
Copyright ©2006-2012 by K. Pattipati

Lectures 9 & 10

Prof. Krishna R. Pattipati

Dept. of Electrical and Computer Engineering

University of Connecticut
Contact: krishna@engr.uconn.edu (860) 486-2890

ECE 6095/4121

 Dynamic Modeling and Control of Mechatronic Systems

Compensator Design via Discrete Equivalent and Direct Design

mailto:krishna@engr.uconn.edu

Copyright ©2006-2012 by K. Pattipati 2

Compensator Design via Discrete Equivalent

 and Direct Design Methods

1. Stability Analysis of Discrete-time Systems

• Jury test, Stability with respect to design parameter(s), Examples

2. H(z) Design via Discrete Equivalent to H(s)

• Different forms for discrete integration 1/s  F(z) and different H(s) equivalents

• Tustin equivalent and Tustin equivalent with prewarping

3. Example of Discrete Equivalent Design

• H(s) design to meet specs and Discrete equivalent computations

• Evaluation of CL discrete system

4. Root Locus Design of H(z)

• Example of design approach, Evaluation, redesign

5. W-Plane Design of H(z)

• z→w and w→z mappings

• Example of design approach, Time and frequency domain evaluation

6. PID, IMC and Pole placement Controllers with Examples

7. Time Delay Systems

• Smith predictor with Example

8. Implementation of High-Order Compensators

Copyright ©2006-2012 by K. Pattipati 3

Stability of Discrete Systems

 
 

   

   

   n n-1

0 1 n 0

G z H z
denominator of T z

1 + G z H zp z

zI K

z a z a z a generally a 1p




 


 

    

  n n 1

0 1 np s a s a s a   

1 wh 2
z

1 wh 2






• We need a technique to ascertain stability of the closed-loop system, i.e., whether roots of

 the CL characteristic polynomial p(z) all lie within the unit circle.

• The technique must be simple and involve {ai} only.

 Applicable to any polynomial in z.

• Continuous-time systems analysis has Routh-Hurwitz to determine whether a polynomial p(s)

 has its roots in LHP.

• A way to use Routh-Hurwitz test:

 (1) Map unit circle into left half-plane by replacing z with some suitable function. (z → esh

 will not work here since resulting p(s) will not be a polynomial.)

 (2) One possibility:

 (3) Substitute for z in p(z), multiply through by (1 – wh/2)n to obtain

p(w) = n-th order polynomial in w.

(4) Apply Routh-Hurwitz test to p(w).
Messy!

Copyright ©2006-2012 by K. Pattipati 4

Jury/Raible Test for p(z)=a0z
n+a1z

n-1+···+an

 

 

       

k

k

k k

0

k 1 k k n

i i k k i i i

a
where r = k = n, n 1, , 1

a

 a = a r a i = 0, 1, , k 1 where initially a a






  

(n)

(n-1)

(0) 2n+1: a0
(0)

Set up Jury array -

a0
 an

 a0
(n-1)

 an-1
(n-1)

1:
 2:

 3:
 4:

a1

 an-1

 a1
(n-1)

 an-2
(n-1)

a2
 an-2

 a2
(n-1)

. . .
 . . .

 . . .
 . . .

an-1
 a1

 an-1
(n-1)

 a0
(n-1)

an
 a0

an

a0

let rn =

an–1
(n–1)

 a0
(n–1)

let rn-1 =

·
·
·

In "English" -

• Each odd row = previous odd row – rk * previous even row.
• Each even row = preceding odd row in reverse order.
• First row has coefficients of p(z).
• Last row has 1 element.

Criteria:

 (1) If a0 > 0, then all roots of p(z) lie in unit circle if and only if a0
(k) > 0, k = n–1, n–2, ... , 0.

(2) The no. of negative a0
(k) = no. of roots of p(z) outside unit circle.

Copyright ©2006-2012 by K. Pattipati 5

Applications of Jury Test

 - Test if first entry in each odd row > 0.

 - If obtain any a0
(k) ≤ 0, stop; p(z) has root(s) | λ | ≥ 1.

 - Simple computer program, need 2 scratch vectors.

Example 1 : p(z) = z2 – z + 0.5

1.0
 0.5

1–0.25

= 0.75

–0.5

0.75–0.33
= 0.42

–1
–1

–1+0.5
= –0.5

0.75

0.5
1.0

(2)

(1)

(0)

r = 0.5

r = –0.5/0.75
 = –0.67

All a0
(k) > 0 => system is stable (all roots in unit ·).

Copyright ©2006-2012 by K. Pattipati 6

Applications of Jury Test (Cont’d)

Example 2 : p(z) = z2 – z + 2

1
2

 1– 4

= –3

 1

–3–(–1/3)
= –8/3

– 1
– 1

– 1+2
= 1

–3

2
1

(2)

(1)

(0)

r = 2

r = – 1/3

Example 3 : p(z) = z3 – 0.15z2 – 0.59

1.00
-0.59

0.65

-0.09

0.64
-0.13

0.61

– 0.15
0.00

– 0.15
– 0.15

– 0.13

0.64

0.00
– 0.15

– 0.09

0.65

– 0.59
1.00

(3)

(2)

(1)

(0)

r = – 0.59

r = – 0.14

r = – 0.20

All a0
(k) > 0 => system is stable.

a0
(1) < 0 ==> system is unstable.

=> 2 roots outside
unit · .

Copyright ©2006-2012 by K. Pattipati 7

Application to SVFB Example

  2
z 1 1

p z zI z + z 1
1 z+2

 
    

     
1 1 0

x k+1 = x k + u k
0 1 1

   
   
   

K

 
1 1 0 1 1 0 0 1 1

1 3
0 1 1 0 1 1 3 1 2

         
              

          

The equivalent discrete system

Φ Γ
is to be controlled using the algorithm, u(k) = r(k) – [1 3] x(k)

K Check if closed-loop system is stable.

 - Closed-loop system matrix

 - Closed-loop characteristic polynomial

1
–1

 0

1
1

–1
1

(2)

 (1)

r = –1

 - Jury array

• CL system is unstable, but roots are not on unit circle.

Roots of p(z) are z1 = 0.618, z2 = –1.618, so a0
(k) = 0 does not necessarily imply roots

on unit circle. (Note | z1 z2 | = 1 here, corresponding to roots λ and 1/λ.)

• If some a0
(k) = 0, can replace 0 → +ε and continue further, e.g. as in Routh-Hurwitz test.

STOP

Copyright ©2006-2012 by K. Pattipati 8

Stability with Respect to a Parameter

      2p z z 1/ 2 z 1 Kz / 2 z K 3 / 2 z 1/ 2          

  
   

K z
1 1 G z H z

2 z 1/ 2 z 1
  

 

       
 

 
 

   
  

ah
1

ah 1

ah=0.69

u z1 e 0.5 K Kz
G z ; u z = Ke z + z u z H z

z 0.5 e z z 1z e 1 z

Kz 2
1 G z H z 1

z 1/ 2 z 1




 


     

  

  
 

If system (or controller) has a free parameter, β, wish to determine range of values for which
system is stable.

Example 1 -

The system G(s) = a/(s+a), a = 1, is to be controlled using series compensation with

algorithm u(k) = Ke(k) + u(k–1) and time step h = 0.69 sec. For what range of K is CL

system stable?

3/4–(K–3)2

1
1/2

 3/4
(K–3)/4

(K–3)/2
(K–3)/2

 (K–3)/4
3/4

1/2
1

(2)

 (1)

(0)

r = 1/2

r = (K–3)/3

/12

Jury criterion

=> 3/4 > (K–3)2/12

=> (K–3)2 < 9

=> –3 < K–3 < 3

=> 0 < K < 6

• Reconcile with root locus:

K > 0
K < 0

K = 6
Unit circle

Copyright ©2006-2012 by K. Pattipati 9

Stability with Respect to Multiple Parameters

Can determine constraints that must be satisfied among a set of parameters.

Example 2 -

Determine region in the a1 – a2 plane

for which p(z)= z2 + a1z + a2 has its

roots in the unit circle.

