Lectures 9 \& 10

Compensator Design via Discrete Equivalent and Direct Design
Prof. Krishna R. Pattipati
Dept. of Electrical and Computer Engineering
University of Connecticut
Contact: krishna@engr.uconn.edu (860) 486-2890

ECE 6095/4121
Dynamic Modeling and Control of Mechatronic Systems

Stability of Discrete Systems

- We need a technique to ascertain stability of the closed-loop system, i.e., whether roots of the CL characteristic polynomial $\mathrm{p}(\mathrm{z})$ all lie within the unit circle.

$$
\begin{aligned}
& p(z)=\left\{\begin{array}{l}
\text { denominator of } \mathrm{T}(\mathrm{z})=\frac{\tilde{\mathrm{G}}(\mathrm{z}) \mathrm{H}(\mathrm{z})}{1+\tilde{\mathrm{G}}(\mathrm{z}) \mathrm{H}(\mathrm{z})} \\
|\mathrm{zI}-\Phi+\Gamma \mathrm{K}|
\end{array}\right. \\
& p(\mathrm{z})=\mathrm{a}_{0} \mathrm{z}^{\mathrm{n}}+\mathrm{a}_{1} \mathrm{z}^{\mathrm{n}-1}+\cdots+\mathrm{a}_{\mathrm{n}} \quad\left(\text { generally } \mathrm{a}_{0}=1\right)
\end{aligned}
$$

- The technique must be simple and involve $\left\{\mathrm{a}_{\mathrm{i}}\right\}$ only.

$$
\text { Applicable to any polynomial in } \mathrm{z} \text {. }
$$

- Continuous-time systems analysis has Routh-Hurwitz to determine whether a polynomial p(s) has its roots in LHP. $p(s)=a_{0} s^{n}+a_{1} s^{n-1}+\cdots+a_{n}$
- A way to use Routh-Hurwitz test:
(1) Map unit circle into left half-plane by replacing z with some suitable function. ($z \rightarrow \mathrm{e}^{\mathrm{sh}}$ will not work here since resulting $\mathrm{p}(\mathrm{s})$ will not be a polynomial.)
(2) One possibility:

$$
\mathrm{z}=\frac{1+\mathrm{wh} / 2}{1-\mathrm{wh} / 2}
$$

(3) Substitute for z in $\mathrm{p}(\mathrm{z})$, multiply through by $(1-\mathrm{wh} / 2)^{\mathrm{n}}$ to obtain $\tilde{\mathrm{p}}(\mathrm{w})=\mathrm{n}$-th order polynomial in w .
(4) Apply Routh-Hurwitz test to $\widetilde{\mathrm{p}}(\mathrm{w})$.

Jury／Raible Test for $p(z)=a_{0} z^{n}+a_{1} z^{n-1}+\cdots+a_{n}$

Set up Jury array－

（0） $2 \mathrm{n}+1: \quad \mathrm{a}_{0}{ }^{(0)}$
where $\quad r_{k}=\frac{a_{k}^{(k)}}{a_{0}{ }^{(k)}} \quad k=n, n-1, \cdots, 1$

$$
a_{i}^{(k-1)}=a_{i}^{(k)}-r_{k} a_{k-i}{ }^{(k)} \quad i=0,1, \cdots, k-1 \quad \text { where initially } a_{i}^{(n)}=a_{i}
$$

In＂English＂－• Each odd row＝previous odd row $-\mathrm{r}_{\mathrm{k}} *$ previous even row．
－Each even row＝preceding odd row in reverse order．
－First row has coefficients of $p(z)$ ．
－Last row has 1 element．
Criteria：
（1）If $\mathrm{a}_{0}>0$ ，then all roots of $\mathrm{p}(\mathrm{z})$ lie in unit circle if and only if $\mathrm{a}_{0}{ }^{(\mathrm{k})}>0, \mathrm{k}=\mathrm{n}-1, \mathrm{n}-2, \ldots, 0$ ．
（2）The no．of negative $\mathrm{a}_{0}{ }^{(\mathrm{k})}=$ no．of roots of $\mathrm{p}(\mathrm{z})$ outside unit circle．

Applications of Jury Test

- Test if first entry in each odd row >0.
- If obtain any $\mathrm{a}_{0}{ }^{(\mathrm{k})} \leq 0$, stop; $\mathrm{p}(\mathrm{z})$ has $\operatorname{root}(\mathrm{s})|\lambda| \geq 1$.
- Simple computer program, need 2 scratch vectors.

Example 1: $\mathrm{p}(\mathrm{z})=\mathrm{z}^{2}-\mathrm{z}+0.5$
(2)

(0)

$$
\begin{gathered}
0.75-0.33 \\
=(0.42)
\end{gathered}
$$

All $\mathrm{a}_{0}{ }^{(\mathrm{k})}>0 \Rightarrow$ system is stable (all roots in unit \odot).

Applications of Jury Test (Cont'd)

Example 2: $\mathrm{p}(\mathrm{z})=\mathrm{z}^{2}-\mathrm{z}+2$
(2)

$$
{ }_{1}^{2} \quad r=2
$$

$$
\begin{align*}
& \begin{array}{cc}
1-4 & -1+2 \\
=-3 & =1
\end{array} \tag{1}\\
& -3 . . . \\
& \mathrm{r}=-1 / 3 \\
& \begin{array}{c}
-3-(-1 / 3) \\
=-8 / 3
\end{array} \\
& \text { => } 2 \text { roots outside } \\
& \text { unit } \odot \text {. }
\end{align*}
$$

(0)

Example $3: p(z)=z^{3}-0.15 z^{2}-0.59$
(3)

1.00	-0.15	0.00	-0.59	
-0.59	0,00	0.15	. 1.00	-0.59

(0) 0.61

All $\mathrm{a}_{0}{ }^{(\mathrm{k})}>0 \Rightarrow$ system is stable.

Application to SVFB Example

The equivalent discrete system

$$
\underline{x}(\mathrm{k}+1)=\underbrace{\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]}_{\Phi} \mathrm{J}, \underbrace{\left[\begin{array}{l}
{[} \\
1
\end{array}\right]}_{\Gamma} \mathrm{u}(\mathrm{k})
$$

is to be controlled using the algorithm, $u(k)=r(k)-[\underbrace{1}_{\underbrace{1}_{\mathrm{K}}} \begin{array}{l}3\end{array}] \underline{x}(\mathrm{k})$
Check if closed-loop system is stable.

- Closed-loop system matrix $\bar{\Phi}=\Phi-Г К$

$$
\bar{\Phi}=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]-\left[\begin{array}{l}
0 \\
1
\end{array}\right]\left[\begin{array}{ll}
1 & 3
\end{array}\right]=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right]-\left[\begin{array}{ll}
0 & 0 \\
1 & 3
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
-1 & -2
\end{array}\right]
$$

- Closed-loop characteristic polynomial

$$
\mathrm{p}(\mathrm{z})=|\mathrm{zI}-\bar{\Phi}|=\left|\begin{array}{cc}
\mathrm{z}-1 & -1 \tag{2}\\
1 & \mathrm{z}+2
\end{array}\right|=\mathrm{z}^{2}+\mathrm{z}-1
$$

- Jury array

- CL system is unstable, but roots are not on unit circle.

Roots of $\mathrm{p}(\mathrm{z})$ are $\mathrm{z}_{1}=0.618, \mathrm{z}_{2}=-1.618$, so $\mathrm{a}_{0}{ }^{(\mathrm{k})}=0$ does not necessarily imply roots on unit circle. (Note $\left|z_{1} z_{2}\right|=1$ here, corresponding to roots λ and $1 / \lambda$.)

- If some $\mathrm{a}_{0}{ }^{(k)}=0$, can replace $0 \rightarrow+\varepsilon$ and continue further, e.g. as in Routh-Hurwitz test.

Stability with Respect to a Parameter

If system (or controller) has a free parameter, β, wish to determine range of values for which system is stable.

Example 1 -

The system $G(s)=a /(s+a), a=1$, is to be controlled using series compensation with algorithm $u(k)=\operatorname{Ke}(k)+u(k-1)$ and time step $h=0.69$ sec. For what range of K is CL system stable?
$\tilde{\mathrm{G}}(\mathrm{z})=\left.\frac{1-\mathrm{e}^{-\mathrm{ah}}}{\mathrm{z}-\mathrm{e}^{-\mathrm{ah}}}\right|_{\text {ahb } 0.09}=\frac{0.5}{\mathrm{z}-0.5} ; \mathrm{u}(\mathrm{z})=\operatorname{Ke}(\mathrm{z})+\mathrm{z}^{-1} \mathrm{u}(\mathrm{z}) \Rightarrow \frac{\mathrm{u}(\mathrm{z})}{\mathrm{e}(\mathrm{z})}=\mathrm{H}(\mathrm{z})=\frac{\mathrm{K}}{1-\mathrm{z}^{-1}}=\frac{\mathrm{Kz}}{\mathrm{z}-1}$
$1+\tilde{G}(z) H(z)=\frac{K z / 2}{(z-1 / 2)(z-1)}+1$
$\mathrm{p}(\mathrm{z})=(\mathrm{z}-1 / 2)(\mathrm{z}-1)+\mathrm{Kz} / 2=\mathrm{z}^{2}+[(\mathrm{K}-3) / 2] \mathrm{z}+1 / 2$
(2)

$$
\begin{aligned}
& \text { Jury criterion } \\
& \Rightarrow 3 / 4>(\mathrm{K}-3)^{2} / 12 \\
& \Rightarrow(\mathrm{~K}-3)^{2}<9 \\
& \Rightarrow-3<\mathrm{K}-3<3 \\
& \Rightarrow 0<\mathrm{K}<6
\end{aligned}
$$

- Reconcile with root locus:

$$
1+\frac{\mathrm{K}}{2} \frac{\mathrm{z}}{(\mathrm{z}-1 / 2)(\mathrm{z}-1)}=1+\tilde{\mathrm{G}}(\mathrm{z}) \mathrm{H}(\mathrm{z})
$$

Unit circle

- Stability with Respect to Multiple Parameters

Can determine constraints that must be satisfied among a set of parameters.
Example 2 -
Determine region in the $a_{1}-a_{2}$ plane for which $p(z)=z^{2}+a_{1} z+a_{2}$ has its roots in the unit circle.

| Recall stability conditions
 for $p(s)=s^{2}+a_{1} s+a_{2}$
 have roots in LHP is a_{1}, a_{2}
 hal | a_{2} |
| :--- | :--- | :--- |

Jury array:
(2)

$$
\begin{equation*}
1-a_{2}{ }^{2} \quad a_{1}\left(1-a_{2}\right) \tag{1}
\end{equation*}
$$

$$
\mathrm{r}=\frac{\mathrm{a}_{1}}{1+\mathrm{a}_{2}}
$$

$$
\begin{equation*}
1-a_{2}{ }^{2}-\frac{a_{1}{ }^{2}\left(1-a_{2}\right)}{1+a_{2}} \tag{0}
\end{equation*}
$$

Jury criteria:

$$
1-\mathrm{a}_{2}{ }^{2}>0
$$

$$
\Rightarrow \quad-1<a_{2}<1
$$

$$
\begin{aligned}
1-\mathrm{a}_{2}{ }^{2}-\frac{\mathrm{a}_{1}{ }^{2}\left(1-\mathrm{a}_{2}\right)}{1+\mathrm{a}_{2}}>0 \Rightarrow & \overline{\left(1+\mathrm{a}_{2}\right)^{2}-\mathrm{a}_{1}{ }^{2}>0} \\
\mathrm{a}_{2} & {\left[\text { since } 1-\mathrm{a}_{2}>0 \text { and } 1+\mathrm{a}_{2}>0\right] }
\end{aligned}
$$

$$
\Rightarrow \underline{-\left(1+a_{2}\right)<a_{1}<1+a_{2}}
$$

A More Complicated，State－Space Example

The open－loop unstable continuous system defined by

$$
\underline{\dot{x}}(\mathrm{t})=\left[\begin{array}{ccc}
0 & 1 & -1 \\
3 & -2 & 1 \\
0 & 2 & -1
\end{array}\right] \underline{x}(\mathrm{t})+\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right] u(\mathrm{t}) ; \quad \mathrm{y}(\mathrm{t})=\left[\begin{array}{lll}
1 & 0 & 2
\end{array}\right] \underline{x}(\mathrm{t})
$$

is to be controlled using a digital computer with $\mathrm{h}=0.05$ ．
Investigate CL stability using the SVFB algorithm

$$
\begin{aligned}
\mathrm{u}(\mathrm{k}) & =\mathrm{r}(\mathrm{k})--\begin{array}{ll}
0.5 & \mathrm{x}_{1}(\mathrm{k})-2 \mathrm{x}_{2}(\mathrm{k})-\mathrm{x}_{3}(\mathrm{k}) \\
& =\mathrm{r}(\mathrm{k})-\underbrace{\left[\begin{array}{lll}
0.5 & 2 & 1
\end{array}\right]}_{\mathrm{K}} \underline{\mathrm{x}}(\mathrm{k}) \quad\left(\mathrm{K}_{\mathrm{r}}=1\right)
\end{array}
\end{aligned}
$$

（1）Obtain equivalent discrete system $\underline{x}(\mathrm{k}+1)=\Phi \underline{\mathrm{x}}(\mathrm{k})+\Gamma \mathrm{u}(\mathrm{k})$ using c 2 d ，

$$
\Phi=\left[\begin{array}{rrr}
1.0035 & 0.0453 & -0.0477 \\
0.1430 & 0.9105 & 0.0429 \\
0.0071 & 0.0930 & 0.9535
\end{array}\right] ; \quad \Gamma=\left[\begin{array}{c}
0.0512 \\
0.0513 \\
0.0025
\end{array}\right]
$$

（2）Form CL system matrix， $\bar{\Phi}=\Phi-\Gamma \mathrm{K}$ ，then use ss2tf to obtain CL transfer function $\mathrm{T}(\mathrm{z})=\mathrm{C}(\mathrm{zI}-\bar{\Phi})^{-1} \Gamma$ ．Need only to obtain $\mathrm{p}(\mathrm{z})=|\mathrm{zI}-\bar{\Phi}|$ for closed－loop stability test．

$$
\mathrm{p}(\mathrm{z})=\mathrm{z}^{3}-2.737 \mathrm{z}^{2}+2.497 \mathrm{z}-0.758
$$

（3）Apply Jury test $\rightarrow p(z)$ has all roots in $\odot==>$ CL stable
（4）Phase margin can be evaluated by using ss2tf to obtain $\mathrm{K}(\mathrm{zI}-\Phi)^{-1} \Gamma$ ，then using Bode （option 2）to plot LG（z）$\left.\right|_{\mathrm{z}=\mathrm{e}^{\text {ioh }}} .==>$ Obtain $\omega_{\mathrm{c}} \approx 2.8 \mathrm{rad} / \mathrm{sec}, \phi_{\mathrm{m}} \approx 41^{\circ}$

State-Space Example Plots

Fundamentals of Digital Compensator Design

"Given a $\mathrm{G}(\mathrm{s})$, or $\tilde{\mathrm{G}}(\mathrm{z})$, design a series compensator $\mathrm{H}(\mathrm{z})$ so that the closed-loop system meets specs."

