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Compensator Design via Discrete Equivalent 

 and Direct Design Methods  

1. Stability Analysis of Discrete-time Systems 

• Jury test, Stability with respect to design parameter(s), Examples 

2. H(z) Design via Discrete Equivalent to H(s) 

• Different forms for discrete integration 1/s  F(z) and different H(s) equivalents 

• Tustin equivalent and Tustin equivalent with prewarping       

3. Example of Discrete Equivalent Design 

• H(s) design to meet specs and Discrete equivalent computations 

• Evaluation of CL discrete system 

4. Root Locus Design of H(z) 

• Example of design approach, Evaluation, redesign  

5. W-Plane Design of H(z) 

• z→w and w→z mappings 

• Example of design approach, Time and frequency domain evaluation 

6. PID, IMC and Pole placement Controllers with Examples 

7. Time Delay Systems 

• Smith predictor with Example 

8. Implementation of High-Order Compensators 
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Stability of Discrete Systems 
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•   We need a technique to ascertain stability of the closed-loop system, i.e., whether roots of  

     the CL characteristic polynomial p(z) all lie within the unit circle. 

•   The technique must be simple and involve {ai} only.  

        Applicable to any polynomial in z.  

•   Continuous-time systems analysis has Routh-Hurwitz to determine whether a polynomial p(s)  

     has its roots in LHP.  

•   A way to use Routh-Hurwitz test:  

  (1)  Map unit circle into left half-plane by replacing z with some suitable function. (z → esh  

         will not work here since resulting p(s) will not be a polynomial.)  

  (2)  One possibility:  

  (3)  Substitute for z in p(z),  multiply through by (1 – wh/2)n  to obtain 

p(w) = n-th order polynomial in w.  

(4)  Apply Routh-Hurwitz test to p(w).  
Messy!   



Copyright ©2006-2012  by K. Pattipati  4 

Jury/Raible Test for p(z)=a0z
n+a1z

n-1+···+an 

 

 

       

k

k

k k

0

k 1 k k n
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a
where      r =       k = n, n 1, , 1

a

               a  = a  r a      i = 0, 1, , k 1   where initially a a






  

(n)  

(n-1)  

(0)  2n+1:      a0
(0) 

Set up Jury array - 

a0  
  an 

  a0
(n-1)  

  an-1
(n-1) 

1:  
  2:  

  3:  
  4: 

a1 

  an-1  

  a1
(n-1) 

  an-2
(n-1) 

a2  
  an-2  

  a2
(n-1)  

  

. . .  
  . . .  

  . . .  
  . . . 

an-1  
  a1  

  an-1
(n-1)  

  a0
(n-1) 

an  
  a0  

  

an  

a0 

let rn = 

an–1
(n–1)  

   a0
(n–1) 

let rn-1  = 

· 
· 
· 

In "English" -  

  

•   Each odd row = previous odd row – rk * previous even row.  
•   Each even row = preceding odd row in reverse order.  
•   First row has coefficients of p(z).  
•   Last row has 1 element.  

  

Criteria:  

  

  (1)  If a0  > 0, then all roots of p(z) lie in unit circle if and only if  a0
(k)  > 0,  k = n–1, n–2, ... , 0. 

(2)  The no. of negative a0
(k) = no. of roots of p(z) outside unit circle. 
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Applications of Jury Test 

  -  Test if first entry in each odd row  > 0.  

  -  If obtain any a0
(k) ≤ 0, stop; p(z) has root(s) | λ | ≥ 1.  

  -  Simple computer program, need 2 scratch vectors.  

Example 1 :   p(z) = z2 – z + 0.5 

1.0  
 0.5  

  
1–0.25  

=  0.75  
  

–0.5  
  

0.75–0.33  
=  0.42 

–1  
–1  

–1+0.5  
= –0.5  

0.75 

0.5  
1.0 

(2)  
  
  
(1)  
  
  
  
  
(0) 

r = 0.5 

r = –0.5/0.75  
   = –0.67 

All a0
(k)  > 0   =>  system is stable (all roots in unit  ·  ). 
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Applications of Jury Test (Cont’d) 

Example 2 :   p(z) = z2 – z + 2 

1  
2  
  

  1– 4  

=  –3  
  

  1  
  

–3–(–1/3)  
=  –8/3 

– 1  
– 1  
  

– 1+2  
= 1  
  

–3 

2  
1 

(2)  
  