Recall stability conditions
for p(s) = s2 + a1s + a2 to
have roots in LHP is a1, a2 > 0. 0 a1

a2

Jury array:

1
a2

1–a2
2

a1(1–a2)

1–a2
2 –

a1
a1

a1(1–a2)

1–a2
2

a2
1

(2)

(1)

(0)

r = a2

r =

a1
2(1–a2)

 1+a2

 a1

1+a2

2nd-order p(z) stability region

Jury criteria: 1 – a2
2 > 0 => –1 < a2 < 1

 1 – a2

2 – > 0 => (1+a2)
2 – a1

2 > 0

 [since 1–a2 > 0 and 1+a2 > 0]

=> –(1+a2) < a1 < 1+a2

a1
2(1–a2)

 1+a2

1

1 -1

a2

a1

-1

Copyright ©2006-2012 by K. Pattipati 10

A More Complicated, State –Space Example

m

           

0 1 1 1

x t 3 2 1 x t 1 u t ; y t 1 0 2 x t

0 2 1 0

   
   

   
   
      

The open-loop unstable continuous system defined by

is to be controlled using a digital computer with h = 0.05.

Investigate CL stability using the SVFB algorithm

 u(k) = r(k) – 0.5 x1(k) – 2 x2(k) – x3(k)

 = r(k) – [0.5 2 1] x(k) (Kr = 1)

 K

(2) Form CL system matrix, Φ = Φ – ΓK, then use ss2tf to obtain CL transfer function

 T(z) = C(zI – Φ)-1Γ. Need only to obtain p(z) =| zI – Φ | for closed-loop stability test.

 p(z) = z3 – 2.737z2 + 2.497z – 0.758

(3) Apply Jury test → p(z) has all roots in · ==> CL stable

(4) Phase margin can be evaluated by using ss2tf to obtain K(zI – Φ)-1 Γ, then using Bode

 (option 2) to plot LG(z) . ==> Obtain ωc ≈ 2.8 rad/sec, ≈ 41o

z = ejωh

 (1) Obtain equivalent discrete system x(k+1) = Φx(k) + Γu(k) using c2d,

1.0035

0.1430
0.0071

0.0453

0.9105
0.0930

-0.0477

 0.0429
 0.9535

0.0512
0.0513
0.0025

Φ = ; Γ =

Copyright ©2006-2012 by K. Pattipati 11

State-Space Example Plots

m 41

1.0 0.1 10.0 ω (rad/sec)

20

0

-20

m
ag

 L
G

 (
d

B
)

ωc

a) Loop Gain

-360°

-270°

-180°

-90°

0°

 LG

| LG(ejωh)|

 LG(ejωh)

}

b) State time response with x(0) = [1 0 0]' , r(t) = 0

0

0.25

0.50

0.75

1.0

-0.25

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 t(sec)

xi(t)

x1(t)

x2(t)

x3(t)

Copyright ©2006-2012 by K. Pattipati 12

Fundamentals of Digital Compensator Design

"Given a G(s), or G(z), design a series compensator H(z) so that the closed-loop system

meets specs.”

 Design Approaches

• H(z) design via discrete equivalent

 - Idea is to use continuous time design methods to construct H(s) given G(s), then

 obtain from H(s) a suitable discrete compensator H(z).

 - Scheme might be expected to be useful provided,

 - Alternately, an analog H(s) compensator often exists and we desire to replace the "older"

 analog system with a digital, µ-processor controller.

 Problem: Given H(s) how do we obtain an H(z)?

Evaluation Tools:
 - stability tests
 - loop gain analysis
 - root locus
 - simulation · · ·

   jωhz = e
G z G jω h small 

• Direct design of H(z) given G(z).

Copyright ©2006-2012 by K. Pattipati 13

H(z) Design via Discrete Equivalent:

H(s) → H(z)

 
m m 1

0 1 m

0m m 1

1 m

β z β z β
H z β 0

z + α z + + α





  
 

1

h

m m 1

0 1 m

m m 1

1 m

b s + b s + + b

s + a s + + a





Goals:
• Simplicity

 Hold equivalence methods [viz G(s) →G(z)], and impulse transformation methods

 [Z{L-1 {H(s)}}] are not simple.

• H(z) = rational transfer function

H(z) = A(z) / B(z) A(z), B(z) = polynomials

 [Thus the "obvious" inverse relation s = log(z) is NG.]

• If H(s) = m-th order transfer function then H(z) = m-th order transfer function.

Typically, H(s) = b0 ≠ 0

i.e., H(s) will invariably contain a pure gain, (and state-variable model of H(s) will have

d ≠ 0). Require

• Accuracy

over the frequency range of interest/importance.

Idea: Replace s with some suitable rational F(z).

• A given H(s) can be synthesized as an interconnection of integrators = 1/s elements (recall

 elementary signal flow diagram) => replace 1/s = continuous time integrator by

 F(z) = transfer function of a discrete integrator.

   jωhz = e
H z H jωDesire

Copyright ©2006-2012 by K. Pattipati 14

Forms of Discrete Integration

2 z 1

h z+1

 
 
 

-1

-1

h 1+z h z+1 1

2 2 z 1 s1 z

   
   

   

F(z) g(k) e(k)
g(z)

e(z)
F(z) =

 
 k 1 h

e t dt ;


g(k–1) = approximate value of g(k) = approximate value of  
kh

e t dt


1. Forward Integration

k k-1

e(k–1)

h 1

z 1 s

g(k) = g(k–1) + he(k–1)

g(z) = z-1g(z) + z-1he(z)

=> F(z) =

z 1

h


Replacement s →

t

 h

1

h zh 1

z 1 s1 z




z 1

zh



k k-1

e(k)
2. Backward Integration

g(k) = g(k–1) + he(k)

g(z) = z-1g(z) + he(z)

=> F(z) =

Replacement s →

t
 h

g(k) = g(k–1) + h/2 [e(k) + e(k–1)]

g(z) = z-1g(z) + h/2 (1+z-1) e(z)

=> F(z)=

k k-1

e(k-1)

3. Trapezoidal, or Tustin Integration

Replacement s→

e(k)

t

 h

Copyright ©2006-2012 by K. Pattipati 15

Relationship to True s→z Map

z 1

zh



z 1

h



   g t = e t

sh 2

sh 2

e 1 sh 2

1 sh 2e





   
     

g k g k 1
 g k = g k 1 +he k 1

h

 
  

sh

1 1

1 she 

2 z 1

h z+1



Each method corresponds to a different rational approximation of esh

 (1) Forward integration:

 z = esh 1 + sh gives s =

 (2) Backward integration:

 (3) Tustin integration:

 z = gives s =

 z = gives s =

Note:

• The above replacements maintain transfer function order

• Forward integration Euler method to predict g(k)

[OK since H(s) is almost always m-th order/m-th order].

• Even if H(s) = , H(z) = for (2) and (3) m-th order
 m-th order

 r-th order
m-th order

• Tustin ~ 1st order Pade approximation to z-1

   
 

 

mm m 1
00 1 m

m m 1 m

1 m

b z 1 +b s + b s + + b
if H s H z =

s + a s + + a z 1 +






 



Copyright ©2006-2012 by K. Pattipati 16

Mapping of LHP to Unit Circle

• Useful as a criterion for selecting integration scheme:

jω

σ

z = 1+sh

z

A stable H(s) can yield an

unstable H(z)! NOT GOOD

(1) Forward integration

jω

σ
 1
1– sh

z =

z

Stable H(s) yields stable H(z);

some unstable H(s) can yield

stable H(z).

(2) Backward integration

jω

σ
1+sh/2
1–sh/2

z =

z

Preferable map since stability

areas are mapped 1:1.

(3) Tustin integration

Copyright ©2006-2012 by K. Pattipati 17

Computing H(z) via Tustin Equivalent

0 1 0 11

1 1

0 1 1 1

b b h/2 b + b h/21 a h/2
β = , α = , K = K

b + b h/2 1 + a h/2 1 + a h/2

 

 
1 Kh/2τ z + 1

H z K =
1 h/2τ2τ z 1 1 + h/2τ

z + 1
1+ h/2τh z +1

   
   
   

          

1 1

1 1

0 0

b b
 < a lead; a lag

b b
  

   0 1 1

1 1

b s + b z β
H s K H z = K

s + a z α


 



  11

1

1

a1
H s K or K with a τ

τs 1 s+a

 
  

  

• Since any H(s) can be decomposed (via PF expansion) into either a cascade or a sum of first

 and second-order terms, equivalence can be done on a term-by-term basis.