Design Approaches

- $\mathrm{H}(\mathrm{z})$ design via discrete equivalent
- Idea is to use continuous time design methods to construct $\mathrm{H}(\mathrm{s})$ given $\mathrm{G}(\mathrm{s})$, then obtain from $\mathrm{H}(\mathrm{s})$ a suitable discrete compensator $\widetilde{\mathrm{H}}(\mathrm{z})$.
- Scheme might be expected to be useful provided,

$$
\left.\widetilde{\mathrm{G}}(\mathrm{z})\right|_{\mathrm{z}=\mathrm{e}^{\mathrm{i} \omega \mathrm{~h}}} \approx \mathrm{G}(\mathrm{j} \omega) \quad \Rightarrow \mathrm{h} \sim \text { small }
$$

- Alternately, an analog $\mathrm{H}(\mathrm{s})$ compensator often exists and we desire to replace the "older" analog system with a digital, μ-processor controller.

Problem: Given $\mathrm{H}(\mathrm{s})$ how do we obtain an $\widetilde{\mathrm{H}}(\mathrm{z})$?

- Direct design of $\mathrm{H}(\mathrm{z})$ given $\widetilde{\mathrm{G}}(\mathrm{z})$.

Evaluation Tools:

- stability tests
- loop gain analysis
- root locus
- simulation

H(z) Design via Discrete Equivalent: $\mathrm{H}(\mathrm{s}) \rightarrow \widetilde{\mathrm{H}}(\mathrm{z})$

Goals:

- Simplicity

Hold equivalence methods [viz $\mathrm{G}(\mathrm{s}) \rightarrow \widetilde{\mathrm{G}}(\mathrm{z})$], and impulse transformation methods $\left[Z\left\{L^{-1}\{\mathrm{H}(\mathrm{s})\}\right\}\right]$ are not simple.

- $\widetilde{\mathrm{H}}(\mathrm{z})=$ rational transfer function

$$
\widetilde{\mathrm{H}}(\mathrm{z})=\mathrm{A}(\mathrm{z}) / \mathrm{B}(\mathrm{z}) \quad \mathrm{A}(\mathrm{z}), \mathrm{B}(\mathrm{z})=\text { polynomials }
$$

[Thus the "obvious" inverse relation $\mathrm{s}=\frac{1}{\mathrm{~h}} \log (\mathrm{z})$ is NG.]

- If $\mathrm{H}(\mathrm{s})=\mathrm{m}$-th order transfer function then $\tilde{\mathrm{H}}(\mathrm{z})=\mathrm{m}$-th order transfer function.

Typically, $H(s)=\frac{b_{0} s^{m}+b_{1} s^{m-1}+\cdots+b_{m}}{s^{m}+a_{1} s^{m-1}+\cdots+a_{m}} \quad b_{0} \neq 0$
i.e., $\mathrm{H}(\mathrm{s})$ will invariably contain a pure gain, (and state-variable model of $\mathrm{H}(\mathrm{s})$ will have $\mathrm{d} \neq 0$). Require

$$
\tilde{H}(z)=\frac{\beta_{0} z^{m}+\beta_{1} z^{m-1}+\cdots+\beta_{m}}{z^{m}+\alpha_{1} z^{m-1}+\cdots+\alpha_{m}} \quad \beta_{0} \neq 0
$$

- Accuracy

$$
\text { Desire }\left.\tilde{\mathrm{H}}(\mathrm{z})\right|_{\mathrm{z}=\mathrm{e}^{\text {joh }}} \approx \mathrm{H}(\mathrm{j} \omega) \quad \text { over the frequency range of interest/importance. }
$$

Idea: Replace s with some suitable rational $\mathrm{F}(\mathrm{z})$.

- A given $\mathrm{H}(\mathrm{s})$ can be synthesized as an interconnection of integrators $=1 / \mathrm{s}$ elements (recall elementary signal flow diagram) $=>$ replace $1 / s=$ continuous time integrator by $\mathrm{F}(\mathrm{z})=$ transfer function of a discrete integrator.

Forms of Discrete Integration

$\mathrm{e}(\mathrm{k}) \longrightarrow \mathrm{F}(\mathrm{z}) \longrightarrow \mathrm{g}(\mathrm{k})$
$\mathrm{F}(\mathrm{z})=\frac{\mathrm{g}(\mathrm{z})}{\mathrm{e}(\mathrm{z})}$
$g(k-1)=$ approximate value of $\int_{-\infty}^{(k-1) h} e(t) d t ; \quad g(k)=$ approximate value of $\int_{-\infty}^{k h} e(t) d t$

1. Forward Integration

$$
\begin{aligned}
& \mathrm{g}(\mathrm{k})=\mathrm{g}(\mathrm{k}-1)+\mathrm{he}(\mathrm{k}-1) \\
& \mathrm{g}(\mathrm{z})=\mathrm{z}^{-1} \mathrm{~g}(\mathrm{z})+\mathrm{z}^{-1} \mathrm{he}(\mathrm{z}) \\
& \Rightarrow \mathrm{F}(\mathrm{z})=\frac{\mathrm{h}}{\mathrm{z}-1} \sim \frac{1}{\mathrm{~s}} \\
& \text { Replacement } \mathrm{s} \rightarrow \frac{\mathrm{z}-1}{\mathrm{~h}}
\end{aligned}
$$

2. Backward Integration

$$
\begin{array}{l:l}
\mathrm{g}(\mathrm{k})=\mathrm{g}(\mathrm{k}-1)+\mathrm{he}(\mathrm{k}) & \mathrm{g}(\mathrm{k})=\mathrm{g}(\mathrm{k}-1)+\mathrm{h} / 2[\mathrm{e}(\mathrm{k})+\mathrm{e}(\mathrm{k}-1)] \\
\mathrm{g}(\mathrm{z})=\mathrm{z}^{-1} \mathrm{~g}(\mathrm{z})+\mathrm{he}(\mathrm{z}) & \mathrm{g}(\mathrm{z})=\mathrm{z}^{-1} \mathrm{~g}(\mathrm{z})+\mathrm{h} / 2\left(1+\mathrm{z}^{-1}\right) \mathrm{e}(\mathrm{z}) \\
\Rightarrow \mathrm{F}(\mathrm{z})=\frac{\mathrm{h}}{1-\mathrm{z}^{-1}}=\frac{\mathrm{zh}}{\mathrm{z}-1} \sim \frac{1}{\mathrm{~s}} & \Rightarrow \mathrm{~F}(\mathrm{z})=\frac{\mathrm{h}}{2}\left(\frac{1+\mathrm{z}^{-1}}{1-\mathrm{z}^{-1}}\right)=\frac{\mathrm{h}}{2}\left(\frac{\mathrm{z}+1}{\mathrm{z}-1}\right) \sim \frac{1}{\mathrm{~s}} \\
\text { Replacement } \mathrm{s} \rightarrow \frac{\mathrm{z}-1}{\mathrm{zh}} & \text { Replacement } \mathrm{s} \rightarrow \frac{2}{\mathrm{~h}}\left(\frac{\mathrm{z}-1}{\mathrm{z}+1}\right)
\end{array}
$$

3. Trapezoidal, or Tustin Integration

Relationship to True $s \rightarrow \mathbf{z}$ Map

Each method corresponds to a different rational approximation of $\mathrm{e}^{\text {sh }}$
(1) Forward integration:

$$
\mathrm{z}=\mathrm{e}^{\text {sh }} \doteq 1+\mathrm{sh} \quad \text { gives } \mathrm{s}=\frac{\mathrm{z}-1}{\mathrm{~h}}
$$

(2) Backward integration:

$$
\mathrm{z}=\frac{1}{\mathrm{e}^{-\mathrm{sh}}} \doteq \frac{1}{1-\mathrm{sh}} \quad \text { gives } \mathrm{s}=\frac{\mathrm{z}-1}{\mathrm{zh}}
$$

(3) Tustin integration:

$$
\mathrm{z}=\frac{\mathrm{e}^{\mathrm{sth} / 2}}{\mathrm{e}^{-\mathrm{sh} / 2}} \doteq \frac{1+\mathrm{sh} / 2}{1-\mathrm{sh} / 2} \quad \text { gives } \mathrm{s}=\frac{2}{\mathrm{~h}} \frac{\mathrm{z}-1}{\mathrm{z}+1}
$$

Note:

- The above replacements maintain transfer function order

$$
\text { if } \mathrm{H}(\mathrm{~s})=\frac{\mathrm{b}_{0} \mathrm{~s}^{\mathrm{m}}+\mathrm{b}_{1} \mathrm{~s}^{\mathrm{m}-1}+\cdots+\mathrm{b}_{\mathrm{m}}}{\mathrm{~s}^{\mathrm{m}}+\mathrm{a}_{1} \mathrm{~s}^{\mathrm{m}-1}+\cdots+\mathrm{a}_{\mathrm{m}}} \rightarrow \tilde{H}(\mathrm{z})=\frac{\mathrm{b}_{0}(\mathrm{z}-1)^{\mathrm{m}}+\cdots}{(\mathrm{z}-1)^{\mathrm{m}}+\cdots}
$$

- Forward integration \longleftrightarrow Euler method to predict $\mathrm{g}(\mathrm{k})$

$$
\frac{\overbrace{\mathrm{g}(\mathrm{k})-\mathrm{g}(\mathrm{k}-1)}^{\mathrm{e}(\mathrm{t})}}{\mathrm{h}} \Rightarrow \mathrm{~g}(\mathrm{k})=\mathrm{g}(\mathrm{k}-1)+\mathrm{he}(\mathrm{k}-1)
$$

- Even if $\mathrm{H}(\mathrm{s})=\frac{\mathrm{r} \text {-th order }}{\mathrm{m} \text {-th order }}, \tilde{\mathrm{H}}(\mathrm{z})=\frac{\mathrm{m} \text {-th order }}{\mathrm{m} \text {-th order }}$ for (2) and (3)
[OK since $\mathrm{H}(\mathrm{s})$ is almost always m-th order/m-th order].
- Tustin ~ 1 st order Pade approximation to z^{-1}

Mapping of LHP to Unit Circle

- Useful as a criterion for selecting integration scheme:
(1) Forward integration

A stable $\mathrm{H}(\mathrm{s})$ can yield an unstable $\widetilde{H}(\mathrm{z})$! NOT GOOD
(2) Backward integration

Stable H(s) yields stable $\mathrm{H}(\mathrm{z})$; some unstable $\mathrm{H}(\mathrm{s})$ can yield stable $\widetilde{\mathrm{H}}(\mathrm{z})$.
(3) Tustin integration

Preferable map since stability areas are mapped 1:1.