  

(1)  
  
  
  
  

(0) 

r = 2 

r = – 1/3 

Example 3 :   p(z) = z3 – 0.15z2 – 0.59 

1.00  
-0.59  

  
0.65  

-0.09  
  

0.64  
-0.13  

  
0.61 

– 0.15  
0.00  

  
– 0.15  
– 0.15  

  
– 0.13  

0.64 

0.00  
– 0.15  

  
– 0.09  

0.65 

– 0.59  
1.00 

(3)  
  
  

(2)  
  
  

(1)  
  
  

(0) 

r = – 0.59  
  
  
r = – 0.14  
  
  
r = – 0.20 

All a0
(k)  > 0  =>  system is stable.  

a0
(1) <  0  ==>    system is unstable. 

=> 2 roots outside  
unit  ·  . 
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Application to SVFB Example 

  2
z 1 1

p z zI z + z 1
1 z+2

 
    

     
1 1 0

x k+1 = x k + u k
0 1 1

   
   
   

K

 
1 1 0 1 1 0 0 1 1

1 3
0 1 1 0 1 1 3 1 2

         
              

          

The equivalent discrete system  

Φ Γ 
is to be controlled using the algorithm,                           u(k) = r(k) – [  1    3  ] x(k) 

K Check if closed-loop system is stable.  

  -  Closed-loop system matrix 

  -  Closed-loop characteristic polynomial  

1  
–1  

  0  

1  
1 

–1  
1 

(2)  
  
  (1) 

r = –1 

  -  Jury array 

•   CL system is unstable, but roots are not on unit circle.  

Roots of p(z) are z1 = 0.618, z2 = –1.618, so a0
(k) = 0 does not necessarily imply roots  

on unit circle. (Note | z1 z2 | = 1   here, corresponding to roots λ and 1/λ.)  

•   If some a0
(k) = 0, can replace 0 → +ε and continue further, e.g. as in  Routh-Hurwitz test. 

STOP 
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Stability with Respect to a Parameter 

      2p z z 1/ 2 z 1 Kz / 2 z K 3 / 2 z 1/ 2          

  
   

K z
1 1 G z H z

2 z 1/ 2 z 1
  

 

       
 

 
 

   
  

ah
1

ah 1

ah=0.69

u z1 e 0.5 K Kz
G z ;  u z  = Ke z  + z u z   H z

z 0.5 e z z 1z e 1 z

Kz 2
1 G z H z 1

z 1/ 2 z 1




 


     

  

  
 

If system (or controller) has a free parameter, β, wish to determine range of values for which  
system is stable.  

  
Example 1 -  

The system  G(s) = a/(s+a), a = 1, is to be controlled using series compensation with  

algorithm u(k) = Ke(k) + u(k–1) and time step h = 0.69 sec.  For what range of K is CL  

system stable?   

3/4–(K–3)2  

  

1  
1/2  

  3/4  
(K–3)/4 

(K–3)/2  
(K–3)/2  

  (K–3)/4  
3/4 

1/2  
1 

(2)  
  
  (1)  
  
  

(0) 

r = 1/2  
    
r = (K–3)/3 

/12 

Jury criterion   

=>  3/4 > (K–3)2/12   

=>  (K–3)2 <   9  

=> –3 <   K–3 <   3   

=>  0 <   K <   6  

•   Reconcile with root locus: 

K  >   0  
K  <   0 

K = 6 
Unit circle 
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Stability with Respect to Multiple Parameters 

Can determine constraints that must be satisfied among a set of parameters.  

Example 2 -  

Determine region in the a1 – a2 plane  

for which p(z)= z2 + a1z + a2 has its  

roots in the unit circle. 