(1) Simple Lag,

(2) General First-order factor

h/τ

1α eK

Copyright ©2006-2012 by K. Pattipati 18

   
2 2

0 1 2 1 2

2 2

1 2 1 2

2 2

1 2 2

2 12 2

1 2 1 2

2 2

0 1 2 0 2

2 12

0 1 2

b s +b s+b z β z+β
H s = K H z = K

s +a s+a z α z+α

1 a h/2 + a h /4 2 a h /2
α = , α =

1 + a h/2 + a h /4 1 + a h/2 + a h /4

b b h/2 + b h /4 2b b h /2
β = , β =

b + b h/2 + b h /4 b






 

 
2

0 1 2

2

0 1 2

2

1 2

 + b h/2 + b h /4

b + b h/2 + b h /4
 K = K

1 + a h/2 + a h /4

Computing H(z) via Tustin Equivalent (Cont’d)

(3) General Second-order factor

Copyright ©2006-2012 by K. Pattipati 19

General Algorithm for Tustin Transformation

              
-1 -1

u z = C zI A B z +1 + d e z ; A = I h/2 A I + h/2 A 

2 z 1
s .

h z 1

 
  

 

i ia , b ,

 
m m 1

0 1 m

m m 1

1 m

β z + β z + + β
H z K

z + α z + + α






 

11

2 2

i i i 0 0

m m

ba 1 0 0

a 0 1 0 b
A ; B= ; b b a b ; C= 1 0 0 ; d=b

1

a 0 0 b

  
  

       
  

     

ii i i +1

m m m i i

where β = b + b + da 0, 1, 2, , 1

 β = b + da ; α = a ; 1,2,..,

i m

i m

 



 
-1

C zI A B

 H z

     
2 z 1

x z = Ax z +Be z
h z +1

 
  

 

  
-1

B = I h/2 A B h/2

 
 

 

m m 1

0 1 m

m m 1

1 m

u sb s + b s + +b
H s = K =

e ss + a s + +a





(1) Write a state variable model for H(s) in SOF with K = 1.
x(t) = A x(t) + Be(t) ; u(t) = C x(t) + de(t)

(2) Take L ==>sx(s) = Ax(s) + Be(s) and replace

(3) Solve above for x(z) and form: u(z) = Cx(z) + de(z)

(4) Use ss2tf to obtain coefficients of denominator and numerator of

(5) Form final:

 

()
:

()

; ;
0 0 0

;
1

a a

a

a

a a

x k
Augmented System

e k

A B A B
A

C

B
B C C d

Multiply numerator by z

 
 
 

   
   
  

 
  
 

Copyright ©2006-2012 by K. Pattipati 20

General Algorithm for Forward Integration

        
-1

u z = C zI A B + d e z ; A = I + hA

z 1
s .

h

 
  

 

i ia , b ,

 
m m 1

0 1 m

m m 1

1 m

β z + β z + + β
H z K

z + α z + + α






 

11

2 2

i i i 0 0

m m

ba 1 0 0

a 0 1 0 b
A ; B= ; b b a b ; C= 1 0 0 ; d=b

1

a 0 0 b

  
  

       
  

     

ii i

i i

where β = b + da ; 0, 1, 2, ,

 α = a ; 1,2,..,

i m

i m





 
-1

C zI A B

 H z

     
z 1

x z = Ax z +Be z
h

 
 
 

B =B h

 
 

 

m m 1

0 1 m

m m 1

1 m

u sb s + b s + +b
H s = K =

e ss + a s + +a





(1) Write a state variable model for H(s) in SOF with K = 1.
x(t) = A x(t) + Be(t) ; u(t) = C x(t) + de(t)

(2) Take L ==>sx(s) = Ax(s) + Be(s) and replace

(3) Solve above for x(z) and form: u(z) = Cx(z) + de(z)

(4) Use Leverier algorithm to obtain coefficients of denominator and numerator of

(5) Form final:

Copyright ©2006-2012 by K. Pattipati 21

General Algorithm for Backward Integration

        
-1 -1

u z = C zI A Bz + d e z ; A = I hA 

1 z 1
s .

h z

 
  

 

i ia , b ,

 
m m 1

0 1 m

m m 1

1 m

β z + β z + + β
H z K

z + α z + + α






 

11

2 2

i i i 0 0

m m

ba 1 0 0

a 0 1 0 b
A ; B= ; b b a b ; C= 1 0 0 ; d=b

1

a 0 0 b

  
  

       
  

     

ii i +1

m m i i

where β = b + da i = 0, 1, 2, , m 1

 β = da ; α = a ; 1,2,..,i m





 
-1

C zI A B

 H z

     
1 z 1

x z = Ax z +Be z
h z

 
 
 

 
-1

B = I hA B h

 
 

 

m m 1

0 1 m

m m 1

1 m

u sb s + b s + +b
H s = K =

e ss + a s + +a





(1) Write a state variable model for H(s) in SOF with K = 1.
x(t) = A x(t) + Be(t) ; u(t) = C x(t) + de(t)

(2) Take L ==>sx(s) = Ax(s) + Be(s) and replace

(3) Solve above for x(z) and form: u(z) = Cx(z) + de(z)

(4) Use Leverier algorithm to obtain coefficients of denominator and numerator of

(5) Form final:

Copyright ©2006-2012 by K. Pattipati 22

Bode Plot Comparisons

jωhz 1 2 1
Include option 3 in Bode plot program x = , and option 4, x = where z = e

zh h 1

z

z

   
  

  

     jωh
jωh

jωh

2 e 1
z = e s

h e 1

Usually H z H s H jω for Tustin equivalence. 
    

 

jωhz =e

Example 1:
2s2 + 3s + 4
 s2 + 2s + 6

1.6z2 – 1.867z + 0.8
 z2 –0.667z + 0.467

 Tustin
H(s) = H(z) =

h = 0.5

1.0 0.1 10.0 ω (rad/sec)

20

0

-20

| H
(j

ω
)

| (
d

B
)

90

0

H
(j

ω
)

(d
eg

)

Continuous H(jω)
Tustin equivalent H(z)
Backward difference

-90
1.0 0.1 10.0 ω (rad/sec)

Tustin equivalence is usually superior to backward difference equivalent
when comparing H(z) to H(jω).

Copyright ©2006-2012 by K. Pattipati 23

Tustin Equivalence with Frequency Prewarping

ωh ωh
tan a ; a >1

2 2

 
 

 

 Tustin with prewarp (include as option 5 in Bode plot)

   

 

jωhz =e s = jω

jωh

jωh

jωh/2 jωh/2

jωh/2 jωh/2

Tustin H z H s

2 e 1
 if and only if jω

h e 1

e e ωh ωh
or tan

2 2j e +e







 
 

 

  
  

 

2 z 1
s

ah z 1

 
  

 

 

 
1

1

ω h / 22 z 1
s

h tan ω h / 2 z 1

 
  

 

 

 
1

1

tan ω h/2
a =

ω h/2

 like a "modified" h ah

• Is it possible to improve the match between Tustin H(z) at z = ejωh and original H(jω)?

• At which frequencies, ω, does equality hold?

- For 0 ≤ ω < π/h equality holds only at ω = 0.

• Can obtain equality at one other ω ≠ 0 if we have

This corresponds to replacement

• For equality at ω=ω1, usually some important frequency,

y ωh
y = tan

2

 
 
 

0

ωh

2π

2

ωh
y = a , a >1

2

 
 
 

ωh
y =

2

Copyright ©2006-2012 by K. Pattipati 24

Example 2 – Tustin Equivalence

 with Prewarping

(corresponds approximately to where H(jω) is max).

a = = 1.093 ;
1.563z2 – 1.706z + 0.742

 z2 – 0.5538z + 0.452
H(z) =

2s2 + 3s + 4
 s2 + 2s + 6

H(s) = ; h = 0.5

tan 0.5
0.5

jωhz =e
Require H(z) = H(s) at ω = 2

s =j

1.0 0.1 10.0 ω

20

0

-20

| H
(j

ω
)

| (
d

B
)

90

0

-90

H
(j

ω
)

(d
eg

)

Continuous H(jω)

Tustin equivalent
Tustin with prewarp, ω1 = 2.0

1.0 0.1 10.0 ω 2.0

 (rad/sec)

(rad/sec)

• Gives better match in region ω ≈ [1.2, 3].

Copyright ©2006-2012 by K. Pattipati 25

Example 3 – Tustin Equivalence

 with Prewarping

e.g., ω1 = 4, a = = 1.558

• A poor choice of ω1 can result in substantial H(jω) vs. H(ejωh) mismatch for ω ≠ ω1.

tan 0.5
 0.5

2s2 + 3s + 4
 s2 + 2s + 6

H(s) = ; h = 0.5

1.0 0.1 10.0 ω (rad/sec)

20

0

-20

90

0

Continuous H(jω)
Tustin with prewarp, ω1 = 4.0

-90
1.0 0.1 10.0 ω (rad/sec)

| H
(j

ω
)

| (
d

B
)

H
(j

ω
)

(d
eg

)

=> To avoid problems keep ω1 ≤ 1/h < π/h and examine Bode plot
 comparisons of H(ejωh) vs. H(jω).

