)(1-0.8187z7) a(z) i
b* =0.00729;b™ = (L+0.9109z ) = replace by 1.9109:b™* (z) =1
_ 1 _ 1 04
50,0(2) = a(2) - (2)= (L-0.92317 *)(1-0.81872 ) _ @
b(2) 0.0139 d
_ 71.94(z-0.9231)(z - 0.8187) (1-a)? _6.17(2—0.9231)(2—0.8187)_af 0701’% N d'd
1 (z-a)’ (z-0.707)° ’ ' < 'd
< ., 6.17(z-0.9231)(z—0.8187 ¢ =73.8° @0.0778rad /sec d'd
H(@) -Q@-6@QE)* = 2 i J ey
(z—-0.4588)(z-1) v, =22.4dB @0.562rad / sec -
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Pole Placement Method: Shaping T(z) - 1

« What is feasible if you have unstable and non-minimum phase systems?

Suppose G(z) =z b@@) andwant T (z) =K, 27—~ b,(2) .DCgain=1=K_ = a0 . What is feasible for b, (z)?
a(z) d(z) b, (1)

r

FEF O DL L

good bad good bad.also close to unit circle

Let b(z)=b™(z)b (2)b""(2); a(z)=a"(z2) a (2)a™"(2)
Consider a control scheme given by d, (z)u(z) = K, p(z)r(z)-q(z)y(z); d, (z), p(z),q(z) are polynomials in z
p(z) =q(z) = single DOF controller

So, z7*b(2)[d, (2)u(z) +q(2) y(2)] = K.z “p(z2)b(2)r(z). Recall a(z) y(z) = 2 *b(z)u(z)
& - y(z) _ K.z "p(z)b(z)
=[d,(2)a(z) +z"b(z)a(z)]y(z) = K.z p(2)b(2)r(z) = '2)  d.(Da)+ b))
K,z p(@)b™(2)b(2)b™ (2) )
d L(2)a” (z)a” (z)a“s+(z)+z"‘b+s(z)b (2)b™(2)q(z) "  d(2)
What if we selectd, (z) =b™(2)d,(2);q(z) =a"* (z)q,(2); p(z) =a"* (z)p,(z)

=il

K. p,(2)b (z)b™ (z) b, (2) di(2)a (2)a* (2)+2 b (2)b™" (2)0,(2) =d(2)
=K, Y (2) M (2) N (z) X(2) D(2)
d,(z)a (z)a"" (z) +z b (2)b™" (2)q,(2) d(z) X (2)N(2) +Y (2)M (z) = D(2) a3
= b (2) = p,(2)b" (2)b""(z) = keep "bad" zeros in the closed-loop system 4 J
= us+ K nm-+ o |
= A.(2)a (2)a (Z)+ 2 b (@b (2)6(2) =1~ Bezout Identity. Get d,(z) and g,(z) by equating coefficientyid 'a
d(z) d(z) r
L
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Solving N(z) X(z) +M(z) Y(z) = D(2)

V() \
bqn'wnﬂuiﬂzDaﬁauan:Da)

[ —
F(2)

FEF O DL L

N(@Z)=nz 40,22+ 402X (D) =X + X2+ X2 2+ +X,27°P

M(z) =1+mz ™ +mz 7 +..4mz Y (2) = Yo + V2 +Y,2 et Y, 27

_ -1 -2 -n
D(z)=1+d,z"+d, 2" +....+d z F0=[0}'F={ni};izl

F(z)=F,+Fz"+..+F z";m=max(k,1);F. = 2-vector

V(z)=V,+V,z " +... +V,2"; don't know p a priori. Each V; is a 2-row vector.