Computing $\widetilde{\mathrm{H}}(\mathbf{z})$ via Tustin Equivalent

- Since any $\mathrm{H}(\mathrm{s})$ can be decomposed (via PF expansion) into either a cascade or a sum of first and second-order terms, equivalence can be done on a term-by-term basis.
(1) Simple Lag, $\mathrm{H}(\mathrm{s})=\mathrm{K} \frac{1}{\tau \mathrm{~s}+1}\left(\right.$ or $\mathrm{K} \frac{\mathrm{a}_{1}}{\mathrm{~s}+\mathrm{a}_{1}}$ with $\left.\mathrm{a}_{1}=\tau^{-1}\right)$

$$
\tilde{\mathrm{H}}(\mathrm{z})=\mathrm{K}\left[\frac{1}{\frac{2 \tau}{\mathrm{~h}}\left(\frac{\mathrm{z}-1}{\mathrm{z}+1}\right)+1}\right]=\underbrace{\frac{\mathrm{Kh} / 2 \tau}{1+\mathrm{h} / 2 \tau}}_{\tilde{\mathrm{K}}}[\frac{\mathrm{z}+1}{\mathrm{z}-\underbrace{\frac{1-\mathrm{h} / 2 \tau}{1+\mathrm{h} / 2 \tau}}_{\alpha_{1} \sim \mathrm{e}^{-\mathrm{h} / \tau}}]}
$$

(2) General First-order factor

$$
\begin{aligned}
& \mathrm{H}(\mathrm{~s})=\mathrm{K} \frac{\mathrm{~b}_{0} \mathrm{~s}+\mathrm{b}_{1}}{\mathrm{~s}+\mathrm{a}_{1}} \rightarrow \tilde{H}(\mathrm{z})=\tilde{\mathrm{K}} \frac{\mathrm{z}-\beta_{1}}{\mathrm{z}-\alpha_{1}} \\
& \frac{\mathrm{~b}_{1}}{\mathrm{~b}_{0}}<\mathrm{a}_{1} \Rightarrow \text { lead; } \quad \frac{\mathrm{b}_{1}}{\mathrm{~b}_{0}}>\mathrm{a}_{1} \Rightarrow \text { lag } \\
& \beta_{1}=\frac{\mathrm{b}_{0}-\mathrm{b}_{1} \mathrm{~h} / 2}{\mathrm{~b}_{0}+\mathrm{b}_{1} \mathrm{~h} / 2}, \quad \alpha_{1}=\frac{1-\mathrm{a}_{1} \mathrm{~h} / 2}{1+\mathrm{a}_{1} \mathrm{~h} / 2}, \quad \tilde{\mathrm{~K}}=\mathrm{K} \frac{\mathrm{~b}_{0}+\mathrm{b}_{1} \mathrm{~h} / 2}{1+\mathrm{a}_{1} \mathrm{~h} / 2}
\end{aligned}
$$

Computing H（z）via Tustin Equivalent（Cont’d）

（3）General Second－order factor

$$
\begin{gathered}
\mathrm{H}(\mathrm{~s})=\mathrm{K} \frac{\mathrm{~b}_{0} \mathrm{~s}^{2}+\mathrm{b}_{1} \mathrm{~s}+\mathrm{b}_{2}}{\mathrm{~s}^{2}+\mathrm{a}_{1} \mathrm{~s}+\mathrm{a}_{2}} \rightarrow \tilde{\mathrm{H}}(\mathrm{z})=\tilde{\mathrm{K}} \frac{\mathrm{z}^{2}-\beta_{1} \mathrm{z}+\beta_{2}}{\mathrm{z}^{2}-\alpha_{1} \mathrm{z}+\alpha_{2}} \\
\alpha_{2}=\frac{1-\mathrm{a}_{1} \mathrm{~h} / 2+\mathrm{a}_{2} \mathrm{~h}^{2} / 4}{1+\mathrm{a}_{1} \mathrm{~h} / 2+\mathrm{a}_{2} \mathrm{~h}^{2} / 4}, \quad \alpha_{1}=\frac{2-\mathrm{a}_{2} \mathrm{~h}^{2} / 2}{1+\mathrm{a}_{1} \mathrm{~h} / 2+\mathrm{a}_{2} \mathrm{~h}^{2} / 4} \\
\beta_{2}=\frac{\mathrm{b}_{0}-\mathrm{b}_{1} \mathrm{~h} / 2+\mathrm{b}_{2} \mathrm{~h}^{2} / 4}{\mathrm{~b}_{0}+\mathrm{b}_{1} \mathrm{~h} / 2+\mathrm{b}_{2} \mathrm{~h}^{2} / 4}, \quad \beta_{1}=\frac{2 \mathrm{~b}_{0}-\mathrm{b}_{2} \mathrm{~h}^{2} / 2}{\mathrm{~b}_{0}+\mathrm{b}_{1} \mathrm{~h} / 2+\mathrm{b}_{2} \mathrm{~h}^{2} / 4} \\
\tilde{\mathrm{~K}}=\mathrm{K} \frac{\mathrm{~b}_{0}+\mathrm{b}_{1} \mathrm{~h} / 2+\mathrm{b}_{2} \mathrm{~h}^{2} / 4}{1+\mathrm{a}_{1} \mathrm{~h} / 2+\mathrm{a}_{2} \mathrm{~h}^{2} / 4}
\end{gathered}
$$

General Algorithm for Tustin Transformation

$$
H(s)=K \frac{b_{0} s^{m}+b_{1} s^{m-1}+\cdots+b_{m}}{s^{m}+a_{1} s^{m-1}+\cdots+a_{m}}=\frac{u(s)}{e(s)}
$$

（1）Write a state variable model for $\mathrm{H}(\mathrm{s})$ in SOF with $\mathrm{K}=1$ ．

$$
\begin{aligned}
& \underline{\dot{x}}(\mathrm{t})=\mathrm{A} \underline{\mathrm{x}}(\mathrm{t})+\mathrm{Be}(\mathrm{t}) ; \quad \mathrm{u}(\mathrm{t})=\mathrm{C} \underline{\mathrm{x}}(\mathrm{t})+\mathrm{de}(\mathrm{t}) \\
& A=\left[\begin{array}{ccccc}
-a_{1} & 1 & 0 & \cdots & 0 \\
-a_{2} & 0 & 1 & \cdots & 0 \\
\vdots & & & \ddots & 1 \\
-a_{m} & 0 & \cdots & & 0
\end{array}\right] ; \quad B=\left[\begin{array}{c}
\tilde{b}_{1} \\
\tilde{b}_{2} \\
\vdots \\
\tilde{b}_{m}
\end{array}\right] ;
\end{aligned}
$$

（2）Take $L==>\operatorname{sx}(\mathrm{s})=\operatorname{Ax}(\mathrm{s})+\operatorname{Be}(\mathrm{s})$ and replace $\mathrm{s} \rightarrow \frac{2}{\mathrm{~h}}\left(\frac{\mathrm{z}-1}{\mathrm{z}+1}\right) . \Rightarrow \frac{2}{\mathrm{~h}}\left(\frac{\mathrm{z}-1}{\mathrm{z}+1}\right) \underline{x}(\mathrm{z})=\operatorname{Ax}(\mathrm{z})+\operatorname{Be}(\mathrm{z})$
（3）Solve above for $\underline{x}(z)$ and form：$u(z)=C \underline{x}(z)+\operatorname{de}(z)$

$$
\begin{array}{ll}
\mathrm{u}(\mathrm{z})=\underbrace{\left\{\mathrm{C}(\mathrm{zI}-\tilde{\mathrm{A}})^{-1} \tilde{\mathrm{~B}}(\mathrm{z}+1)+\mathrm{d}\right\} \mathrm{e}(\mathrm{z}) ;}_{\tilde{\mathrm{H}}(\mathrm{z})} \begin{array}{l}
\tilde{\mathrm{A}}=(\mathrm{I}-(\mathrm{h} / 2) \mathrm{A})^{-1}(\mathrm{I}+(\mathrm{h} / 2) \mathrm{A}) \\
\\
\\
\tilde{\mathrm{B}}=(\mathrm{I}-(\mathrm{h} / 2) \mathrm{A})^{-1} \mathrm{~B} \mathrm{~h} / 2
\end{array},
\end{array}
$$

（4）Use ss2tf to obtain coefficients $\overline{\mathrm{a}}_{\mathrm{i}}, \overline{\mathrm{b}}_{\mathrm{i}}$ ，of denominator and numerator of

$$
\mathrm{C}(\mathrm{zI}-\tilde{\mathrm{A}})^{-1} \tilde{\mathrm{~B}}
$$

（5）Form final：

$$
\tilde{\mathrm{H}}(\mathrm{z})=\mathrm{K} \underline{\beta_{0} \mathrm{z}^{\mathrm{m}}+\beta_{1} \mathrm{z}^{\mathrm{m}-1}+\cdots+\beta_{\mathrm{m}}} \text { where } \quad \beta_{\mathrm{i}}=\overline{\mathrm{b}}_{\mathrm{i}}+\overline{\mathrm{b}}_{\mathrm{i}+1}+\mathrm{da}_{\mathrm{a}} \quad i=0,1,2, \cdots, m-1
$$

General Algorithm for Forward Integration

$$
H(s)=K \frac{b_{0} s^{m}+b_{1} s^{m-1}+\cdots+b_{m}}{s^{m}+a_{1} s^{m-1}+\cdots+a_{m}}=\frac{u(s)}{e(s)}
$$

(1) Write a state variable model for $\mathrm{H}(\mathrm{s})$ in SOF with $\mathrm{K}=1$.

\[

\]

(2) Take $L==>\operatorname{sx}(\mathrm{s})=\operatorname{Ax}(\mathrm{s})+\operatorname{Be}(\mathrm{s})$ and replace $\mathrm{s} \rightarrow\left(\frac{\mathrm{z}-1}{h}\right) . \quad\left(\frac{\mathrm{z}-1}{\mathrm{~h}}\right) \underline{\underline{x}}(\mathrm{z})=\operatorname{Ax}(\mathrm{z})+\operatorname{Be}(\mathrm{z})$
(3) Solve above for $\underline{x}(z)$ and form: $u(z)=\operatorname{Cx}(z)+\operatorname{de}(z)$

$$
\mathrm{u}(\underbrace{\mathrm{z})=\left\{\mathrm{C}(\mathrm{zI}-\tilde{\mathrm{A}})^{-1} \tilde{\mathrm{~B}}+\mathrm{d}\right\} \mathrm{e}(\mathrm{z})}_{\tilde{\mathrm{H}}(\mathrm{z})} ; \quad \begin{array}{l}
\tilde{\mathrm{A}}=(\mathrm{I}+\mathrm{hA}) \\
\tilde{\mathrm{B}}=\mathrm{B} \mathrm{~h}
\end{array}
$$

(4) Use Leverier algorithm to obtain coefficients \bar{a}_{i}, \bar{b}_{i}, of denominator and numerator of $\mathrm{C}(\mathrm{zI}-\tilde{\mathrm{A}})^{-1} \tilde{\mathrm{~B}}$
(5) Form final:

$$
\begin{array}{cc}
\tilde{\mathrm{H}}(\mathrm{z})=\mathrm{K} \frac{\beta_{0} \mathrm{z}^{\mathrm{m}}+\beta_{1} \mathrm{z}^{\mathrm{m}-1}+\cdots+\beta_{\mathrm{m}}}{\mathrm{z}^{\mathrm{m}}+\alpha_{1} \mathrm{z}^{\mathrm{m}-1}+\cdots+\alpha_{\mathrm{m}}} \quad \text { where } \quad \beta_{\mathrm{i}}=\overline{\mathrm{b}}_{\mathrm{i}}+\mathrm{d} \overline{\mathrm{a}}_{\mathrm{i}} ; i=0,1,2, \cdots, m \\
\alpha_{\mathrm{i}}=\overline{\mathrm{a}}_{\mathrm{i}} ; i=1,2, . ., m
\end{array}
$$

General Algorithm for Backward Integration

$$
H(s)=K \frac{b_{0} s^{m}+b_{1} s^{m-1}+\cdots+b_{m}}{s^{m}+a_{1} s^{m-1}+\cdots+a_{m}}=\frac{u(s)}{e(s)}
$$

(1) Write a state variable model for $\mathrm{H}(\mathrm{s})$ in SOF with $\mathrm{K}=1$.

\[

\]

(2) Take $L==>\operatorname{sx}(\mathrm{s})=\operatorname{Ax}(\mathrm{s})+\operatorname{Be}(\mathrm{s})$ and replace $\mathrm{s} \rightarrow \frac{1}{\mathrm{~h}}\left(\frac{\mathrm{z}-1}{\mathrm{z}}\right) \cdot \quad \frac{1}{\mathrm{~h}}\left(\frac{\mathrm{z}-1}{\mathrm{z}}\right) \underline{\mathrm{x}}(\mathrm{z})=\operatorname{A\underline {x}}(\mathrm{z})+\operatorname{Be}(\mathrm{z})$
(3) Solve above for $\underline{x}(z)$ and form: $u(z)=C \underline{x}(z)+\operatorname{de}(z)$

$$
\begin{array}{ll}
\tilde{\mathrm{H}}(\mathrm{z}) & \begin{array}{ll}
\mathrm{u}(\mathrm{z})=\left\{\mathrm{C}(\mathrm{zI}-\tilde{\mathrm{A}})^{-1} \tilde{\mathrm{~B}} \mathrm{z}+\mathrm{d}\right\} \mathrm{e}(\mathrm{z}) ; & \tilde{\mathrm{A}}=(\mathrm{I}-\mathrm{hA})^{-1} \\
& \tilde{\mathrm{~B}}=(\mathrm{I}-\mathrm{hA})^{-1} \mathrm{Bh}
\end{array}
\end{array}
$$

(4) Use Leverier algorithm to obtain coefficients $\overline{\mathrm{a}}_{\mathrm{i}}, \overline{\mathrm{b}}_{\mathrm{i}}$, of denominator and numerator of

$$
\mathrm{C}(\mathrm{zI}-\tilde{\mathrm{A}})^{-1} \tilde{\mathrm{~B}}
$$

(5) Form final:

$$
\begin{array}{ll}
\tilde{H}(z)=K \frac{\beta_{0} z^{m}+\beta_{1} z^{m-1}+\cdots+\beta_{m}}{z^{m}+\alpha_{1} z^{m-1}+\cdots+\alpha_{m}} \quad \text { where } & \beta_{i}=\bar{b}_{i+1}+d \bar{a}_{i} \quad i=0,1,2, \cdots, m-1 \\
& \beta_{m}=d \bar{a}_{m} ; \quad \alpha_{i}=\bar{a}_{i} ; i=1,2, . ., m
\end{array}
$$

Bode Plot Comparisons

Usually $\left.\left.\tilde{\mathrm{H}}(\mathrm{z})\right|_{\mathrm{z}=\mathrm{e}^{\text {ionh }}} \equiv \mathrm{H}(\mathrm{s})\right|_{\left.\mathrm{s}=\frac{2}{h} \frac{\left(\mathrm{e}^{\text {joph }}-1\right.}{\mathrm{e}^{\text {ijh }}+1}\right)} \approx \mathrm{H}(\mathrm{j} \omega)$ for Tustin equivalence．
（Include option 3 in Bode plot program $\mathrm{x}=\frac{\mathrm{z}-1}{\mathrm{zh}}$ ，and option 4， $\mathrm{x}=\frac{2}{\mathrm{~h}}\left(\frac{z-1}{z+1}\right)$ where $\left.\mathrm{z}=\mathrm{e}^{\mathrm{j} \omega \mathrm{h}}\right)$
Example 1： $\mathrm{H}(\mathrm{s})=\frac{2 \mathrm{~s}^{2}+3 \mathrm{~s}+4}{\mathrm{~s}^{2}+2 \mathrm{~s}+6} \quad \underset{\mathrm{~h}=0.5}{\text { Tustin }} \tilde{\mathrm{H}}(\mathrm{z})=\frac{1.6 \mathrm{z}^{2}-1.867 \mathrm{z}+0.8}{\mathrm{z}^{2}-0.667 \mathrm{z}+0.467}$