Copyright ©2006-2012 by K. Pattipati

26

Other Techniques for

H(s)→H(z) Equivalence

s 0

 
 

 
 

 

 

p m

i i
i = 1 i = 1

m m

i i
i = 1 i = 1

s δ z δ

H s = K H z = K

s λ z λ

Π Π

Π Π

 



 

 
 

2

2

h z 4z 11
 () (2) [() 4 (1) (2)]

s 33 z 1

h
g k g k e k e k e k

 
        



where
 1. If H(s) has a pole at s = λi, then H(z) has a pole at z = λi = eλih .

 3. Pick K such that H(s) = H(z) . (use s = if H(0) = 0)

• Pole-zero mapping

 2π

1000h

 2. If H(s) has a zero at s = δi, then H(z) has a zero at z = δi = eδih .

z 1

• Zero-order hold

Write state model (SOF) for H(s), then H(z) = C(zI – Φ)-1Γ + d

(Has "effective" h/2 sec delay due to hold equivalence)

• Higher-order polynomial approximations to 1/s

 Tustin ~ 1st order polynomial through e(k–1), e(k)

 Simpson ~ 2nd order polynomial through e(k–2), e(k–1), e(k)

Gives a better equivalence in H(ejωh) vs. H(jω) but order of H(z) is 2m.

Copyright ©2006-2012 by K. Pattipati 27

Summary of Discrete Equivalence Methods

   2 z 1
s =

h z +1

H s H z 
 
 



2 z 1

h z 1

 
 

 

G(s) G(z)

H(s) H(z)

Hold equivalent
only Continuous

design

"Exact" equivalent
 discrete system

Any reasonable
approximation to H(s)

Discrete compensator

• Tustin equivalence, s→ , gives a good approximation with a minimum of effort.

This is the most commonly used scheme.

• Consider use of prewarping if there is a frequency ω1, or frequency region about ω1, where

 it is important that H(ejωh) ≈ H(jω); e.g., in vicinity of ωmax for lead network, or around

 crossover frequency ωc.

• Pole-zero mapping is frequently used (very similar in results to Tustin), but does not permit

 frequency prewarping.

• H(s) → H(z) equivalent transformations are very frequently used in digital filtering and

 Digital filter design.

Copyright ©2006-2012 by K. Pattipati 28

Example of Discrete Equivalent Design

• Radar positioning system (Franklin and Powell, 1980)

• Closed-loop requirements

r
u

H(s) G(s)
e +

-

Command
input

y

 0.1
s(s + 0.1)

G(s) =

Desire ~ 15% overshoot to a step command input (=> ζ ~ 0.5) and

mts(1%) ~ 10 sec (=> ζωn~ 0.5) with a phase margin ≥ 50o.

y = Antenna position (deg) u
v 1

 s
 1
τs+1

Drive motor, G(s) = ; τ = 10 sec
 1/ τ

s(s + 1/τ)

voltage

Copyright ©2006-2012 by K. Pattipati 29

m 51 

Bode plot of G(s)

 Bode plot of
compensated
G(s)H(s)

Closed-loop

ωc ≈ 0.8 rad/sec

G(s)H(s) =
 1

s(s + 1)

0.1

1.0

10.0

20dB

0dB

-20dB

-20

ω

-180o

ω

ωc

0.1 1.0 10.0

-135o

-90o

1 2ω ω β , etc.

• Not a good CL design - not a large enough region of –20dB slope around crossover,

 asymptotic
 approximation

• "Solution", H(s) = lead NW = (ω2 = 0.1, β = 10, K = 1)
10s+1
 s+1

Example of Discrete Equivalent Design (Cont’d)

Copyright ©2006-2012 by K. Pattipati 30

Time Domain Response

of Continuous Design

• Root Locus

σ

jω

–0.1

(a) Root locus of uncompensated system

1 + KG(s) = 1 +
0.1K

s(s+0.1)

(b) Root locus of compensated system

K
s(s+1)

 1 + KG(s)H(s) = 1 +

σ

jω

-1.0

K = 1 ζ =0.5

• CL Step response

0

0.5

1.0

1.5

2 4 6 8 10 12 14 16 t(sec)

y
P.O. ~ 16%

Copyright ©2006-2012 by K. Pattipati 31

Discrete Equivalent Computations

         

 max

0.1 0 0.1
x t x t u t ; 0 1 x t

1.0 0 0

A 1.01/ 2 0.7 ; λ A 0.1

y
   

     
   

 

z 1
s 2

z 1

 
  

 

 

 

1

1

u zz 0.905 1 0.905z
7 7

z 0.333 e z1 0.333z





   
   

    

• Select time step h = 1.0 sec.

Note: State model of system with x1 = v, x2 = y:

0.5→ 1.0

|| A ||
so h = 1.0 is compatible with criterion h < .

• Zero-order hold equivalent, G(z)
 z + 0.967

 (z–1)(z–0.905)
G(z) = 0.048

• Tustin equivalent

 H(z) = H(s) =

r(k)
u(k)

H(z) G(z)
e(k)

-
y(k)

- Algorithm

u(k) = 7e(k) – 6.335e(k–1) + 0.333u(k–1)

Examine CL step response, LGain(z), etc., for discrete system.

+

Copyright ©2006-2012 by K. Pattipati 32

Evaluation of Digital Control Performance

m

• Step response, r(t) = 1.

% overshoot is ~ 50%! (ymax ≈ 1.5) This corresponds to ζ ~ 0.22; continuous design had ζ ~ 0.5.

0

0.5

1.0

1.5

2 4 6 8 10 12 14 16 t(sec)

y = Response of y(t) at sample points kh

• What happened ?

 - Clearly, there has been a decrease in .

 - Problem is that G(ejωh) ≠ G(jω) in crossover region.

- H(ejωh) ≈ H(jω), at least in ωc crossover region.

• Heuristic analysis

 - to a first (crude) approximation G(ejωh) ≈ e–jωh/2G(jω), i.e., sampling introduces

 a delay of h/2 sec.

 - at ωc get a decrease in of 57.3ωch/2 deg. => 23o loss of phase margin here!

 - of discrete system ~ 51o – 23o = 28o corresponds to ζ ~ 0.25 (for a 2nd order

 continuous system).
m

m

Copyright ©2006-2012 by K. Pattipati 33

Continuous vs. Discrete System Loop Gain

- Shows aliasing properties of discrete LG for ω > π/h = 3.14

 - Repetition for ω > 2π/h; LG(z) has poles at ω = 2Nπ/h (z = 1)

1
s(s+1)

Continuous G(jω)H(jω)

1.0 0.1 10 ω (rad/sec)

0

-20

-40

| L
G

 |
(d

B
)

-90

0

-270

L
G

 (
d

eg
)

-180

20

28o {

1.0 0.1 ω (rad/sec)

LG(s) =

0.336z + 0.325
z2 – 1.33z + 0.33

LG(z) =

Discrete G(z)H(z)

ωc≈0.8

10

Copyright ©2006-2012 by K. Pattipati 34

Methods to Improve Discrete CL Performance

• Pick the time step, h, so as not to reduce the phase margin much:

m = 57.3 (ωch/2) deg < 5 – 10o

Choosing h in this manner will generally be smaller than when you select h  0.2/|| A ||,

especially for a lead NW (but not necessarily a lag). But note that very small h may cause

CPU timing and other problems.

• Use Tustin with prewarp

Not particularly useful here, but could be used to assure H(z) gives little or no magnitude
and/or phase distortion in the crossover region.

• Redesign H(s) to give additional positive phase

 - Precompensate for eventual phase decrease in G(z).

 - For given h = 1.0, need a continuous system phase margin of ~ 70o! : an unreasonable

 H(s) design.

m - Good approach if < 15o.

• Design H(z) directly in the z-plane

 - G(z) is fundamentally different than G(s).

 - Avoids small time step constraints needed to make Tustin equivalent H(z) perform

 satisfactorily

 - Less guesswork to modify design.

 - May be possible to use H(z) as a starting point.

=> Use Tustin if ωch is small, otherwise consider direct design of H(z).

Copyright ©2006-2012 by K. Pattipati 35

Direct Design Compensation Methods

 
   

   

 

 

G z H z y z
T z = =

r z1 + G z H z

R(k)
u(k)

H(z) G(z)
e(k) +

–

y(k)

• These schemes work directly with G(z) to design H(z) and so are not limited by the

 requirement that h ~ small.