Recall stability conditions  
for p(s) = s2 + a1s + a2 to  
have roots in LHP is a1, a2  > 0. 0 a1 

a2 

Jury array: 

1  
a2  
  

1–a2
2  

a1(1–a2)  
  

1–a2
2 –  

a1  
a1  
  

a1(1–a2)  

1–a2
2

 

a2  
1 

(2)  
  
  

(1)  

(0) 

r = a2  
  
  
r =  

a1
2(1–a2)  

   1+a2 

  a1  

1+a2 

2nd-order p(z) stability region 

Jury criteria:           1 – a2
2  >  0               =>     –1  <  a2  <  1  

  
                  1 – a2

2 –                      >  0     =>  (1+a2)
2 – a1

2  >  0  

   [since 1–a2  >  0  and 1+a2  >  0]  

=>  –(1+a2)  <  a1  <  1+a2 

a1
2(1–a2)  

   1+a2 

1 

1 -1 

a2 

a1 

-1 
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A More Complicated, State –Space Example 

m

           

0 1 1 1

x t 3 2 1 x t 1 u t ;    y t 1 0 2 x t

0 2 1 0

   
   

   
   
      

The open-loop unstable continuous system defined by  

is to be controlled using a digital computer with h = 0.05.  

  
Investigate CL stability using the SVFB algorithm  

                 u(k) = r(k) – 0.5  x1(k) – 2  x2(k) – x3(k)  

                       = r(k) – [0.5   2   1] x(k)           (Kr = 1)  

 K  

(2)  Form CL system matrix, Φ = Φ – ΓK, then use ss2tf to obtain CL transfer function  

      T(z) = C(zI – Φ)-1Γ.  Need only to obtain p(z) =| zI – Φ | for closed-loop stability test.    

                     p(z) = z3 – 2.737z2 + 2.497z – 0.758  

(3)  Apply Jury test  → p(z) has all roots in  ·   ==> CL stable  

(4)  Phase margin can be evaluated by using ss2tf to obtain K(zI – Φ)-1 Γ, then using Bode  

       (option 2) to plot LG(z)            . ==>  Obtain ωc  ≈ 2.8 rad/sec,      ≈ 41o 

 
z = ejωh  

             (1)  Obtain equivalent discrete system x(k+1) = Φx(k) + Γu(k) using c2d, 

1.0035  

0.1430  
0.0071 

0.0453  

0.9105  
0.0930 

-0.0477  

    0.0429  
   0.9535 

0.0512  
0.0513  
0.0025 

Φ =                                                     ;     Γ = 



Copyright ©2006-2012  by K. Pattipati  11 

State-Space Example Plots 

m 41

1.0 0.1 10.0 ω (rad/sec) 

20 

0 

-20 

m
ag

 L
G

 (
d

B
) 

  

ωc 

a)  Loop Gain 

-360° 

-270° 

-180° 

-90° 

0° 

      LG 

| LG(ejωh)|  
          

     LG(ejωh) 

} 

b)  State time response with  x(0) = [ 1  0  0 ]' , r(t) = 0 

0 

0.25 

0.50 

0.75 

1.0 

-0.25 

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 t(sec) 

xi(t) 

x1(t) 

x2(t) 

x3(t) 
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Fundamentals of Digital Compensator Design 

"Given a G(s), or G(z),  design a series compensator H(z) so that the closed-loop system  

meets specs.”  

  
  Design Approaches  

  
•   H(z) design via discrete equivalent  

  

       -  Idea is to use continuous time design methods to construct H(s)  given G(s), then  

          obtain from H(s) a suitable discrete compensator H(z).  

       -  Scheme might be expected to be useful provided,  

       -  Alternately, an analog H(s) compensator often exists and we desire to replace the "older"  

          analog system with a digital, µ-processor controller.  

                                                         

                    Problem:  Given H(s) how do we obtain an H(z)?  

Evaluation Tools:  
       - stability tests  
       - loop gain analysis  
       - root locus  
       - simulation  · · · 

   jωhz = e
G z G jω     h small 

•   Direct design of H(z) given G(z). 
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H(z) Design via Discrete Equivalent:  

H(s) → H(z) 

 
m m 1

0 1 m

0m m 1

1 m

β z β z β
H z        β 0

z  + α z  +  + α





  
 

1

h

m m 1

0 1 m

m m 1

1 m

b s  + b s  +  + b

s  + a s  +  + a





Goals:  
•   Simplicity  

           Hold equivalence methods [viz G(s) →G(z)], and impulse transformation methods  

           [Z{L-1 {H(s)}}] are not simple.  

•   H(z) = rational transfer function  

H(z) = A(z) / B(z)       A(z), B(z) = polynomials  

           [Thus the "obvious" inverse relation s =     log(z) is NG.]  