Tustin equivalence is usually superior to backward difference equivalent when comparing $\tilde{H}(\mathrm{z})_{z=e^{\text {ien }}}$ to $\mathrm{H}(\mathrm{j} \omega)$ ．

Tustin Equivalence with Frequency Prewarping

- Is it possible to improve the match between Tustin $\widetilde{\mathrm{H}}(\mathrm{z})$ at $\mathrm{z}=\mathrm{e}^{\mathrm{j} \omega \mathrm{h}}$ and original $\mathrm{H}(\mathrm{j} \omega)$?
- At which frequencies, ω, does equality hold?

$$
\begin{aligned}
& \text { Tustin }\left.\mathrm{H}(\mathrm{z})\right|_{\mathrm{z}=\mathrm{e}^{\mathrm{j} \omega \mathrm{~h}}}=\left.\mathrm{H}(\mathrm{~s})\right|_{\mathrm{s}=\mathrm{j} \omega} \\
& \text { if and only if } \quad \frac{2}{\mathrm{~h}}\left(\frac{\mathrm{e}^{\mathrm{j} \omega \mathrm{~h}}-1}{\mathrm{e}^{\mathrm{joh}}+1}\right)=\mathrm{j} \omega \\
& \text { or } \frac{\mathrm{e}^{\mathrm{j} \omega \mathrm{~h} / 2}-\mathrm{e}^{-\mathrm{j} \omega h / 2}}{\mathrm{j}\left(\mathrm{e}^{\mathrm{j} \omega \mathrm{~h} / 2}+\mathrm{e}^{-\mathrm{j} \omega \mathrm{~L} / 2}\right)} \equiv \tan \left(\frac{\omega \mathrm{h}}{2}\right)=\frac{\omega \mathrm{h}}{2}
\end{aligned}
$$

- For $0 \leq \omega<\pi / h$ equality holds only at $\omega=0$.
- Can obtain equality at one other $\omega \neq 0$ if we have $\tan \left(\frac{\omega \mathrm{h}}{2}\right)=\mathrm{a} \frac{\omega \mathrm{h}}{2} ; \quad \mathrm{a}>1$

This corresponds to replacement $s \rightarrow \frac{2}{a h}\left(\frac{z-1}{z+1}\right)$

- For equality at $\omega=\omega_{1}$, usually some important frequency, $\mathrm{a}=\frac{\tan \left(\omega_{1} \mathrm{~h} / 2\right)}{\left(\omega_{1} \mathrm{~h} / 2\right)}$
\Rightarrow Tustin with prewarp (include as option 5 in Bode plot)

$$
\left.\mathrm{s} \rightarrow \frac{2}{\mathrm{~h}} \frac{\left(\omega_{1} \mathrm{~h} / 2\right)}{\tan \left(\omega_{1} \mathrm{~h} / 2\right)} \cdot\left(\frac{\mathrm{z}-1}{\mathrm{z}+1}\right) \quad \text { (like a "modified" } \mathrm{h} \rightarrow \mathrm{ah}\right)
$$

Example 2 - Tustin Equivalence with Prewarping

$$
\mathrm{H}(\mathrm{~s})=\frac{2 \mathrm{~s}^{2}+3 \mathrm{~s}+4}{\mathrm{~s}^{2}+2 \mathrm{~s}+6} ; \mathrm{h}=0.5
$$

Require $\tilde{\mathrm{H}}(\mathrm{z})_{z=\mathrm{e}^{\text {ioh }}}=\mathrm{H}(\mathrm{s})_{\mathrm{s}=\mathrm{j} \omega}$ at $\omega=2$ (corresponds approximately to where $\measuredangle \mathrm{H}(\mathrm{j} \omega)$ is max).

- Gives better match in region $\omega \approx[1.2,3]$.

Example 3 - Tustin Equivalence with Prewarping

$$
\mathrm{H}(\mathrm{~s})=\frac{2 \mathrm{~s}^{2}+3 \mathrm{~s}+4}{\mathrm{~s}^{2}+2 \mathrm{~s}+6} ; \quad \mathrm{h}=0.5
$$

- A poor choice of ω_{1} can result in substantial $\mathrm{H}(\mathrm{j} \omega)$ vs. $\mathrm{H}\left(\mathrm{e}^{\mathrm{j} \omega \mathrm{h}}\right)$ mismatch for $\omega \neq \omega_{1}$.

$$
\text { e.g., } \omega_{1}=4, \quad a=\frac{\tan 0.5}{0.5}=1.558
$$

\Rightarrow To avoid problems keep $\omega_{1} \leq 1 / \mathrm{h}<\pi / \mathrm{h}$ and examine Bode plot comparisons of $\widetilde{\mathrm{H}}\left(\mathrm{e}^{\mathrm{j} \omega \mathrm{h}}\right)$ vs. $\mathrm{H}(\mathrm{j} \omega)$.

Other Techniques for $\mathrm{H}(\mathrm{s}) \rightarrow \widetilde{\mathrm{H}}(\mathrm{z})$ Equivalence

- Pole-zero mapping

$$
H(s)=K \frac{\prod_{i=1}^{p}\left(s-\delta_{i}\right)}{\prod_{i=1}^{m}\left(s-\lambda_{i}\right)} \quad \rightarrow \quad \tilde{H}(z)=\tilde{K} \frac{\prod_{i=1}^{m}\left(z-\tilde{\delta}_{i}\right)}{\prod_{i=1}^{m}\left(z-\tilde{\lambda}_{i}\right)}
$$

where

1. If $\mathrm{H}(\mathrm{s})$ has a pole at $s=\lambda_{\mathrm{i}}$, then $\tilde{\mathrm{H}}(\mathrm{z})$ has a pole at $\mathrm{z}=\tilde{\lambda}_{\mathrm{i}}=\mathrm{e}^{\lambda_{i} h}$
2. If $\mathrm{H}(\mathrm{s})$ has a zero at $\mathrm{s}=\delta_{\mathrm{i}}$, then $\tilde{\mathrm{H}}(\mathrm{z})$ has a zero at $\mathrm{z}=\widetilde{\delta}_{\mathrm{i}}=\mathrm{e}^{\delta \mathrm{i} h}$
3. Pick $\tilde{\mathrm{K}}$ such that $\left.\mathrm{H}(\mathrm{s})\right|_{\mathrm{s}=0}=\left.\tilde{\mathrm{H}}(\mathrm{z})\right|_{\mathrm{z}=1} \quad$. (use $\mathrm{s}=\frac{2 \pi}{1000 \mathrm{~h}}$ if $\left.\mathrm{H}(0)=0\right)$

- Zero-order hold

Write state model (SOF) for $\mathrm{H}(\mathrm{s})$, then $\widetilde{\mathrm{H}}(\mathrm{z})=\mathrm{C}(\mathrm{zI}-\Phi)^{-1} \Gamma+\mathrm{d}$ (Has "effective" $\mathrm{h} / 2$ sec delay due to hold equivalence)

- Higher-order polynomial approximations to $1 / \mathrm{s}$

Tustin ~ 1st order polynomial through e(k-1), e(k)
Simpson ~ 2nd order polynomial through e(k-2), e(k-1), e(k)

$$
\frac{1}{\mathrm{~s}} \rightarrow \frac{\mathrm{~h}\left(\mathrm{z}^{2}+4 \mathrm{z}+1\right)}{3\left(\mathrm{z}^{2}-1\right)} \Rightarrow g(k)=g(k-2)+\frac{h}{3}[e(k)+4 e(k-1)+e(k-2)]
$$

Gives a better equivalence in $\widetilde{\mathrm{H}}\left(\mathrm{e}^{\mathrm{j} \omega \mathrm{h}}\right)$ vs. $\mathrm{H}(\mathrm{j} \omega)$ but order of $\widetilde{\mathrm{H}}(\mathrm{z})$ is $\underline{2 \mathrm{~m}}$.

Summary of Discrete Equivalence Methods

- Tustin equivalence, $\mathrm{s} \rightarrow \frac{2}{\mathrm{~h}}\left(\frac{\mathrm{z}-1}{\mathrm{z}+1}\right)$, gives a good approximation with a minimum of effort. This is the most commonly used scheme.

$$
\left.\mathrm{H}(\mathrm{~s})\right|_{\mathrm{s}=\frac{2}{\mathrm{~h}}\left(\frac{z-1}{z+1}\right)}=\tilde{\mathrm{H}}(\mathrm{z})
$$

- Consider use of prewarping if there is a frequency ω_{1}, or frequency region about ω_{1}, where it is important that $\widetilde{\mathrm{H}}\left(\mathrm{e}^{\mathrm{j} \omega \mathrm{h}}\right) \approx \mathrm{H}(\mathrm{j} \omega)$; e.g., in vicinity of $\omega_{\text {max }}$ for lead network, or around crossover frequency ω_{c}.
- Pole-zero mapping is frequently used (very similar in results to Tustin), but does not permit frequency prewarping.
- $\mathrm{H}(\mathrm{s}) \rightarrow \tilde{\mathrm{H}}(\mathrm{z})$ equivalent transformations are very frequently used in digital filtering and Digital filter design.

Example of Discrete Equivalent Design

- Radar positioning system (Franklin and Powell, 1980)

- Closed-loop requirements

Desire $\sim 15 \%$ overshoot to a step command input ($=>\zeta \sim 0.5$) and
$\mathrm{t}_{\mathrm{s}}(1 \%) \sim 10 \sec \left(=>\zeta \omega_{\mathrm{n}} \sim 0.5\right)$ with a phase margin $\phi_{\mathrm{m}} \geq 50^{\circ}$.

Example of Discrete Equivalent Design (Cont'd)

- "Solution", H(s) = lead $N W=\frac{10 s+1}{s+1} \quad\left(\omega_{2}=0.1, \beta=10, K=1\right)$

- Not a good CL design - not a large enough region of -20 dB slope around crossover, $\omega_{1} \neq \omega_{2} \sqrt{\beta}$, etc.

Discrete Equivalent Computations

- Select time step h = 1.0 sec .

Note: State model of system with $x_{1}=v, x_{2}=y$:

$$
\begin{aligned}
& \underline{\dot{x}}(\mathrm{t})=\left[\begin{array}{cc}
-0.1 & 0 \\
1.0 & 0
\end{array}\right] \underline{\mathrm{x}}(\mathrm{t})+\left[\begin{array}{c}
0.1 \\
0
\end{array}\right] \mathrm{u}(\mathrm{t}) ; \quad y=\left[\begin{array}{ll}
0 & 1
\end{array}\right] \underline{\mathrm{x}}(\mathrm{t}) \\
& \|\mathrm{A}\|=\sqrt{1.01 / 2} \doteq 0.7 ;\left|\lambda_{\text {max }}(\mathrm{A})\right|=0.1
\end{aligned}
$$

so $\mathrm{h}=1.0$ is compatible with criterion $\mathrm{h}<\frac{0.5 \rightarrow 1.0}{\|\mathrm{~A}\|}$.

- Zero-order hold equivalent, $\widetilde{\mathrm{G}}(\mathrm{z})$

$$
\widetilde{\mathrm{G}}(\mathrm{z})=0.048 \frac{\mathrm{z}+0.967}{(\mathrm{z}-1)(\mathrm{z}-0.905)}
$$

- Tustin equivalent

$$
\tilde{\mathrm{H}}(\mathrm{z})=\left.\mathrm{H}(\mathrm{~s})\right|_{\mathrm{s}=2\left(\frac{\mathrm{z-1}}{\mathrm{z}+1}\right)}=7\left(\frac{\mathrm{z}-0.905}{\mathrm{z}-0.333}\right)=7\left(\frac{1-0.905 \mathrm{z}^{-1}}{1-0.333 \mathrm{z}^{-1}}\right)=\frac{\mathrm{u}(\mathrm{z})}{\mathrm{e}(\mathrm{z})}
$$

- Algorithm

$$
\mathrm{u}(\mathrm{k})=7 \mathrm{e}(\mathrm{k})-6.335 \mathrm{e}(\mathrm{k}-1)+0.333 \mathrm{u}(\mathrm{k}-1)
$$

Examine CL step response, $\mathrm{LG}_{\text {ain }}(\mathrm{z})$, etc., for discrete system.

Evaluation of Digital Control Performance

- Step response, $\mathrm{r}(\mathrm{t})=1$.

$\%$ overshoot is $\sim 50 \%$! $\left(y_{\max } \approx 1.5\right)$ This corresponds to $\zeta \sim 0.22$; continuous design had $\zeta \sim 0.5$.
- What happened ?
- Clearly, there has been a decrease in ϕ_{m}.
- $\widetilde{\mathrm{H}}\left(\mathrm{e}^{\mathrm{j} \omega \mathrm{h}}\right) \approx \mathrm{H}(\mathrm{j} \omega)$, at least in ω_{c} crossover region.
- Problem is that $\widetilde{\mathrm{G}}\left(\mathrm{e}^{\mathrm{j} \omega \mathrm{h}}\right) \neq \mathrm{G}(\mathrm{j} \omega)$ in crossover region.
- Heuristic analysis
- to a first (crude) approximation $\widetilde{G}\left(\mathrm{e}^{\mathrm{j} \omega \mathrm{h}}\right) \approx \mathrm{e}^{-\mathrm{j} \omega \mathrm{h} / 2} \mathrm{G}(\mathrm{j} \omega)$, i.e., sampling introduces a delay of $h / 2 \mathrm{sec}$.
- at ω_{c} get a decrease in ϕ_{m} of $57.3 \omega_{\mathrm{c}} \mathrm{h} / 2 \mathrm{deg} . \Rightarrow 23^{\circ}$ loss of phase margin here!
- ϕ_{m} of discrete system $\sim 51^{\circ}-23^{\circ}=28^{\circ}$ corresponds to $\zeta \sim 0.25$ (for a 2 nd order continuous system).