• Closed-loop transfer function

(iii) Fixed-form parametric design

 Assumes a structural form for H(z), e.g., PID, and adjusts free parameters.

(i) Root locus design methods

 Compensator design in z-plane using standard root locus design procedures to move

 CL poles.

(iv) Miscellaneous approaches

(ii) w-plane design methods

 This is the equivalent to classical frequency (ω) domain design procedures where w is

 a rational approximation to (1/h)ln(z).

(2) Poles of T(z) are the roots of 1+G(z)H(z).

(1) Zeros of T(z) are the zeros of G(z)H(z) = zeros of G(z) plus those added by H(z).

Copyright ©2006-2012 by K. Pattipati 36

   1

0

1

z δ
H z K KH z

z λ


 



 
    

    
 1 2 m

0

1 2 m

z δ z δ z δ
H z K = KH z

z λ z λ z λ

  


  

   
des

0 z = z

1
K

G z H z




Root Locus Design of H(z)

- if λ1 < δ1 => lead compensator

• Generally a first or second order H(z) suffices, e.g.,

- Do plot on z-plane with ζ, ωn overlay.

• Pick poles and zeros of H(z) so that roots locus of 1+KG(z)H0(z) with respect to gain K

 passes through the region in z-plane where damping, ζ, and natural frequency, ωn, are suitable.

- Any added zeros δi must have an associated pole (no free zeros).

- Pick δi, λi, real, generally with | λi | ≤ 1.

• Then pick K so that (dominant) closed-loop poles are at some desired location on the root

 locus and specs are met.

=> trial and error design

• Adjust λi, δi (and K) until system meets specs.

• Next evaluate time response, loop gain KG(z)H0(z) at z = ejωh, etc.

- if λ1 > δ1 => lag compensator

Remember

s = 0  z=1

Copyright ©2006-2012 by K. Pattipati 37

Some Helpful Hints for RL Design

• If zero ss error to a constant input is required, G(z)H(z) must have a pole at z = 1.

• Try not to have CL poles on –1 < z < 0. If there is a pole at z = –a then y(k) or u(k) has a

 term of the form (– a)k → 1, –a, +a2, – a3, ... point-to-point oscillation.

• Recall – Root locus bends towards zeros, away from poles.

• “Nice” region in z-plane, especially for dominant pair.

- If can’t avoid then try to keep |a| small.

Added zero Added pole

This response has

no continuous counterpart

(aliasing phenomenon).

ζ 0.5

Copyright ©2006-2012 by K. Pattipati 38

n

s n n1%

ζω h

To have t 5 / ζω 10 need ζω 0.5 for dominant CL poles

 need z e 0.6, with =0.5 to PO 15%

  

   

Antenna Positioning Control

Not too bad --

m 50 Specs: PO to step input ≈ 15%, ts|1% ≈ 10sec,

• First design trial; H(z) =

- Need a zero on [0, 1] to bend RL inward more.

• Uncompensated root locus (pole already at z = 1 via G)

 
 

 
  

0.1 z 0.97
G s G z 0.048

s s+0.1 z 1 z 0.905


  

 

h = 1

- Examine CL response via simulation.

Not very good!
 H z K

- Place associated pole on [–1, 0], away from

 added zero.

 z – 0.5
z + 0.6

K

u(k) = 20e(k) – 10e(k–1) – 0.6u(k–1)

- Also get a CL pole at z = –0.2

 (will this give a problem?)

- With K≈20 obtain a dominant

 CL pair with ζ ~ 0.5.

Copyright ©2006-2012 by K. Pattipati 39

Time Response

• Need to reduce gain, move zero at 0.5 closer to pole at z = 0.905.

• Requires movement of pole at –0.6 closer to z = 0.

 z – 0.5
z + 0.6 H(z) = 20

0

0.5

2 4 12 16 t(sec) 6 8 10 14

1

1.5

5.0

10

15

0

-5

2

4 12 t(sec) 6 8 10 14

20

-15

-20

-10

16

y

u

PO 75%

indicates y(kh) sample

c mω 1.1, 26.4

C.L poles at -0.22, 0.28 j.51

 



Copyright ©2006-2012 by K. Pattipati 40

     1

vz 1

1
since 1 z G z H z K 0.71.

h




  

 
z 0.905

H z K
z 0.2






  
c m

0.432z 0.418
 ω 0.71 rad/sec, 56

z 1 z 0.2





 

Root Locus Re-Design

(After much trial and error)

• Good design, but Kv has gone from 1.0 (continuous design) to 0.71,

• Use zero to cancel pole at z = 0.905. Place pole so that root locus goes through nice region

 (|z| ≤ 0.6 , ζ ≈ 0.5).

K ~ 9 gives CL poles at 0.18 ± j0.44 => ζ ≈ 0.54.

• Bode plot of LG(z) =

y

0

0.5

2 4 12 16
t(sec)

6 8 10 14

1

1.5

u
5

10

0

-5
2 4 12 16

t(sec)
6 8 10 14

-10

1
x x

–1
x

Copyright ©2006-2012 by K. Pattipati 41

An Example of a

Poor Design Choice
Reduce PO further we can move the zero of H(z) close to the pole at z = 0.905 and move

the pole of H(z) further out towards z = –1.

1
x x x

–1

• Intersample “ripples” in y(t) and oscillatory u(k) are indicative of CL poles on negative

 real axis.

 
z 0.8

H z K
z 0.8






m
with K = 9 obtain a highly damped system with CL poles:

z = 0.7 ± j0.1 and z = –0.75 (ωc=0.5 rad/sec , = 62o) 

y

0

0.5

2 4 12 16
t(sec)

6 8 10 14

1

1.5

u
5

10

0

-5

2 4 12 16
t(sec)

6 8 10 14

-10

Indicates y(kh) samples

Copyright ©2006-2012 by K. Pattipati 42

 
n n 1

0 1 n

n n 1

1 n

c w +c w c
G w

w d w d





 


  

1 wh / 2
z

1 wh / 2








2 h
tan ω when ωh << 1

h 2

 
 

 

  jωhz ew j
G(w) G z if ωh << 1

v 


n n 1

0 1 n

n n 1

1 n

b z + b z b

z a z a





 

  

2 z 1
w μ j

h z 1
v

 
   

 

w – Plane Design

• Attempt to use Bode design techniques to obtain H(z) starting with G(z).

• Define “w – plane” with w ~ s

• Rational mapping

- Map from z → s plane not rational

• Cannot go into s-plane to design H(s) and then get H(z).

- G(z) =

- On unit circle, v =

- Need a rational approximation to z = esh

- G(w) will always be n-th order/n-th order

• Can include as an additional option in Bode plot subroutine

- To first approximation (ω << π/h)

- Unit disk |z| ≤ 1 mapped into LHP Re(w) ≤ 0

  sh / 2

s jw j
G(w) G s e

v 





Copyright ©2006-2012 by K. Pattipati 43

 
 

   

m

i
i 1

n k
k

j
j 1

K z δ
G z

z 1 z λ







 


  

 

 
     

 
     

n-m
m m

i
i = 1 i = 1

i i

n k n k
k k

j
j = 1 j = 1

j j

w w
K Π 1+δ 1 Π 1 +

2/h 2/h 1+δ / 1 δ
G w =

w
Π 1+λ h w Π 1 +

2/h 1+λ / 1 λ

 

  
           

 
   
      

  

Design Approach

- Useful formula when G(z) has only real poles and zeros

• z – to – w Transformation

(ii) Stat-space approach in general case

Bode Plot Design Techniques

then,

(i) if

2 z 1
w

h z 1

 
  

 

1 wh / 2
z

1 wh / 2






H(z)

H(w)

G(s) G(z)

G(w)

- Identical to Tustin transform on H(w)

• w – to – z Transformation

- Need a general technique that is computer-oriented

Copyright ©2006-2012 by K. Pattipati 44

   
1

G z C zI


  

       
-1

-1 -12 2
y(w) = C wI Φ + I Φ I Φ + I w u w

h h

   
     

   



G(w)

}



General z – to – w Plane Mapping

• Follow general Tustin state-space approach for w – to – z plane H(w) → H(z).

1. Obtain equivalent discrete system in usual manner

• Given

determine G(w)

x(t) = A x(t) + Bu(t)

y(t) = C x(t)

y(w) = C x(w)

System to be controlled

- Note non-minimum phase zero at w = 2/h.