_FO Fo.OF 07 V=[x y];i=0
0O F,b F . F
Vo VoLV, . "l=[1 d . d,]=VF=D
0 0 F R
0 0 0 F :
_ - - Deconvolution Problem 43
e Find p such that rows of F are independent. d 'l
e Get X (z) from odd coefficients of V j :
e Get Y (z) from even coefficients of V o
57 Copyright ©2006-2012 by K. Pattipati ‘l‘ ‘ ‘ ‘ . :



Pole Placement Method: Shaping T(z) - 2

« Example

«G(s) = —-280.14

s° +100s® —981s —98100
Want t, <0.5sec for 2% error, %0S < 5% and steady state error <0.02

— K, >50=T() =K, /(K, +1) = 0.9804
= {w,>8and { =0.69= w, =11.6 rad / sec = poles:0.984 + j0.0165= d(z) =1-1.968z"+0.9685z7% =
«G(2) = ~3.56x10 (2 +3.554)(z +0.255) _ -3.56x10 "z "(1+3.554z 7)(1+0.2552 ")
(z—1.065)(z—0.9393)(z - 0.8187) (1—1.065z1)(1—0.9393z1)(1—0.8187z %)
e a"™(z)=(1-0.9393z")(1-0.8187z");a (z)=La" " (z) = (1-1.065z7")
b**(z) =-3.56x107";b™(z) = (1+3.554z")(1+0.255271);b"™" (z) =1
e Bezout (Aryabhatta, Diophantine) identity :
(1-1.065z7)d,(z) +z (1 +3.554z*)(1+0.2552 *)q,(z) =1-1.968z* +0.9685z 7 = d(z)
e Solve for d,(z) and g,(z) = d,(z) =1-0.9042z* +0.001z %; g, (z) = 0.0012
o d (2)=b"(2)d,(2) = -3.56x10” (1-0.9042z " +0.001z 2)
o q(z)=a"(z)q,(z) =0.0012(1—0.9393z *)(1-0.8187z")
Kb (2)b™ ()2 0.9804d (1
A
a(z) —3.371x10%(1-0.9393z ")(1-0.8187z ")
d. (2) (1-0.9042z7" +0.001z %)

C ight ©2006-2012 by K. Pattipati
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; poles at 31.321,-31.321,—-100; h = 0.002 sec

FEF O DL L

e Selectp,(2)=1= p(z)=a™(z2)=>T(2) = =8.577x10°°

L L L L
[

Alternately, p(z2) =q(z) = H(2) = = K, =0.0846




(A Technique for Control of Systems

4 R oY - 3
1 with Time Delay, ==Mh + ¢
J
J G(z) —» zMG(z), M = integer
- (Will consider mods for “fractional” delay part 0 < ¢ < h later.)
: Smith Predictor/Compensator
N « Design H(z) using G™(z) = “model” of G(z) (usually G™= G).
» Implementation: L o U -
r >(H) [ H(2) zMG(2) >y
Yel ™ “vlant”
— plant
Ym G"(2) :
Y IMC-like structure
z
St

Yp(k) = “predicted” value of y(k)
Y, =M G™(2)u(z)
- Nominally y(k) —y,(k) = prediction error should be small
- Control is based primarily onr -y,
Y(2) = G™(2)u(z) ~ M — step ahead prediction of y

d'd
U(2) = H@2){r(@) - [ym(@) + (v(2) - y,(2)]} .

y, ~ “effective” output < d

- Basic idea is to build a control that approximates 4 :
u(z) = H(2)z*M[r(z) - y(2)] (need to know/estimate future r if it is changing). 5

C ight ©2006-2012 by K. Pattipati
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- [ Smith Compensator Application

d
d
: Model of system in feedback loop
3 - Possible numerical problems if G(z) is unstable
a - Initialize G™ to rest condition ( =0)
: Implement zM = M — step delay line by an (M+1) — dimensional push — down stack.
V(k-M) | - - - | v(k-1) v(k) [ V(K) = yn(k)
Yp(K) +—
- Initialize stack with v(k —j) = y(k) forall jatk=0
Motor-positioning example with T = 1sec, h=1sec (i.e., M =1)
z-0.87
H(z)=10.5 : '
(2) 22035 (from w-plane design)
- Recall ¢, ~56°, o, ~0.73 =>1,, ~ 1.34 sec, so expect poor performance with no delay
compensation as ¢,, would drop to ~ 14°
1.91
Y 172+
1.53 7T
1.34T
1.15T
0.95T
0.76 T .
0.57 T Step Input response, T = 1'sec
0.387 No delay compensation
0.19 , , , , , , , , , ,
. 15 3 45 6 75 9 105 12 135 15
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Ne 2 fl Results with Delay Compensation |

) B 0.97
« M=1, G"(z)=G(z) =0.048 (Z _(12)2_2 —0.205)

y 1.25+ System initially at rest, r(k) = unit step.
1.14-
1.02 -
0.917
0.80
0.684
0.45 1
0.34 1

0.23-
0.11
0

FEF O DL L

- - - System response with no time delay

—— System response with T = 1 sec and
delay compensation design

I | | I
1.5 3 4.5 6 7.5 9 105 12 13.5 15

« CL response is identical to undelayed case, with a time-shift of M steps.
- If system is not initially at rest, output response would “drift” for first M steps until

the first control begins to affect response.
« As M increases the need for G™(z) ~ G(z) becomes more critical.