Continuous vs. Discrete System Loop Gain

- Shows aliasing properties of discrete LG for $\omega>\pi / \mathrm{h}=3.14$
- Repetition for $\omega>2 \pi / \mathrm{h} ; \mathrm{LG}(\mathrm{z})$ has poles at $\omega=2 \mathrm{~N} \pi / \mathrm{h}(\mathrm{z}=1)$

Methods to Improve Discrete CL Performance

- Pick the time step, h, so as not to reduce the phase margin much:

$$
\Delta \phi_{\mathrm{m}}=57.3\left(\omega_{\mathrm{c}} \mathrm{~h} / 2\right) \mathrm{deg}<5-10^{\circ}
$$

Choosing h in this manner will generally be smaller than when you select $h \approx 0.2 /\|\mathrm{A}\|$, especially for a lead NW (but not necessarily a lag). But note that very small h may cause CPU timing and other problems.

- Use Tustin with prewarp

Not particularly useful here, but could be used to assure $\tilde{H}(z)$ gives little or no magnitude and/or phase distortion in the crossover region.

- Redesign H(s) to give additional positive phase
- Precompensate for eventual phase decrease in $\widetilde{G}(\mathrm{z})$.
- For given $\mathrm{h}=1.0$, need a continuous system phase margin of $\sim 70^{\circ}$! : an unreasonable $\mathrm{H}(\mathrm{s})$ design.
- Good approach if $\Delta \phi_{\mathrm{m}}<15^{\circ}$.
- Design $\mathrm{H}(\mathrm{z})$ directly in the z-plane
- $\widetilde{G}(z)$ is fundamentally different than $G(s)$.
- Avoids small time step constraints needed to make Tustin equivalent $\tilde{\mathrm{H}}(\mathrm{z})$ perform satisfactorily
- Less guesswork to modify design.
- May be possible to use $\widetilde{H}(\mathrm{z})$ as a starting point.
=> Use Tustin if $\omega_{c} h$ is small, otherwise consider direct design of $H(z)$.

Direct Design Compensation Methods

- These schemes work directly with $\widetilde{\mathrm{G}}(\mathrm{z})$ to design $\mathrm{H}(\mathrm{z})$ and so are not limited by the requirement that $\mathrm{h} \sim$ small.
(i) Root locus design methods

Compensator design in z-plane using standard root locus design procedures to move CL poles.
(ii) w-plane design methods

This is the equivalent to classical frequency (ω) domain design procedures where w is a rational approximation to $(1 / \mathrm{h}) \ln (\mathrm{z})$.
(iii) Fixed-form parametric design

Assumes a structural form for $\mathrm{H}(\mathrm{z})$, e.g., PID, and adjusts free parameters.
(iv) Miscellaneous approaches

- Closed-loop transfer function

$$
T(z)=\frac{\tilde{G}(z) H(z)}{1+\tilde{G}(z) H(z)}=\frac{y(z)}{r(z)}
$$

(1) Zeros of $\mathrm{T}(\mathrm{z})$ are the zeros of $\widetilde{\mathrm{G}}(\mathrm{z}) \mathrm{H}(\mathrm{z})=$ zeros of $\widetilde{\mathrm{G}}(\mathrm{z})$ plus those added by $\mathrm{H}(\mathrm{z})$.
(2) Poles of $\mathrm{T}(\mathrm{z})$ are the roots of $1+\widetilde{\mathrm{G}}(\mathrm{z}) \mathrm{H}(\mathrm{z})$.

Root Locus Design of H(z)

$$
H(z)=K \frac{\left(z-\delta_{1}\right)\left(z-\delta_{2}\right) \cdots\left(z-\delta_{m}\right)}{\left(z-\lambda_{1}\right)\left(z-\lambda_{2}\right) \cdots\left(z-\lambda_{m}\right)}=K H_{0}(z)
$$

- Pick poles and zeros of $\mathrm{H}(\mathrm{z})$ so that roots locus of $1+\mathrm{K} \widetilde{\mathrm{G}}(\mathrm{z}) \mathrm{H}_{0}(\mathrm{z})$ with respect to gain K passes through the region in z-plane where damping, ζ, and natural frequency, ω_{n}, are suitable.
- Do plot on z-plane with ζ, ω_{n} overlay.
- Pick $\delta_{\mathrm{i}}, \lambda_{\mathrm{i}}$, real, generally with $\left|\lambda_{\mathrm{i}}\right| \leq 1$.
- Any added zeros δ_{i} must have an associated pole (no free zeros).
- Generally a first or second order $\mathrm{H}(\mathrm{z})$ suffices, e.g.,

$$
\mathrm{H}(\mathrm{z})=\mathrm{K} \frac{\mathrm{z}-\delta_{1}}{\mathrm{z}-\lambda_{1}}=\mathrm{KH}_{0}(\mathrm{z})
$$

- if $\lambda_{1}<\delta_{1} \Rightarrow>$ lead compensator
- if $\lambda_{1}>\delta_{1}=>$ lag compensator

$$
\begin{aligned}
& \text { Remember } \\
& \mathrm{s}=0 \Rightarrow \mathrm{z}=1
\end{aligned}
$$

- Then pick K so that (dominant) closed-loop poles are at some desired location on the root locus and specs are met.

$$
\mathrm{K}=\left.\frac{-1}{\tilde{\mathrm{G}}(\mathrm{z}) \mathrm{H}_{0}(\mathrm{z})}\right|_{\mathrm{z}=\mathrm{z}_{\mathrm{ccs}}}
$$

- Next evaluate time response, loop gain $K \widetilde{G}(z) H_{0}(z)$ at $z=e^{j \omega h}$, etc.
- Adjust λ_{i}, δ_{i} (and K) until system meets specs.
\Rightarrow trial and error design

Some Helpful Hints for RL Design

- Recall - Root locus bends towards zeros, away from poles.

- If zero ss error to a constant input is required, $\tilde{G(z)} \mathrm{H}(\mathrm{z})$ must have a pole at $\mathrm{z}=1$.
- Try not to have CL poles on $-1<z<0$. If there is a pole at $z=-a$ then $y(k)$ or $u(k)$ has a term of the form $(-a)^{k} \rightarrow 1,-a,+a^{2},-a^{3}, \ldots$ point-to-point oscillation.
- If can't avoid then try to keep $|\mathrm{a}|$ small.

- "Nice" region in z-plane, especially for dominant pair.

Antenna Positioning Control

$$
\mathrm{G}(\mathrm{~s})=\frac{0.1}{\mathrm{~s}(\mathrm{~s}+0.1)} \quad \stackrel{\mathrm{h}=1}{\rightarrow} \quad \tilde{\mathrm{G}}(\mathrm{z})=0.048 \frac{\mathrm{z}+0.97}{(\mathrm{z}-1)(\mathrm{z}-0.905)}
$$

Specs: PO to step input $\approx 15 \%,\left.\mathrm{t}_{\mathrm{s}}\right|_{1 \%} \approx 10 \mathrm{sec}, \phi_{\mathrm{m}} \geq 50^{\circ}$

- Uncompensated root locus (pole already at $\mathrm{z}=1$ via $\widetilde{\mathrm{G}}$)

Not very good!

- Need a zero on $[0,1]$ to bend RL inward more.
- Place associated pole on $[-1,0]$, away from added zero.

To have $\left.\mathrm{t}_{\mathrm{s}}\right|_{1 \%}=5 / \zeta \omega_{\mathrm{n}} \approx 10 \Rightarrow \operatorname{need} \zeta \omega_{\mathrm{n}} \sim 0.5$ for dominant CL poles
\Rightarrow need $|\mathrm{z}|=\mathrm{e}^{-\zeta \omega_{\mathrm{n}} \mathrm{h}} \approx 0.6$, with $\zeta=0.5$ to $\mathrm{PO} \approx 15 \%$

- First design trial; $H(z)=K \frac{Z-0.5}{z+0.6}$

Not too bad --- With $K \approx 20$ obtain a dominant CL pair with $\zeta \sim 0.5$.

- Also get a CL pole at $\mathrm{z}=-0.2$ (will this give a problem?)
- Examine CL response via simulation. $\mathrm{u}(\mathrm{k})=20 \mathrm{e}(\mathrm{k})-10 \mathrm{e}(\mathrm{k}-1)-0.6 \mathrm{u}(\mathrm{k}-1)$

Time Response

$$
H(z)=20 \frac{z-0.5}{z+0.6}
$$

- Need to reduce gain, move zero at 0.5 closer to pole at $z=0.905$.
- Requires movement of pole at -0.6 closer to $\mathrm{z}=0$.

Root Locus Re－Design （After much trial and error）

－Use zero to cancel pole at $\mathrm{z}=0.905$ ．Place pole so that root locus goes through nice region （ $|\mathrm{z}| \leq 0.6, \zeta \approx 0.5$ ）．

$$
H(z)=K \frac{z-0.905}{z+0.2}
$$

$K \sim 9$ gives CL poles at $0.18 \pm \mathrm{j} 0.44 \Rightarrow \zeta \approx 0.54$ ．

－Good design，but K_{v} has gone from 1.0 （continuous design）to 0.71 ， since $\left.\frac{1}{\mathrm{~h}}\left(1-\mathrm{z}^{-1}\right) \tilde{\mathrm{G}}(\mathrm{z}) \mathrm{H}(\mathrm{z})\right|_{\mathrm{z}=1}=\mathrm{K}_{\mathrm{v}}=0.71$ ．
－Bode plot of $\operatorname{LG}(\mathrm{z})=\frac{0.432 \mathrm{z}+0.418}{(\mathrm{z}-1)(\mathrm{z}+0.2)} \Rightarrow \omega_{\mathrm{c}} \sim 0.71 \mathrm{rad} / \mathrm{sec}, \phi_{\mathrm{m}} \sim 56^{\circ}$

An Example of a Poor Design Choice

Reduce PO further we can move the zero of $\mathrm{H}(\mathrm{z})$ close to the pole at $\mathrm{z}=0.905$ and move the pole of $\mathrm{H}(\mathrm{z})$ further out towards $\mathrm{z}=-1$.

$$
\mathrm{H}(\mathrm{z})=\mathrm{K} \frac{\mathrm{z}-0.8}{\mathrm{z}+0.8}
$$

with $\mathrm{K}=9$ obtain a highly damped system with CL poles:

$$
\mathrm{z} \doteq 0.7 \pm \mathrm{j} 0.1 \text { and } \underline{\mathrm{z}}=-0.75\left(\omega_{\mathrm{c}}=0.5 \mathrm{rad} / \mathrm{sec}, \phi_{\mathrm{m}}=62^{\circ}\right)
$$

- Intersample "ripples" in $\mathrm{y}(\mathrm{t})$ and oscillatory $\mathrm{u}(\mathrm{k})$ are indicative of CL poles on negative real axis.

w - Plane Design

- Attempt to use Bode design techniques to obtain $\mathrm{H}(\mathrm{z})$ starting with $\widetilde{\mathrm{G}}(\mathrm{z})$.
- Cannot go into s-plane to design $\mathrm{H}(\mathrm{s})$ and then get $\mathrm{H}(\mathrm{z})$.
- Map from $\mathrm{z} \rightarrow \mathrm{s}$ plane not rational
- Need a rational approximation to $\mathrm{z}=\mathrm{e}^{\mathrm{sh}}$
- Define "w - plane" with w ~ s

$$
\mathrm{z}=\frac{1+\mathrm{wh} / 2}{1-\mathrm{wh} / 2}
$$

$$
\mathrm{w}=\frac{2}{\mathrm{~h}}\left(\frac{\mathrm{z}-1}{\mathrm{z}+1}\right)=\mu+\mathrm{j} v
$$

- On unit circle, $v=\frac{2}{\mathrm{~h}} \tan \left(\frac{\omega \mathrm{~h}}{2}\right) \approx \omega \quad$ when $\omega \mathrm{h} \ll 1$
- Rational mapping
$-\widetilde{G}(z)=\frac{b_{0} z^{n}+b_{1} z^{n-1}+\cdots+b_{n}}{z^{n}+a_{1} z^{n-1}+\cdots+a_{n}} \quad \underset{G}{ }(w)=\frac{c_{0} w^{n}+c_{1} w^{n-1}+\cdots+c_{n}}{w^{n}+d_{1} w^{n-1}+\cdots+d_{n}}$
- $\widetilde{\mathrm{G}}(\mathrm{w})$ will always be n -th order/n-th order
- Unit disk $|\mathrm{z}| \leq 1$ mapped into LHP $\operatorname{Re}(\mathrm{w}) \leq 0$
$\left.\left.\tilde{\mathrm{G}}(\mathrm{w})\right|_{\mathrm{w}=\mathrm{jv}} \approx \mathrm{G}(\mathrm{z})\right|_{\mathrm{z}=\mathrm{e}^{\text {ioh }}}$ if $\omega \mathrm{h} \ll 1$
- To first approximation ($\omega \ll \pi / \mathrm{h}$)

$$
\left.\left.\tilde{\mathrm{G}}(\mathrm{w})\right|_{\mathrm{w}=\mathrm{j} v} \doteq \mathrm{G}(\mathrm{~s}) \mathrm{e}^{-\mathrm{s} \mathrm{~s} / 2}\right|_{\mathrm{s}=\mathrm{j} \omega}
$$

- Can include as an additional option in Bode plot subroutine

General z- to - w Plane Mapping

- Given $\left.\quad \begin{array}{rl}\underline{\dot{x}}(t) & =\mathrm{A} \underline{x}(t)+\mathrm{Bu}(\mathrm{t}) \\ \mathrm{y}(\mathrm{t}) & =\mathrm{C} \underline{\underline{x}}(\mathrm{t})\end{array}\right\}$ System to be controlled determine $\tilde{\mathrm{G}}(\mathrm{w})$