(1 + wh/2) x(w) = (1 – wh/2)Φx(w) + (1– wh/2)Γu(w)

4. Solve for y(w)

2. z – transform: zx(z) = Φ x(z) + Γu(z)
1 wh / 2

1 wh / 2




3. Let z =

x(k+1) = Φ x(k) + Γu(t)

y(k) = C x(k) }

- Use Leverier with Φ and Γ to obtain C(wI – Φ)-1Γ, then include (2/h – w) factor.

 

   

 

1

1

: ;

2

; ;
0

0 0

; 0

2

a a

a

a

a a

x
Augmented System input u

u

h
C

C C
I

I I
h

I





 
 

 

 
           

 

 
   

 

     

    

Copyright ©2006-2012 by K. Pattipati 45

   0
w j0.77

K G w H w 1 K 1.0


  

2 c 2 ω ω / β 0.14, βω 4.2   

  c m ω 0.77 where G j 180 69 194v       

Antenna Positioning Controller:

G(s) = 0.1/s(s+0.1)

• Pick K so that

• Use lead compensation to keep bandwidth up.

max• Use limit value of β = 30 (corresponds to Δ ≈ 69o).

m• Make ωc as large as possible with a ~ 55o.

1+ w/0.14

 1+ w/4.2
H(w) = 1.0

Compensated design

 1+ w/ω2

 1+ w/βω2
= K

 = KH0(w)

 G(z) = 0.048 G(w) =
 (z+0.97)

 (z–1) (z–0.905)

0.1 (1+ w/120) (1– w/2)

 w(1+ w/0.1) (h = 1.0)

v(rad/sec)

c 2ω = β ω

m

-180o

v 0.1 1.0 10.0

-270o

-90o

 G
(j

v)
H

(j
v)

 ,

d
eg

10.0

20

0

-20

-20

40

1.0 2.0

0.1

|G
(j

v)
H

(j
v)

|,
d
B

-40

-20

ω2

βω2

H(jv)

~

~

Copyright ©2006-2012 by K. Pattipati 46

     v z = 1

z 1
K = G z H z 1.0 same as continuous design

zh

 
 

 

 
2 z 1

w =
h z+1

1+w/0.14 z 0.87
H z = 1.0 10.5

1+w/4.2 z 0.35 
 
 






z 0.905
9

z 0.2





w – to – z (Backward) Transformation

- Very similar to RL design, H(z) =

• Time response

PO ~ 15%

• H(1) ≈ 1 => No reduction in low frequency gain

y

0

0.5

2 4 12 16
t(sec)

6 8 10 14

1

1.5

u
5

10

0

-5

2 4 12 16
t(sec)

6 8 10 14

-10

(a bit faster/better)

Copyright ©2006-2012 by K. Pattipati 47

   
  

   

z + 0.967 z 0.87
LG(z) G z H z 0.504

z 1 z 0.905 z + 0.35


 

 

Frequency Domain Evaluation

m

jωhz = e
| m• Examine actual LG(z) to find true ωc,

• Actual ≈ 56o, ωc ≈ 0.73 (system will tolerate a maximum loop delay τmax= /ωc=1.34 sec)

• Discrete loop gain is very similar to root locus design with ~3dB higher very low frequency gain.

• Compare with G(w)H(w), w = jv

• w – plane design approximation is OK for v ~ ω < 1/h

m

Copyright ©2006-2012 by K. Pattipati 48

Root Locus vs. w – Plane Design Comparison

Root Locus Design

- Need overlay of ζ – ωn contours on RL plot.

- Seems to require more trial and error than does Bode approach.

- Hard to see where to place poles and zeros of H(z) to properly shape RL as desired.

• Either approach, used correctly, will give a good design.

- Requires z → w mapping on G, then reverse map on H.

- RL plot more difficult to draw than Bode plot

- If h ~ small, the RL tends to crowd into region around z = 1.

- Gives no explicit knowledge of CL pole locations.

- No guarantee that a good w – plane design will yield a good z – plane design (unless v < 1/h).

- Still need to evaluate frequency plot of LG in z-domain, since w ≠ s.

- Easier to work with and to modify than is RL.

- Difficult to make engineering approximations.

Bode/ w – Plane Design

Copyright ©2006-2012 by K. Pattipati 49

   
1

2d

1 1

1

Th 1 1 z
u z K 1 e z

T 1 z h 1 γzd



 

 
    

  

 
 

 
 2

21 2

2

z 1Thz
u z K 1 + e z

TT z 1 T
h + z

N Nh+T

 
 

   
     

    
    

Digital PID Controller

then u(k) = K[UI(k) + UP(k) + UD(k)]

UP(k) = e(k) ; UD(k) = (T2d/h)[e(k) – e(k–1)] + γUD(k–1) UI(k) = (h/T1d)e(k) + UI(k–1) ;

to be determined: K, T1d, T2d, and possibly γ, (γ = T2d /Nh), T2d =

• General parametric form

• Discrete equivalent obtained from backward difference (other methods are also used),

 s → (z – 1)/hz:

γ

P-I-D all in forward loop

e(k)
u

≡

1

1d

h 1

T 1 z



1

2d

1

T 1 z

h 1 γz









1 K

UI(k)

UD(k)

UP(k)

y

r

D

P

I

K
u e

H(z)

Sum up 3 parts separately: • Implementation – “Textbook”

2

2

T Nh

T Nh

Copyright ©2006-2012 by K. Pattipati 50

PID Algorithm Implementation

- Move P to act only on y also, UP = –y(k)

- CL stability is unaffected (stability not a function of r).

This is “derivative of output form”.

Since y(k) cannot change very much

from step k–1 to k, UD will be OK.

UD(k) = – (T2d/h)[y(k) – y(k–1)] + γUD(k –1)

- Modify UD computation to use only Δy = y(k) – y(k–1),

- If r suddenly changes from time k–1 to time k, e.g., a step change, then e(k) – e(k–1) may

 be large and UD will have a “spike” at step k: This is undesirable.

• Algorithm at step k

- Popular structure in process control (keeps control signal very smooth).

y

r

P

I

K
u e

-D

e = r – y

UI = (h/T1d)e + UI

UP = e

UD = (T2d/h)[e – elast] + γUD

elast = e

u = K(UI + UP + UD)

- Only integral compensation uses error signal.

• “Set-point on I” structure

• Derivative on output

Copyright ©2006-2012 by K. Pattipati 51

Integral Windup Modifications

• Limits are imposed by the system under control, e.g., actuator constraints.

(symmetric limits are most common, B- = – B+)

• A problem that arises when u is limited, e.g.,

• The control probably saturated because e(k) was large.

- Match these limits in controller software:

B– ≤ u(k) ≤ B+

- Value of UI does not change if/when u is saturated.

if (u ≥ B+) set u = B+, flag = +1

if (u ≤ B–) set u = B–, flag = –1

else flag = 0

• Include PID structure in Cntrl routine as an option during evaluation

• Integral protection

if (flag = 0) UI = UI + (h/T1d)e

if (flag ≠ 0) UI = UI

=> Turn off/skip the integration of e(k) in UI if the last control value was at a limit

- This is not indicative of a steady-state e.

- Because u is limited the error e will not be reduced to zero as fast (slower system).

Copyright ©2006-2012 by K. Pattipati 52

   
1

1d

h 1
u z K 1 e z

T 1 z

 
   

 

• Ex. A motor with transfer function G(s) = 1/s(s+1) is to be controlled using a digital PI

 controller*

- Since long periods of + (or –) e will cause UI to build up large values. Then e reverses…

• Lack of integral protection will often result in large overshoots in system response.

* Note: The I part of the controller is not really needed here since G(s) contains a 1/s.

 But it is only an example.

(a) No limit on u

- Examine step response when |u(k)| ≤ 0.2, with and without integral windup protection.

with K = 0.4, T1d = 5 sec, h = 0.5 sec.