Modifications for non-integert=Mh +¢, ¢ #0

Y., = propagation of y through G(z), remains unchanged.
Y, = prediction of current y(k). Obtain via model discussed in Lecture 4.

ight ©2 -2012 K. Pattipati
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[ Alternate Implementation

of Smith Compensator

» Consolidate FB loops

A

zV1

€ :
r —t@a% H(z) u >l Z7MG(z)
‘ | M GM(2) |« |

u(z) = H(2) e(z) - H@)G"(2)(1 ~ zM)u(2)

» Consolidate inner loop, between e and u

1 —
r ? | H@——] 2V6() -y

v

H'(2) = H(z)

1+ H(z)G"(z)(1-z ")
« Typically, H*(z) will be a high-order compensator

>> 1 — 2 usually associated with lag, lead, and PID.

- Implementation methods are critical
Speed/timing for real-time
Accuracy

62 Copyright ©2006-2012 by K. Pattipati
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( Implementation of High-Order

SE

- Needs storage of last m e(i) and u(i)
- Very poor numerical properties!

roots = poles and zeros of H(z).

« Decomposition Approach

> O\ Y 4=

d

a

a

9 . "+ 2"+t

L « Direct form

: u(k) +[B1 + --+Bme(k—m)] — [oclu(k—l)+ +amu(k—m)]

- SE and SU for time k: computed at step k-1

- Small changes in o;, B; coefficients (especially a,, B) can cause large changes in

* Errors in e(k), u(k) “hang around” for m steps

- Decompose H(z) into a sum of low-order subparts (e.g., as in PID) and then add up parts

H(2) =B, + it P

; Ei =B =B

z" + o,z 4

N

S

Bo+le+K

J

PF expansion (assume no repeated roots):

i

+a,,

Az+A,

Lk L L

12" T K,z 1K,
g

~
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: [ lmplementation Structure of H(z)

4
4
: B+ i A zt ZS: (Ail v Aizz_l) z”
o P EHl+wzt Stz g,z
o Note 1 —step delay in all first, second-order parts => can compute these at step k — 1 for use
W at time k.
. Structure "L Po
Azt
. 1+x,z" u(k)
e(k) c I-th 15t —order part
(AutAzz )z
- 1+ KilZ_l + KiZZ_Z :
) i-th 27d —order part
 Algorithm (initiate R, e;, USi,, USi,, UFi; =0)
obtain e(k) = e =r(k) — y(k)
U=pe+R
output u(k) U _ _
Boloreach UFi =Ag, - KiUFi% Obtal_n next valu_e of UFi ) N
1st-order part LUFi, = UFi save it for next time R = Zf: UFi + z USi 3
USi = A,e; + Ae, — k;USi; — k;,USi}, Obtain next USI, = = r
Do for each i1>1 i2%2 — Kij1 1 i2 _ _ 1=
USi, = USi, } save last two =>€,=6 J
2nd-order part | g i, = USi values of USi e, =6 5
Include in Cntrl subroutine, OPT = 3. :
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4 Summmary of Compensator Design Methods
: Indirect design H(s) — H(z) by discrete equivalent
o - Generally requires small h
L - Easy and straightforward
: Direct design methods
- Root locus, w — plane, PID
- Only have Nyquist restriction on h
=> Advantages
- Generally easy to design H(z)
- A low-order design, easily realized, is found
- Higher order dynamics in G(s) accommodated with little extra dffort
- Universally used techniques, time-tested
=> Disadvantages
- Low-order compensator designs do not always work
- Does not use all available information about system behavior (e.g., y instead of x)
- Measures used are not 1:1 with time response (requires trial and error with CL d'd
simulation) d'd
- Limited by human insight j :
- Extremely difficult for MIMO systems r
L
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