1. Obtain equivalent discrete system in usual manner

$$
\left.\begin{array}{l}
\underline{\mathrm{x}}(\mathrm{k}+1)=\Phi \underline{\mathrm{x}}(\mathrm{k})+\Gamma \mathrm{u}(\mathrm{t}) \\
\mathrm{y}(\mathrm{k})=\mathrm{C} \underline{\mathrm{x}}(\mathrm{k})
\end{array}\right\} \tilde{\mathrm{G}}(\mathrm{z})=\mathrm{C}(\mathrm{zI}-\Phi)^{-1} \Gamma
$$

2. $\mathrm{z}-\operatorname{transform:~} \mathrm{z} \underline{\mathrm{x}}(\mathrm{z})=\Phi \underline{\mathrm{x}}(\mathrm{z})+\Gamma \mathrm{u}(\mathrm{z})$
3. Let $\mathrm{z}=\frac{1+\mathrm{wh} / 2}{1-\mathrm{wh} / 2}$

$$
\begin{aligned}
(1+w h / 2) \underline{x}(w) & =(1-w h / 2) \Phi \underline{x}(w)+(1-w h / 2) \Gamma u(w) \\
y(w) & =C \underline{x}(w)
\end{aligned}
$$

4. Solve for $y(w)$

$$
\begin{aligned}
& \text { Augmented System: } \left.: \underline{\underline{x}}] \begin{array}{l}
\underline{u}
\end{array}\right] \text { input }=\underline{u} \\
& {\left[\begin{array}{cc}
\Phi_{a} & \Gamma_{a} \\
C_{a} & 0
\end{array}\right] ; \Phi_{a}=\left[\begin{array}{cc}
\tilde{\Phi} & \frac{2}{h} \tilde{\Gamma} \\
0 & 0
\end{array}\right] ;} \\
& \Gamma_{a}=\left[\begin{array}{c}
-\tilde{\Gamma} \\
I
\end{array}\right] ; C_{a}=\left[\begin{array}{ll}
C & 0
\end{array}\right] \\
& \tilde{\Phi}=\frac{2}{h}(\Phi+I)^{-1}(\Phi-I) \\
& \tilde{\Gamma}=(\Phi+I)^{-1} \Gamma
\end{aligned}
$$

$$
\mathrm{y}(\mathrm{w})=\mathrm{C} \underbrace{[\mathrm{wI}-\overbrace{\frac{2}{h}(\Phi+\mathrm{I})^{-1}(\Phi-\mathrm{I})}^{\tilde{\Phi}}]_{(\Phi+\mathrm{I})^{-1}} \mathrm{f}\left(\frac{2}{\mathrm{~h}}-\mathrm{w}\right)}_{\tilde{\mathrm{G}}(\mathrm{w})} \mathrm{\overbrace{(} \mathrm{\Phi)}^{\tilde{\Gamma}}} \mathrm{u}(\mathrm{w})
$$

- Use Leverier with $\widetilde{\Phi}$ and $\tilde{\Gamma}$ to obtain $\mathrm{C}(\mathrm{wI}-\widetilde{\Phi})^{-1} \widetilde{\Gamma}$, then include $(2 / \mathrm{h}-\mathrm{w})$ factor.
- Note non-minimum phase zero at $w=2 / \mathrm{h}$.
- Follow general Tustin state-space approach for $\mathrm{w}-\mathrm{to}-\mathrm{z}$ plane $\mathrm{H}(\mathrm{w}) \rightarrow \mathrm{H}(\mathrm{z})$.

$\mathrm{w}-\mathrm{to}-\mathrm{z}$ (Backward) Transformation

$$
\mathrm{H}(\mathrm{z})=\left.1.0 \frac{1+\mathrm{w} / 0.14}{1+\mathrm{w} / 4.2}\right|_{\mathrm{w}=\frac{2}{\mathrm{~h}}}\left(\frac{\mathrm{z}-1}{\mathrm{z}+1}\right) \mathrm{L}=10.5 \frac{\mathrm{z}-0.87}{\mathrm{z}+0.35}
$$

- $\mathrm{H}(1) \approx 1 \Rightarrow$ No reduction in low frequency gain

$$
\mathrm{K}_{\mathrm{v}}=\left.\left(\frac{\mathrm{z}-1}{\mathrm{zh}}\right) \tilde{\mathrm{G}}(\mathrm{z}) \mathrm{H}(\mathrm{z})\right|_{\mathrm{z}=1}=1.0 \quad \text { (same as continuous design) }
$$

- Time response

- Very similar to RL design, $H(z)=9 \frac{z-0.905}{z+0.2} \quad$ (a bit faster/better)

Frequency Domain Evaluation

－Examine actual $\left.\mathrm{LG}(\mathrm{z})\right|_{\mathrm{z}=\mathrm{e}^{\text {jon }}}$ to find true $\omega_{\mathrm{c}}, \phi_{\mathrm{m}}$

$$
L G(z)=\tilde{G}(z) H(z)=0.504 \frac{(z+0.967)(z-0.87)}{(z-1)(z-0.905)(z+0.35)}
$$

－．．Compare with $\widetilde{\mathrm{G}}(\mathrm{w}) \mathrm{H}(\mathrm{w}), \mathrm{w}=\mathrm{j} v$

－Discrete loop gain is very similar to root locus design with $\sim 3 \mathrm{~dB}$ higher very low frequency gain．
－w－plane design approximation is OK for $v \sim \omega<1 / \mathrm{h}$
－Actual $\phi_{\mathrm{m}} \approx 56^{\circ}, \omega_{\mathrm{c}} \approx 0.73$（system will tolerate a maximum loop delay $\tau_{\max }=\phi_{\mathrm{m}} / \omega_{\mathrm{c}}=1.34 \mathrm{sec}$ ）

Root Locus vs. w - Plane Design Comparison

- Either approach, used correctly, will give a good design.

Root Locus Design

- RL plot more difficult to draw than Bode plot
- Hard to see where to place poles and zeros of $\mathrm{H}(\mathrm{z})$ to properly shape RL as desired.
- Seems to require more trial and error than does Bode approach.
- Need overlay of ζ - ω_{n} contours on RL plot.
- Difficult to make engineering approximations.
- If $\mathrm{h} \sim$ small, the RL tends to crowd into region around $\mathrm{z}=1$.

Bode/ w - Plane Design

- Easier to work with and to modify than is RL.
- Requires $\mathrm{z} \rightarrow \mathrm{w}$ mapping on $\widetilde{\mathrm{G}}$, then reverse map on H .
- Still need to evaluate frequency plot of LG in z-domain, since $w \neq s$.
- No guarantee that a good w - plane design will yield a good z - plane design (unless $v<1 / \mathrm{h}$).
- Gives no explicit knowledge of CL pole locations.

Digital PID Controller

- Discrete equivalent obtained from backward difference (other methods are also used), $s \rightarrow(z-1) / h z:$

$$
\mathrm{u}(\mathrm{z})=\mathrm{K}[1+\frac{\mathrm{hz}}{\mathrm{~T}_{1}(\mathrm{z}-1)}+\frac{\mathrm{T}_{2}}{\left(\mathrm{~h}+\frac{\mathrm{T}_{2}}{N}\right)} \cdot \frac{(\mathrm{z}-1)}{(\mathrm{z}-\underbrace{\frac{\mathrm{T}_{2}}{\mathrm{Nh}+\mathrm{T}_{2}}}_{\gamma})}] \mathrm{e}(\mathrm{z})
$$

- General parametric form

$$
\mathrm{u}(\mathrm{z})=\underbrace{\mathrm{K}\left[1+\frac{\mathrm{h}}{\mathrm{~T}_{1 d}} \cdot \frac{1}{1-\mathrm{z}^{-1}}+\frac{\mathrm{T}_{2 \mathrm{~d}}}{\mathrm{~h}} \frac{1-\mathrm{z}^{-1}}{1-\gamma \mathrm{z}^{-1}}\right]}_{\mathrm{H}(\mathrm{z})} \mathrm{e}(\mathrm{z})
$$

to be determined: $\mathrm{K}, \mathrm{T}_{1 \mathrm{~d}}, \mathrm{~T}_{2 \mathrm{~d}}$, and possibly $\gamma,\left(\gamma=\mathrm{T}_{2 \mathrm{~d}} / \mathrm{Nh}\right), \mathrm{T}_{2 \mathrm{~d}}=\frac{T_{2} N h}{T_{2}+N h}$

- Implementation - "Textbook" Sum up 3 parts separately:

$\mathrm{UI}(\mathrm{k})=\left(\mathrm{h} / \mathrm{T}_{1 \mathrm{~d}}\right) \mathrm{e}(\mathrm{k})+\mathrm{UI}(\mathrm{k}-1) ; \mathrm{UP}(\mathrm{k})=\mathrm{e}(\mathrm{k}) ; \mathrm{UD}(\mathrm{k})=\left(\mathrm{T}_{2 \mathrm{~d}} / \mathrm{h}\right)[\mathrm{e}(\mathrm{k})-\mathrm{e}(\mathrm{k}-1)]+\gamma \mathrm{UD}(\mathrm{k}-1)$
then $\mathrm{u}(\mathrm{k})=\mathrm{K}[\mathrm{UI}(\mathrm{k})+\mathrm{UP}(\mathrm{k})+\mathrm{UD}(\mathrm{k})]$

PID Algorithm Implementation

- Algorithm at step k

$$
\begin{aligned}
& \mathrm{e}=\mathrm{r}-\mathrm{y} \\
& \mathrm{UI}=\left(\mathrm{h} / \mathrm{T}_{1 \mathrm{~d}}\right) \mathrm{e}+\mathrm{UI} \\
& \mathrm{UP}=\mathrm{e} \\
& \mathrm{UD}=\left(\mathrm{T}_{2 \mathrm{~d}} / \mathrm{h}\right)\left[\mathrm{e}-\mathrm{e}_{\text {last }}\right]+\gamma \mathrm{UD} \\
& \mathrm{e}_{\text {last }}=\mathrm{e} \\
& \mathrm{u}=\mathrm{K}(\mathrm{UI}+\mathrm{UP}+\mathrm{UD})
\end{aligned}
$$

- Derivative on output
- If r suddenly changes from time $k-1$ to time k, e.g., a step change, then $e(k)-e(k-1)$ may be large and UD will have a "spike" at step k : This is undesirable.
- Modify UD computation to use only $\Delta y=y(k)-y(k-1)$,

$$
\mathrm{UD}(\mathrm{k})=-\left(\mathrm{T}_{2 \mathrm{~d}} / \mathrm{h}\right)[\mathrm{y}(\mathrm{k})-\mathrm{y}(\mathrm{k}-1)]+\gamma \mathrm{UD}(\mathrm{k}-1)
$$

This is "derivative of output form". Since $y(k)$ cannot change very much from step $\mathrm{k}-1$ to k , UD will be OK.

- CL stability is unaffected (stability not a function of r).

- "Set-point on I" structure
- Move P to act only on y also, UP $=-\mathrm{y}(\mathrm{k})$
- Only integral compensation uses error signal.
- Popular structure in process control (keeps control signal very smooth).

Integral Windup Modifications

- A problem that arises when u is limited, e.g.,

$$
\mathrm{B}^{-} \leq \mathrm{u}(\mathrm{k}) \leq \mathrm{B}^{+}
$$

(symmetric limits are most common, $\mathrm{B}^{-}=-\mathrm{B}^{+}$)

- Limits are imposed by the system under control, e.g., actuator constraints.
- Match these limits in controller software:

$$
\begin{aligned}
& \text { if }\left(u \geq B^{+}\right) \text {set } u=B^{+} \text {, flag }=+1 \\
& \text { if }\left(u \leq B^{-}\right) \text {set } u=B^{-} \text {, flag }=-1 \\
& \text { else flag }=0
\end{aligned}
$$

- The control probably saturated because e(k) was large.
- Because u is limited the error e will not be reduced to zero as fast (slower system).
- This is not indicative of a steady-state e.
=> Turn off/skip the integration of $\mathrm{e}(\mathrm{k})$ in UI if the last control value was at a limit

$$
\begin{aligned}
& \text { if }(f l a g=0) \mathrm{UI}=\mathrm{UI}+\left(\mathrm{h} / \mathrm{T}_{1 \mathrm{~d}}\right) \mathrm{e} \\
& \text { if }(\text { flag } \neq 0) \mathrm{UI}=\mathrm{UI}
\end{aligned}
$$

- Integral protection
- Value of UI does not change if/when u is saturated.
- Include PID structure in Cntrl routine as an option during evaluation

Example (Aström and Wittenmark)

- Lack of integral protection will often result in large overshoots in system response.
- Since long periods of + (or -) e will cause UI to build up large values. Then e reverses...
- Ex. A motor with transfer function $\mathrm{G}(\mathrm{s})=1 / \mathrm{s}(\mathrm{s}+1)$ is to be controlled using a digital PI controller*

$$
\mathrm{u}(\mathrm{z})=\mathrm{K}\left[1+\frac{\mathrm{h}}{\mathrm{~T}_{1 \mathrm{~d}}} \cdot \frac{1}{1-\mathrm{z}^{-1}}\right] \mathrm{e}(\mathrm{z})
$$

with $\mathrm{K}=0.4, \mathrm{~T}_{1 \mathrm{~d}}=5 \mathrm{sec}, \mathrm{h}=0.5 \mathrm{sec}$.

- Examine step response when $|\mathrm{u}(\mathrm{k})| \leq 0.2$, with and without integral windup protection.

* Note: The I part of the controller is not really needed here since $\mathrm{G}(\mathrm{s})$ contains a $1 / \mathrm{s}$.

But it is only an example.