(c) Limited control

 with ∫-protection

(b) Limited control

 no ∫-protection

y

0

0.5

2 4 12 16

t(sec)

6 8 10 14

1

1.5

2

Example (Astrom and Wittenmark)

Lecture5_Simulink/saturation_updated_final2.mdl

Copyright ©2006-2012 by K. Pattipati 53

Unified PID for Various Approximations

• Parameters for different approximations
e = r – y

UI = UI + 1 e + 2 epast

UP = e

UD = -d [y – ypast] + γUD

epast = e

u = K(UI + UP + UD)

Parameter` Forward Backward Tustin Ramp

1 0 h/T1d h/2T1d h/2T1d

2 h/T1d 0 h/2T1d h/2T1d

γ 1-Nh/T2

=2-Nh/T2d

T2d/Nh (2T2-Nh)/(2T2+Nh)=

(3T2d-Nh)/(T2d+Nh
e-Nh/T

2

=e1-Nh/T
2d

d
N T2d/h

2N/(1+Nh/T2d) T2(1-e-Nh/T
2)/h=

2

1 2

1 1

2
2

2

1
() [1] ()

1 /

d

d

T s
u s K e s

T s T s N

T T

T Nh
T

T Nh

  







2(1 /)2

2

()(1)dNh Td

d

T N
e

Nh T






• Velocity algorithm (compute u)

e = r – y

UI = 1 e + 2 epast

UP = e-epast

UD = -d [y – 2ypast +ypastpast] + γ UD

epast = e; ypastpast = ypast; ypast = y

 u = K( UI +  UP +  UD)

Copyright ©2006-2012 by K. Pattipati 54

IMC Design Approach - 1

• IMC design approaches for stable and possibly non-minimum phase systems

• Step 1: Split as follows:

 Here b+s = Part of b(z) with zeros having positive real parts and inside unit circle

 b- = Part of b(z) with zeros having negative real parts (inside and outside unit )

 bnm+ = Part of b(z) with zeros having positive real parts and outside unit circle

• Step 2: (i) Replace part with zeros having negative real part with a DC gain (set z=1)

 (ii) Replace non-minimum phase zeros with their reciprocals

 (iii) Add filters of the form so that is proper

• Step 3:

• Example

• Step response exhibits an undershoot as one would expect from a non-minimum phase system

() () () ()
() =

() ()

s nm
k kb z b z b z b z

G z z z
a z a z

  
 

1

1
() () ; 1

1

kF z k
z



 


 



1() () ()Q z G z F z

1() ()[1 () ()]H z Q z G z Q z  

1 1
1

2 1 1

1 1

3 0.040678(1.163) 0.040678 (1 1.163) ()
() ; 0.05sec ()

5 6 (0.9048)(0.8607) (1 0.9048)(1 0.8607) ()

 0.040678; 1; () (1 1.163) (1 1.163) (s nm

s z z z b z
G s h G z z

s s z z z z a z

b b b z z replace by z z z

 


 

    

     
     

     

       

1 1

1

1.163)

() (1 0.9048)(1 0.8607) (0.9048)(0.8607) 1
, () () ()

() 0.040678(1.163) 0.0473(0.8598)

10.5708(0.9048)(0.8607)
 ; 0.5

(0.8598)(0.5)

() ()[1 (

a z z z z z
So Q z F z F z

b z z z z

z z

z z

H z Q z G z







 





    
  

   

 
 

 

  1 10.5708(0.9048)(0.8607)
) ()]

(0.07013)(1)

z z
Q z

z z

  


 

Select  based on

other criteria, e.g.,

phase margin,

settling time

Copyright ©2006-2012 by K. Pattipati 55

IMC Design Approach - 2

•

• Example 2

 073.8 @0.0778 / sec

22.4 @0.562 / sec

m

m

rad

dB rad









0 0.5 1 1.5 2 2.5
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Step Response

Time (sec)

A
m

p
lit

u
d
e

-20

0

20

40

60

80

M
a
g
n
itu

d
e
 (

d
B

)

10
-6

10
-4

10
-2

10
0

10
2

0

90

180

270

360

P
h
a
s
e
 (

d
e
g
)

Bode Diagram

Gm = 6.61 dB (at 7.79 rad/sec) , Pm = 60.4 deg (at 1.45 rad/sec)

Frequency (rad/sec)

1 1
1

1 1

1

1 0.00729(0.9109)
() ; 2sec ()

(10 1)(25 1) (0.9231)(0.8187)

0.00729 (1 0.9109) ()
, ()

(1 0.9231)(1 0.8187) ()

 0.00729; (1 0.9109) 1.9109; () 1

,

s nm

z
G s h G z

s s z z

z z b z
so G z z

z z a z

b b z replace by b z

So Q

 


 

   


   

   


 

 

    

1 1

2

2 2

1

() (1 0.9231)(1 0.8187)
() () ()

() 0.0139

71.94(0.9231)(0.8187) (1) 6.17(0.9231)(0.8187)
 ; 0.707

1 () (0.707)

6.17(0.9231)(0.8187)
() ()[1 () ()]

(0

a z z z
z F z F z

b z

z z z z

z z

z z
H z Q z G z Q z

z






 



 
 

    
  

 

 
  

 .4588)(1)z 

060.4 @1.45 / sec

6.61 @7.79 / sec

m

m

rad

dB rad









0 10 20 30 40 50 60 70
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Step Response

Time (sec)

A
m

p
lit

u
d
e

Copyright ©2006-2012 by K. Pattipati 56

Pole Placement Method: Shaping T(z) - 1

• What is feasible if you have unstable and non-minimum phase systems?

.

()() (1)
Suppose () and want () . DC gain =1 = . What is feasible for ()?

() () (1)

Let () () () (); () (z) () ()

k k r
r r r

r

bad also close to unit cgood goodbad

s nm s us

b zb z d
G z z T z K z K b z

a z d z b

b z b z b z b z a z a a z a z

 

     

  

 

1Consider a control scheme given by () () () () () (); (), (), () are polynomials in

() () single DOF controller

, ()[() () () ()] () () (). Recal

ircle

h r h

k k

h r

d z u z K p z r z q z y z d z p z q z z

p z q z

So z b z d z u z q z y z K z p z b z r z



 

 

 

  l () () () ()

() ()()
[() () () ()] () () () ()

() () () () ()

() () () () ()

() () () () () () () ()

k

k
k k r

h r k

h

k s nm
kr r

rs us k s nm

h

a z y z z b z u z

K z p z b zy z
d z a z z b z q z y z K z p z b z r z

r z d z a z z b z q z

K z p z b z b z b z b z
K z

d z a z a z a z z b z b z b z q z




 



   


      



    


 


1 1 1

1

1 1

1

()

What if we select () () (); () () (); () () ()

() () () ()

() () () () () () ()

() () () () keep "bad" zeros in the close

s s s

h

nm

r r
rus k nm

nm

r

d z

d z b z d z q z a z q z p z a z p z

K p z b z b z b z
then K

d z a z a z z b z b z q z d z

b z p z b z b z

  

 

    

 

  




  

1 1
1 1

d-loop system

() () () () () ()
1 Bezout Identity. Get () and () by equating coefficients.

() ()

us k nmd z a z a z z b z b z q z
d z q z

d z d z

    

  

1 1

()() ()() ()

() () () () () () ()

() () () () ()

us k nm

D zY z X zM z N z

d z a z a z z b z b z q z d z

X z N z Y z M z D z

     

 

Copyright ©2006-2012 by K. Pattipati 57

Solving N(z) X(z) +M(z) Y(z) = D(z)

 

()

()

1 2 1 2

1 2 0 1 2

1 2 1 2

1 2 0 1 2

1 2

1 2

()
() () () () () ()

()

() ; ()

() 1 ; ()

() 1 ..

V z

F z

k p

k p

l p

l p

N z
X z Y z D z V z F z D z

M z

N z n z n z n z X z x x z x z x z

M z m z m z m z Y z y y z y z y z

D z d z d z

     

     

 

 
   

 

        

         

   

 

1

0 1

1

0 1

0 1

0 1

0 1 1

0 1

0

..

() ... ; max(,); 2

() ... ; don't know a priori. Each is a 2-row vector.

. 0

0 .
. 1 .

0 0

0 0 0

Find su

n

n

m

m i

p

p i

m

m

p n

d z

F z F F z F z m k l F vector

V z V V z V z p V

F F F

F F F
V V V d d VF D

F F

F

p



 

 



      

   

 
 
        
 
 

 ch that rows of are independent.