Unified PID for Various Approximations

- Parameters for different approximations

$$
\begin{aligned}
& \mathrm{e}=\mathrm{r}-\mathrm{y} \\
& \mathrm{UI}=\mathrm{UI}+\alpha_{1} \mathrm{e}+\alpha_{2} \mathrm{e}_{\text {past }} \\
& \mathrm{UP}=\mathrm{e} \\
& \mathrm{UD}=-\delta_{\mathrm{d}}\left[\mathrm{y}-\mathrm{y}_{\text {past }}\right]+\gamma \mathrm{UD} \\
& \mathrm{e}_{\text {past }}=\mathrm{e} \\
& \mathrm{u}=\mathrm{K}(\mathrm{UI}+\mathrm{UP}+\mathrm{UD})
\end{aligned}
$$

$$
\begin{aligned}
& u(s)=K\left[1+\frac{1}{T_{1} s}+\frac{T_{2} s}{1+T_{2} s / N}\right] e(s) \\
& T_{1 d}=T_{1} \\
& T_{2 d}=\frac{T_{2} N h}{T_{2}+N h}
\end{aligned}
$$

Parameter`	Forward	Backward	Tustin	Ramp
α_{1}	0	$\mathrm{h} / \mathrm{T}_{1 \mathrm{~d}}$	$\mathrm{h} / 2 \mathrm{~T}_{1 \mathrm{~d}}$	$\mathrm{h} / 2 \mathrm{~T}_{1 \mathrm{~d}}$
α_{2}	$\mathrm{h} / \mathrm{T}_{1 \mathrm{~d}}$	0	$\mathrm{h} / 2 \mathrm{~T}_{1 \mathrm{~d}}$	$\mathrm{h} / 2 \mathrm{~T}_{1 \mathrm{ld}}$
γ	$\begin{aligned} & 1-\mathrm{Nh} / \mathrm{T}_{2} \\ = & 2-\mathrm{Nh} / \mathrm{T}_{2 \mathrm{~d}} \end{aligned}$	$\mathrm{T}_{2 \mathrm{~d}} / \mathrm{Nh}$	$\begin{gathered} \left(2 \mathrm{~T}_{2}-\mathrm{Nh}\right) /\left(2 \mathrm{~T}_{2}+\mathrm{Nh}\right)= \\ \left(3 \mathrm{~T}_{2 \mathrm{~d}}-\mathrm{Nh}\right) /\left(\mathrm{T}_{2 \mathrm{~d}}+\mathrm{Nh}\right. \end{gathered}$	$\begin{gathered} \\ \mathrm{e}^{-\mathrm{Nh} / \mathrm{T}}{ }_{2} \\ =\mathrm{e}^{1-\mathrm{Nh} / \mathrm{T}_{2 \mathrm{~d}}} \end{gathered}$
$\delta_{\text {d }}$	N	$\mathrm{T}_{2 \mathrm{~d}} / \mathrm{h}$	$2 \mathrm{~N} /\left(1+\mathrm{Nh} / \mathrm{T}_{2 \mathrm{~d}}\right)$	$\begin{gathered} \mathrm{T}_{2}\left(1-\mathrm{e}^{\left.-\mathrm{Nh} / \mathrm{T}_{2}\right) / \mathrm{h}=}\right. \\ \left(\frac{T_{2 d} N}{N h-T_{2 d}}\right)\left(1-e^{\left(1-N / T_{2 d}\right)}\right) \end{gathered}$

- Velocity algorithm (compute $\Delta \mathrm{u}$)

$$
\begin{array}{ll}
\mathrm{e}=\mathrm{r}-\mathrm{y} & \Delta \mathrm{UD}=-\delta_{\mathrm{d}}\left[\mathrm{y}-2 \mathrm{y}_{\text {past }}+\mathrm{y}_{\text {pastpast }}\right]+\gamma \Delta \mathrm{UD} \\
\Delta \mathrm{UI}=\alpha_{1} \mathrm{e}+\alpha_{2} \mathrm{e}_{\text {past }} & \mathrm{e}_{\text {past }}=\mathrm{e} ; \mathrm{y}_{\text {pastpast }}=\mathrm{y}_{\text {past }} ; \mathrm{y}_{\text {past }}=\mathrm{y} \\
\Delta \mathrm{UP}=\mathrm{e}-\mathrm{e}_{\text {past }} & \Delta \mathrm{u}=\mathrm{K}(\Delta \mathrm{UI}+\Delta \mathrm{UP}+\Delta \mathrm{UD})
\end{array}
$$

IMC Design Approach - 1

- IMC design approaches for stable and possibly non-minimum phase systems
- Step 1: Split $\tilde{G}(z)=z^{-k} \frac{b(z)}{a(z)}=z^{-k} \frac{b^{+s}(z) b^{-}(z) b^{n n+}(z)}{a(z)}$ as follows:

Here $b^{+s}=$ Part of $b(z)$ with zeros having positive real parts and inside unit circle
$b^{-}=$Part of $b(z)$ with zeros having negative real parts (inside and outside unit \bullet)
$b^{n m+}=$ Part of $b(z)$ with zeros having positive real parts and outside unit circle

- Step 2: (i) Replace part with zeros having negative real part with a DC gain (set $z=1$)
(ii) Replace non-minimum phase zeros with their reciprocals
(iii) Add filters of the form $F(z)=\left(\frac{1-\alpha}{1-\alpha z^{-1}}\right)^{k} ; k \geq 1$ so that $Q(z)=\tilde{G}^{-1}(z) F(z)$ is proper
- Step 3: $H(z)=Q(z)[1-\tilde{G}(z) Q(z)]^{-1}$
- Example

$$
\begin{array}{ll}
G(s)=\frac{-s+3}{s^{2}+5 s+6} ; h=0.05 \sec \Rightarrow \tilde{G}(z)=\frac{-0.040678(z-1.163)}{(z-0.9048)(z-0.8607)}=\frac{-0.040678 z^{-1}\left(1-1.163 z^{-1}\right)}{\left(1-0.9048 z^{-1}\right)\left(1-0.8607 z^{-1}\right)}=z^{-1} \frac{b(z)}{a(z)} \\
b^{+s}=-0.040678 ; b^{-}=1 ; b^{n m+}(z)=\left(1-1.163 z^{-1}\right) \Rightarrow \text { replace by }(1-1.163 z)=z\left(z^{-1}-1.163\right) & \begin{array}{l}
\text { Select } \alpha \text { based on } \\
\text { other criteria, e.g., } \\
\text { phase margin, } \\
\text { settling time }
\end{array} \\
\begin{aligned}
\text { So, } Q(z)=\frac{a(z)}{b(z)} F(z)=\frac{\left(1-0.9048 z^{-1}\right)\left(1-0.8607 z^{-1}\right)}{-0.040678\left(z^{-1}-1.163\right)} F(z)=\frac{(z-0.9048)(z-0.8607)}{0.0473(z-0.8598)} \frac{1-\alpha}{z-\alpha} & =\frac{10.5708(z-0.9048)(z-0.8607)}{(z-0.8598)(z-0.5)} ; \alpha=0.5
\end{aligned}
\end{array}
$$

$$
H(z)=Q(z)[1-\tilde{G}(z) Q(z)]^{-1}=\frac{10.5708(z-0.9048)(z-0.8607)}{(z+0.07013)(z-1)}
$$

- Step response exhibits an undershoot as one would expect from a non-minimum phase system

IMC Design Approach－ 2

－Example 2

$$
\begin{aligned}
& G(s)=\frac{1}{(10 s+1)(25 s+1)} ; h=2 \mathrm{sec} \Rightarrow \tilde{G}(z)=\frac{0.00729(z+0.9109)}{(z-0.9231)(z-0.8187)} \\
& \text { so, } \tilde{G}(z)=\frac{0.00729 z^{-1}\left(1+0.9109 z^{-1}\right)}{\left(1-0.9231 z^{-1}\right)\left(1-0.8187 z^{-1}\right)}=z^{-1} \frac{b(z)}{a(z)} \\
& b^{+s}=0.00729 ; b^{-}=\left(1+0.9109 z^{-1}\right) \Rightarrow \text { replace by } 1.9109 ; b^{n m+}(z)=1 \\
& S o, Q(z)=\frac{a(z)}{b(z)} F(z)=\frac{\left(1-0.9231 z^{-1}\right)\left(1-0.8187 z^{-1}\right)}{0.0139} F(z) \\
& \quad=\frac{71.94(z-0.9231)(z-0.8187)}{1} \frac{(1-\alpha)^{2}}{(z-\alpha)^{2}}=\frac{6.17(z-0.9231)(z-0.8187)}{(z-0.707)^{2}} ; \alpha=0.707 \\
& H(z)=Q(z)[1-\tilde{G}(z) Q(z)]^{-1}=\frac{6.17(z-0.9231)(z-0.8187)}{(z-0.4588)(z-1)} \phi_{m}=73.8^{0} @ 0.0778 \mathrm{rad} / \mathrm{sec} \\
& \gamma_{m}=22.4 d B @ 0.562 \mathrm{rad} / \mathrm{sec}
\end{aligned}
$$

Pole Placement Method: Shaping T(z) - 1

- What is feasible if you have unstable and non-minimum phase systems?

Suppose $\tilde{G}(z)=z^{-k} \frac{b(z)}{a(z)}$ and want $T(z)=K_{r} z^{-k} \frac{b_{r}(z)}{d(z)}$. DC gain $=1 \Rightarrow K_{r}=\frac{d(1)}{b_{r}(1)}$. What is feasible for $b_{r}(z)$?
Let $b(z)=b^{+s}(z) \overbrace{b^{-}(z) b^{n m+}(z)}^{\text {good }} ; a(z)=a^{\text {bos }}(\mathrm{z}) \overbrace{a^{-}(z) a^{\text {ss }}(z)}^{\text {good }}$ bad. also close to unit circle
Consider a control scheme given by $d_{h}(z) u(z)=K_{r} p(z) r(z)-q(z) y(z) ; d_{h}(z), p(z), q(z)$ are polynomials in z^{-1} $p(z)=q(z) \Rightarrow$ single DOF controller
So, $z^{-k} b(z)\left[d_{h}(z) u(z)+q(z) y(z)\right]=K_{r} z^{-k} p(z) b(z) r(z)$. Recall $a(z) y(z)=z^{-k} b(z) u(z)$
$\Rightarrow\left[d_{h}(z) a(z)+z^{-k} b(z) q(z)\right] y(z)=K_{r} z^{-k} p(z) b(z) r(z) \Rightarrow \frac{y(z)}{r(z)}=\frac{K_{r} z^{-k} p(z) b(z)}{d_{h}(z) a(z)+z^{-k} b(z) q(z)}$
$\Rightarrow \frac{K_{r} z^{-k} p(z) b^{+s}(z) b^{-}(z) b^{n m+}(z)}{d_{h}(z) a^{+s}(z) a^{-}(z) a^{u s+}(z)+z^{-k} b^{+s}(z) b^{-}(z) b^{n m+}(z) q(z)}=K_{r} z^{-k} \frac{b_{r}(z)}{d(z)}$
What if we select $d_{h}(z)=b^{+s}(z) d_{1}(z) ; q(z)=a^{+s}(z) q_{1}(z) ; p(z)=a^{+s}(z) p_{1}(z)$
then $\frac{K_{r} p_{1}(z) b^{-}(z) b^{n m+}(z)}{d_{1}(z) a^{-}(z) a^{u s+}(z)+z^{-k} b^{-}(z) b^{n m+}(z) q_{1}(z)}=K_{r} \frac{b_{r}(z)}{d(z)}$
$d_{1}(z) \underbrace{a^{-}(z) a^{u s+}}_{M(z)}(z)+\underbrace{z^{-k} b^{-}(z) b^{n m+}}_{N(z)}(z) q_{1(z)}(z)=d(z)$
$X(z) N(z)+Y(z) M(z)=D(z)$
$\Rightarrow b_{r}(z)=p_{1}(z) b^{-}(z) b^{n m+}(z) \Rightarrow$ keep "bad" zeros in the closed-loop system
$\Rightarrow \frac{d_{1}(z) a^{-}(z) a^{u s+}(z)}{d(z)}+\frac{z^{-k} b^{-}(z) b^{n m+}(z) q_{1}(z)}{d(z)}=1 \sim$ Bezout Identity. Get $d_{1}(z)$ and $q_{1}(z)$ by equating coefficient

Solving $N(z) X(z)+M(z) Y(z)=D(z)$

$$
\begin{aligned}
& \overbrace{\left[\begin{array}{ll}
X(z) & Y(z)
\end{array}\right]}^{\left[\begin{array}{c}
{\left[\begin{array}{l}
N(z) \\
M(z)
\end{array}\right]}
\end{array}\right)=D(z) \Rightarrow V(z) F(z)=D(z)} \begin{array}{l}
F(z) \\
N(z)=n_{1} z^{-1}+n_{2} z^{-2}+\ldots .+n_{k} z^{-k} ; X(z)=x_{0}+x_{1} z^{-1}+x_{2} z^{-2}+\ldots .+x_{p} z^{-p} \\
M(z)=1+m_{1} z^{-1}+m_{2} z^{-2}+\ldots .+m_{l} z^{-l} ; Y(z)=y_{0}+y_{1} z^{-1}+y_{2} z^{-2}+\ldots .+y_{p} z^{-p} \\
D(z)=1+d_{1} z^{-1}+d_{2} z^{-2}+\ldots .+d_{n} z^{-n} \\
F(z)=F_{0}+F_{1} z^{-1}+\ldots+F_{m} z^{-m} ; m=\max (k, l) ; F_{i}=2-\text { vector } \quad F_{0}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] ; F_{i}=\left[\begin{array}{l}
n_{i} \\
m_{i}
\end{array}\right] ; i \geq 1
\end{array}
\end{aligned}
$$

$V(z)=V_{0}+V_{1} z^{-1}+\ldots+V_{p} z^{-p}$; don't know p a priori. Each V_{i} is a 2 -row vector.

$$
\left[\begin{array}{llll}
V_{0} & V_{1} & \cdot & V_{p}
\end{array}\right]\left[\begin{array}{cccll}
F_{0} & F_{1} & . & F_{m} & 0 \\
0 & F_{0} & F_{1} & \cdot & F_{m} \\
0 & 0 & F_{0} & F_{1} \\
0 & 0 & 0 & F_{0}
\end{array}\right]=\left[\begin{array}{llll}
1 & d_{1} & . & d_{n}
\end{array}\right] \Rightarrow V F=D
$$

- Find p such that rows of F are independent.

Pole Placement Method: Shaping T(z) - 2

- Example
- $G(s)=\frac{-280.14}{s^{3}+100 s^{2}-981 s-98100}$; poles at 31.321,-31.321,-100; $h=0.002 \mathrm{sec}$

Want $t_{s} \leq 0.5 \mathrm{sec}$ for 2% error, $\% O S \leq 5 \%$ and steady state error ≤ 0.02
$\Rightarrow K_{P} \geq 50 \Rightarrow T(1)=K_{P} /\left(K_{P}+1\right)=0.9804$
$\Rightarrow \zeta \omega_{n} \geq 8$ and $\zeta=0.69 \Rightarrow \omega_{n}=11.6 \mathrm{rad} / \mathrm{sec} \Rightarrow$ poles $: 0.984 \pm j 0.0165 \Rightarrow d(z)=1-1.968 z^{-1}+0.9685 z^{-2}=\emptyset$

- $\tilde{G}(z)=\frac{-3.56 \times 10^{-7}(z+3.554)(z+0.255)}{(z-1.065)(z-0.9393)(z-0.8187)}=\frac{-3.56 \times 10^{-7} z^{-1}\left(1+3.554 z^{-1}\right)\left(1+0.255 z^{-1}\right)}{\left(1-1.065 z^{-1}\right)\left(1-0.9393 z^{-1}\right)\left(1-0.8187 z^{-1}\right)}$
- $a^{+s}(z)=\left(1-0.9393 z^{-1}\right)\left(1-0.8187 z^{-1}\right) ; a^{-}(z)=1 ; a^{u n+}(z)=\left(1-1.065 z^{-1}\right)$

$$
b^{+s}(z)=-3.56 \times 10^{-7} ; b^{-}(z)=\left(1+3.554 z^{-1}\right)\left(1+0.255 z^{-1}\right) ; b^{n m+}(z)=1
$$

- Bezout (Aryabhatta, Diophantine) identity:

$$
\left(1-1.065 z^{-1}\right) d_{1}(z)+z^{-1}\left(1+3.554 z^{-1}\right)\left(1+0.255 z^{-1}\right) q_{1}(z)=1-1.968 z^{-1}+0.9685 z^{-2}=d(z)
$$

- Solve for $d_{1}(z)$ and $q_{1}(z) \Rightarrow d_{1}(z)=1-0.9042 z^{-1}+0.001 z^{-2} ; q_{1}(z)=0.0012$
- $d_{h}(z)=b^{+s}(z) d_{1}(z)=-3.56 \times 10^{-7}\left(1-0.9042 z^{-1}+0.001 z^{-2}\right)$
- $q(z)=a^{+s}(z) q_{1}(z)=0.0012\left(1-0.9393 z^{-1}\right)\left(1-0.8187 z^{-1}\right)$
- Select $p_{1}(z)=1 \Rightarrow p(z)=a^{+s}(z) \Rightarrow T(z)=\frac{K_{r} b^{-}(z) b^{n m+}(z) z^{-1}}{d(z)} \Rightarrow K_{r}=\frac{0.9804 d(1)}{b^{-}(1) b^{n m+}(1)}=8.577 \times 10^{-5}$
- Alternately, $p(z)=q(z) \Rightarrow H(z)=\frac{q(z)}{d_{h}(z)}=\frac{-3.371 \times 10^{3}\left(1-0.9393 z^{-1}\right)\left(1-0.8187 z^{-1}\right)}{\left(1-0.9042 z^{-1}+0.001 z^{-2}\right)} \Rightarrow K_{r}=0.0846$

A Technique for Control of Systems with Time Delay, $\tau=\mathrm{Mh}+\varepsilon$

$\widetilde{\mathrm{G}}(\mathrm{z}) \rightarrow \mathrm{z}^{-\mathrm{M}} \tilde{\mathrm{G}}(\mathrm{z}), \quad \mathrm{M}=$ integer
(Will consider mods for "fractional" delay part $0 \leq \varepsilon<$ h later.)

Smith Predictor/Compensator

- Design $\mathrm{H}(\mathrm{z})$ using $\widetilde{\mathrm{G}}^{\mathrm{m}}(\mathrm{z})=$ "model" of $\widetilde{\mathrm{G}}(\mathrm{z})$ (usually $\widetilde{\mathrm{G}}^{\mathrm{m}} \equiv \widetilde{\mathrm{G}}$).
- Implementation:

$y_{p}(k)=$ "predicted" value of $y(k)$

$$
\mathrm{y}_{\mathrm{p}}=\mathrm{z}^{-\mathrm{M}} \widetilde{\mathrm{G}}^{\mathrm{m}}(\mathrm{z}) \mathrm{u}(\mathrm{z})
$$

- Nominally $y(k)-y_{p}(k)=$ prediction error should be small
- Control is based primarily on $r-y_{m}$

$$
\begin{gathered}
\mathrm{y}_{\mathrm{m}}(\mathrm{z})=\widetilde{\mathrm{G}}^{\mathrm{m}}(\mathrm{z}) \mathrm{u}(\mathrm{z}) \sim \mathrm{M}-\text { step ahead prediction of } \mathrm{y} \\
\mathrm{u}(\mathrm{z})=\mathrm{H}(\mathrm{z})\{\mathrm{r}(\mathrm{z})-[\underbrace{\mathrm{y}_{\mathrm{m}}(\mathrm{z})+\left(\mathrm{y}(\mathrm{z})-\mathrm{y}_{\mathrm{p}}(\mathrm{z})\right.}_{\mathrm{y}_{\mathrm{e}} \sim \text { "effective" output }}]\}
\end{gathered}
$$

- Basic idea is to build a control that approximates

$$
\mathrm{u}(\mathrm{z})=\mathrm{H}(\mathrm{z}) \mathrm{z}^{+\mathrm{M}}[\mathrm{r}(\mathrm{z})-\mathrm{y}(\mathrm{z})] \quad \text { (need to know/estimate future } \mathrm{r} \text { if it is changing). }
$$

Smith Compensator Application

- Model of system in feedback loop
- Possible numerical problems if $\widetilde{\mathrm{G}}(\mathrm{z})$ is unstable
- Initialize $\widetilde{\mathrm{G}}^{\mathrm{m}}$ to rest condition ($\equiv 0$)

Implement $\mathrm{z}^{-\mathrm{M}}=\mathrm{M}-$ step delay line by an $(\mathrm{M}+1)-$ dimensional push - down stack.

- Initialize stack with $v(k-j)=y(k)$ for all j at $k=0$
- Motor-positioning example with $\tau=1 \mathrm{sec}, \mathrm{h}=1 \mathrm{sec}$ (i.e., $\mathrm{M}=1$)

$$
\mathrm{H}(\mathrm{z})=10.5 \frac{\mathrm{z}-0.87}{\mathrm{z}+0.35} \quad \text { (from w-plane design) }
$$

- Recall $\phi_{\mathrm{m}} \sim 56^{\circ}, \omega_{\mathrm{c}} \sim 0.73 \Rightarrow \tau_{\max } \sim 1.34 \mathrm{sec}$, so expect poor performance with no delay compensation as ϕ_{m} would drop to $\sim 14^{\mathrm{o}}$.

Results with Delay Compensation

- $\mathrm{M}=1, \widetilde{\mathrm{G}}^{\mathrm{m}}(\mathrm{z})=\widetilde{\mathrm{G}}(\mathrm{z})=0.048 \frac{(\mathrm{z}+0.97)}{(\mathrm{z}-1)(\mathrm{z}-0.905)}$

- CL response is identical to undelayed case, with a time-shift of M steps.
- If system is not initially at rest, output response would "drift" for first M steps until the first control begins to affect response.
- As M increases the need for $\mathrm{G}^{\mathrm{m}}(\mathrm{z}) \sim \mathrm{G}(\mathrm{z})$ becomes more critical.

Modifications for non-integer $\tau=\mathrm{Mh}+\varepsilon, \varepsilon \neq 0$
$y_{m}=$ propagation of y through $\widetilde{G}(z)$, remains unchanged.
$y_{p}=$ prediction of current $y(k)$. Obtain via model discussed in Lecture 4.

Alternate Implementation of Smith Compensator

- Consolidate FB loops

- Consolidate inner loop, between e and u

$$
\mathrm{H}^{*}(\mathrm{z})=\frac{\mathrm{H}(\mathrm{z})}{1+\mathrm{H}(\mathrm{z}) \tilde{\mathrm{G}}^{\mathrm{m}}(\mathrm{z})\left(1-\mathrm{z}^{-M}\right)}
$$

- Typically, $\mathrm{H}^{*}(\mathrm{z})$ will be a high-order compensator

$$
\text { >> } 1 \text { - } 2 \text { usually associated with lag, lead, and PID. }
$$

- Implementation methods are critical

Speed/timing for real-time
Accuracy

Implementation of High－Order Digital Compensators

$$
H(z)=\frac{\beta_{0} z^{m}+\beta_{1} z^{m-1}+\cdots+\beta_{m}}{z^{m}+\alpha_{1} z^{m-1}+\cdots+\alpha_{m}}
$$

－Direct form

$$
\mathrm{u}(\mathrm{k})=\beta_{0} \mathrm{e}(\mathrm{k})+\underbrace{\left[\beta_{1} \mathrm{e}(\mathrm{k}-1)+\cdots+\beta_{\mathrm{m}} \mathrm{e}(\mathrm{k}-\mathrm{m})\right.}_{\text {SE }}]-\underbrace{\left[\alpha_{1} \mathrm{u}(\mathrm{k}-1)+\cdots+\alpha_{\mathrm{m}} \mathrm{u}(\mathrm{k}-\mathrm{m})\right.}_{\mathrm{SU}}]
$$

－SE and SU for time k ：computed at step $\mathrm{k}-1$
－Needs storage of last me（i）and u（i）
－Very poor numerical properties！
－Small changes in $\alpha_{\mathrm{i}}, \beta_{\mathrm{i}}$ coefficients（especially $\alpha_{\mathrm{m}}, \beta_{\mathrm{m}}$ ）can cause large changes in roots＝poles and zeros of $\mathrm{H}(\mathrm{z})$ ．
－Errors in $\mathrm{e}(\mathrm{k}), \mathrm{u}(\mathrm{k})$＂hang around＂for m steps
－Decomposition Approach
－Decompose $\mathrm{H}(\mathrm{z})$ into a sum of low－order subparts（e．g．，as in PID）and then add up parts

$$
H(z)=\beta_{0}+\frac{\tilde{\beta}_{1} z^{m-1}+\cdots+\tilde{\beta}_{m}}{z^{m}+\alpha_{1} z^{m-1}+\cdots+\alpha_{m}} ; \quad \tilde{\beta}_{i}=\beta_{i}-\beta_{0} \alpha_{i}
$$

PF expansion（assume no repeated roots）：

$$
H(z)=\beta_{0}+\underbrace{\sum_{i=1}^{N_{f}} \frac{A_{i}}{z+\kappa_{i}}}_{N_{f} \text { First-order Factors }}+\underbrace{\sum_{i=1}^{N_{s}} \frac{A_{i 1} z+A_{i 2}}{z^{2}+\kappa_{i 1} z+\kappa_{i 2}}}_{N_{s} \text { Second-order Factors }}
$$

Implementation Structure of $\mathrm{H}(\mathrm{z})$

$$
\mathrm{H}(\mathrm{z})=\beta_{0}+\sum_{\mathrm{i}=1}^{\mathrm{N}_{\mathrm{f}}} \frac{\mathrm{~A}_{\mathrm{i}} \mathrm{z}^{-1}}{1+\kappa_{\mathrm{i}} \mathrm{z}^{-1}}+\sum_{\mathrm{i}=1}^{\mathrm{N}_{\mathrm{s}}} \frac{\left(\mathrm{~A}_{\mathrm{i} 1}+\mathrm{A}_{\mathrm{i} 2} z^{-1}\right) z^{-1}}{1+\kappa_{\mathrm{i} 1} \mathrm{z}^{-1}+\kappa_{\mathrm{i} 2} z^{-2}}
$$

Note 1 －step delay in all first，second－order parts $\Rightarrow>$ can compute these at step $k-1$ for use at time k ．
Structure

－Algorithm（initiate $\mathrm{R}, \mathrm{e}_{1}, \mathrm{USi}_{1}, \mathrm{USi}_{2}, \mathrm{UFi}_{1}=0$ ）

－Include in Cntrl subroutine，OPT＝ 3 ．

Copyright ©2006－2012 by K．Pattipati

Summary of Compensator Design Methods

－Indirect design $\mathrm{H}(\mathrm{s}) \rightarrow \widetilde{\mathrm{H}}(\mathrm{z})$ by discrete equivalent
－Generally requires small h
－Easy and straightforward
－Direct design methods
－Root locus，w－plane，PID
－Only have Nyquist restriction on h
＝＞Advantages
－Generally easy to design $\mathrm{H}(\mathrm{z})$
－A low－order design，easily realized，is found
－Higher order dynamics in $G(s)$ accommodated with little extra dffort
－Universally used techniques，time－tested
＝＞Disadvantages
－Low－order compensator designs do not always work
－Does not use all available information about system behavior（e．g．，y instead of \underline{x} ）
－Measures used are not 1：1 with time response（requires trial and error with CL simulation）
－Limited by human insight
－Extremely difficult for MIMO systems