 Get () from odd coefficients of

 Get () from even coefficients of

F

X z V

Y z V





0

0
; ; 1

1

i

i

i

n
F F i

m

  
    
   

 ; 0i i iV x y i 

Deconvolution Problem

Copyright ©2006-2012 by K. Pattipati 58

Pole Placement Method: Shaping T(z) - 2

• Example

 3 2

280.14
() ; poles at 31.321, 31.321, 100; 0.002 sec

100 981 98100

Want 0.5sec for 2% error, % 5% and steady state error 0.02

 50 (1) / (1) 0.9804

8 0.69 11.6 / sec

s

P P P

n n

G s h
s s s

t OS

K T K K

and rad po  


    

  

  

     

      1 2

7 7 1 1 1

1 1 1

: 0.984 0.0165 () 1 1.968 0.9685 0

3.56x10 (3.554)(0.255) 3.56x10 (1 3.554)(1 0.255)
()

(1.065)(0.9393)(0.8187) (1 1.065)(1 0.9393)(1 0.8187)

() (1 0.93s

les j d z z z

z z z z z
G z

z z z z z z

a z

 

    

  



     

     
  

     

   1 1 1

7 1 1

1 1 1 1

1 1

93)(1 0.8187); () 1; () (1 1.065)

() 3.56x10 ; () (1 3.554)(1 0.255); () 1

(,) :

(1 1.065) () (1 3.554)(1 0.255) () 1 1

un

s nm

z z a z a z z

b z b z z z b z

Bezout Aryabhatta Diophantine identity

z d z z z z q z

    

     

   

   

     



      1 2

1 2

1 1 1 1

7 1 2

1

1 1

1

1

.968 0.9685 ()

Solve for () () () 1 0.9042 0.001 ; () 0.0012

() () () 3.56x10 (1 0.9042 0.001)

() () () 0.0012(1 0.9393)(1 0.8187)

Select ()

s

h

s

z z d z

d z and q z d z z z q z

d z b z d z z z

q z a z q z z z

p z

 

 

   

  

 

     

     

    


1

5

3 1 1

1 2

() () 0.9804 (1)
1 () () () 8.577x10

() (1) (1)

() 3.371x10 (1 0.9393)(1 0.8187)
Alternately, () () () 0.0846

() (1 0.9042 0.001)

nm
s r

r nm

r

h

K b z b z z d
p z a z T z K

d z b b

q z z z
p z q z H z K

d z z z

  
 

 

 

 

       

  
      

 

Copyright ©2006-2012 by K. Pattipati 59

A Technique for Control of Systems

with Time Delay, τ=Mh + ε

u(z) = H(z){r(z) – [ym(z) + (y(z) – yp(z)]}

- Nominally y(k) – yp(k) = prediction error should be small

- Control is based primarily on r – ym

u

G(z) → z-MG(z), M = integer

Smith Predictor/Compensator

yp(k) = “predicted” value of y(k)

• Implementation:

(Will consider mods for “fractional” delay part 0 ≤ ε < h later.)

ym(z) = Gm(z)u(z) ~ M – step ahead prediction of y

yp = z-M Gm(z)u(z)

• Design H(z) using Gm(z) = “model” of G(z) (usually Gm ≡ G).

(need to know/estimate future r if it is changing). u(z) = H(z)z+M[r(z) – y(z)]
- Basic idea is to build a control that approximates

ye ~ “effective” output

r
e

ye
H(z) y

z-M
yp

“plant”

z-MG(z)

Gm(z)
ym

IMC-like structure

Copyright ©2006-2012 by K. Pattipati 60

 
z 0.87

H z 10.5
z 0.35






Smith Compensator Application

- Possible numerical problems if G(z) is unstable

• Model of system in feedback loop

m
m- Recall ~ 56o , ωc ~ 0.73 => τmax ~ 1.34 sec, so expect poor performance with no delay

 compensation as would drop to ~ 14o.

v(k–M)

Implement z-M = M – step delay line by an (M+1) – dimensional push – down stack.

• Motor-positioning example with τ = 1sec, h = 1 sec (i.e., M = 1)

y

0
0.19

15

0.38
0.57
0.76
0.95
1.15
1.34
1.53
1.72
1.91

1.5 13.5 12 10.5 9 7.5 6 4.5 3

- Initialize Gm to rest condition (≡0)

v(k–1) v(k)  

(from w-plane design)

- Initialize stack with v(k – j) = y(k) for all j at k = 0

v(k) = ym(k)

yp(k)

Step input response, τ = 1 sec

No delay compensation

Copyright ©2006-2012 by K. Pattipati 61

Results with Delay Compensation

System response with no time delay

• CL response is identical to undelayed case, with a time-shift of M steps.

ym = propagation of y through G(z), remains unchanged.

System response with τ = 1 sec and

delay compensation design

System initially at rest, r(k) = unit step.

• As M increases the need for Gm(z) ~ G(z) becomes more critical.

- If system is not initially at rest, output response would “drift” for first M steps until

 the first control begins to affect response.

y

0

0.11

15

0.23

0.34

0.45

0.68

0.80

0.91

1.02

1.14

1.25

1.5 13.5 12 10.5 9 7.5 6 4.5 3

 

  

z 0.97

z 1 z 0.905



 
• M = 1, Gm(z) = G(z) = 0.048

yp = prediction of current y(k). Obtain via model discussed in Lecture 4.

Modifications for non-integer τ = Mh + ε, ε ≠ 0

Copyright ©2006-2012 by K. Pattipati 62

 
 

    
*

m

H z
H z

1 H z G z 1 z M


 

Alternate Implementation

of Smith Compensator

• Typically, H*(z) will be a high-order compensator

u(z) = H(z) e(z) – H(z)Gm(z)(1 – z-M)u(z)

- Implementation methods are critical

>> 1 – 2 usually associated with lag, lead, and PID.

• Consolidate inner loop, between e and u

• Consolidate FB loops

Accuracy

Speed/timing for real-time

e
r H*(z) z-MG(z) y

u

e

r H(z) z-MG(z) y

Gm(z) z-M–1

u

Copyright ©2006-2012 by K. Pattipati 63

           0 1 m 1 mu k β e k β e k 1 β e k m α u k 1 α u k m                 

 
m m 1

0 1 m

m m 1

1 m

β z β z β
H z

z α z α





  


  

 
sf NN

i i1 i2

0 2
i = 1 i = 1i i1 i2

A A z + A
H z β

z + κ z + κ z + κ
   

 Implementation of High-Order

Digital Compensators

- Needs storage of last m e(i) and u(i)

- SE and SU for time k: computed at step k–1

• Direct form

SU SE

• Small changes in αi , βi coefficients (especially αm , βm) can cause large changes in

 roots = poles and zeros of H(z).

- Very poor numerical properties!

Nf First-order Factors

PF expansion (assume no repeated roots):

- Decompose H(z) into a sum of low-order subparts (e.g., as in PID) and then add up parts

• Decomposition Approach

• Errors in e(k), u(k) “hang around” for m steps

 
m 1

1 m

0 i i 0 im m 1

1 m

β z β
H z β ; β β β α

z α z α





 
   

  

Ns Second-order Factors

Copyright ©2006-2012 by K. Pattipati 64

2 1

1

e

e e

e



sf NN

i=1 i=1

R UFi USi  

Implementation Structure of H(z)

Note 1 –step delay in all first, second-order parts => can compute these at step k – 1 for use
at time k.

• Algorithm (initiate R, e1, USi1, USi2, UFi1 = 0)

Structure 0β UP

i-th 1st –order part e(k)
u(k)

1

i

1

i

A z

1 κ z





 1 1

i1 i2

1 2

i1 i2

A +A z z

1 κ z κ z

 

  

i-th 2nd –order part

UFi

USi

 
 sf

1 1NN 1
i1 i2i

0 1 1 2
i = 1 i = 1i i1 i2

A + AA z
H z β

1 + κ z 1 + κ z + κ

z z

z

 

  
   

• Include in Cntrl subroutine, OPT = 3.

obtain e(k) = e = r(k) – y(k)

U = β0e + R

output u(k) U

UFi = Aie1 – κiUFi1

UFi1 = UFi

USi = Ai1e1 + Ai2e2 – κi1USi1 – κi2USi2

USi2 = USi1

USi1 = USi

Do for each

1st-order part

Do for each

2nd-order part

Obtain next value of UFi

save it for next time

Obtain next USi,

save last two

values of USi
=>

Copyright ©2006-2012 by K. Pattipati 65

Summary of Compensator Design Methods

• Direct design methods

• Indirect design H(s) → H(z) by discrete equivalent

- Easy and straightforward

- Generally requires small h

- Extremely difficult for MIMO systems

- Does not use all available information about system behavior (e.g., y instead of x)

- Limited by human insight

=> Disadvantages

- Measures used are not 1:1 with time response (requires trial and error with CL

 simulation)

- Low-order compensator designs do not always work

- Generally easy to design H(z)

- Universally used techniques, time-tested

- Higher order dynamics in G(s) accommodated with little extra dffort

=> Advantages

- A low-order design, easily realized, is found

- Only have Nyquist restriction on h

- Root locus, w – plane, PID