•   If H(s) = m-th order transfer function then H(z) = m-th order transfer function.  

Typically, H(s) =                                               b0 ≠ 0  

i.e., H(s) will invariably contain a pure gain, (and state-variable model of H(s) will have   

d ≠ 0).  Require  

•   Accuracy  

over the frequency range of interest/importance.  

Idea:  Replace s with some suitable rational F(z).  

•   A given H(s) can be synthesized as an interconnection of integrators = 1/s elements (recall  

    elementary signal flow diagram)  =>  replace 1/s = continuous time integrator by  

    F(z) = transfer function of a discrete integrator. 

   jωhz = e
H z H jωDesire    
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Forms of Discrete Integration 

2 z 1

h z+1

 
 
 

-1

-1

h 1+z h z+1 1

2 2 z 1 s1 z

   
   

   

F(z) g(k) e(k) 
g(z)  

e(z) 
F(z) = 

 
 k 1 h

e t dt ;


g(k–1) = approximate value of g(k) = approximate value of  
kh

e t dt


1.  Forward Integration 

k k-1 

e(k–1) 

h 1

z 1 s

g(k) = g(k–1) + he(k–1)  

g(z) = z-1g(z) + z-1he(z)  

=>  F(z) = 

z 1

h


Replacement s →  

t 

   h 

1

h zh 1

z 1 s1 z




z 1

zh



  

k k-1 

e(k) 
2.  Backward Integration 

g(k) = g(k–1) + he(k)  

g(z) = z-1g(z) + he(z)  

=>  F(z) = 

Replacement s →  

t 
   h 

g(k) = g(k–1) + h/2 [e(k) + e(k–1)]  

  

g(z) = z-1g(z) + h/2 (1+z-1) e(z)  

  

=> F(z)=   

k k-1 

e(k-1) 

3. Trapezoidal, or Tustin Integration 

Replacement s→  

e(k) 

t 

   h 
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Relationship to True s→z Map 

z 1

zh



z 1

h



   g t  = e t

sh 2

sh 2

e 1 sh 2

1 sh 2e





   
     

g k g k 1
    g k  = g k 1 +he k 1

h

 
  

sh

1 1

1 she 

2 z 1

h z+1



Each method corresponds to a different rational approximation of esh  

    (1) Forward integration:    

       z = esh    1 + sh            gives s = 

    (2) Backward integration:  

    (3) Tustin integration:  

       z =                               gives s = 

       z =                               gives s = 

Note:    

•   The above replacements maintain transfer function order  

•   Forward integration           Euler method to predict g(k)  

[OK since H(s) is almost always m-th order/m-th order]. 

•   Even if H(s) =                     , H(z) =                        for (2) and (3)    m-th order  
 m-th order 

  r-th order  
m-th order  

•   Tustin  ~ 1st order Pade approximation to z-1  

   
 

 

mm m 1
00 1 m

m m 1 m

1 m

b z 1 +b s  + b s  +  + b
if H s       H z  = 

s  + a s  +  + a z 1 +






 


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Mapping of LHP to Unit Circle 

•   Useful as a criterion for selecting integration scheme:  

jω 

σ 

z = 1+sh 

z 

A stable H(s) can yield an  

unstable H(z)!  NOT GOOD 

(1)  Forward integration 

jω 

σ 
     1  
1– sh 

z =  

z 

Stable H(s) yields stable H(z);  

some unstable H(s) can yield  

stable H(z). 

(2)  Backward integration 

jω 

σ 
1+sh/2  
1–sh/2 

z =  

z 

Preferable map since stability  

areas are mapped 1:1. 

(3)  Tustin integration 
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Computing H(z) via Tustin Equivalent 

0 1 0 11

1 1

0 1 1 1

b b h/2 b + b h/21 a h/2
β = ,   α = ,   K = K

b  + b h/2 1 + a h/2 1 + a h/2

 

 
1 Kh/2τ z + 1

H z K  = 
1 h/2τ2τ z 1 1 + h/2τ

z + 1
1+ h/2τh z +1

   
   
   

          

1 1

1 1

0 0

b b
 < a     lead;           a     lag

b b
  

   0 1 1

1 1

b s + b z β
H s K     H z  = K

s + a z α


 



  11

1

1

a1
H s K   or  K  with a τ

τs 1 s+a

 
  

  

•   Since any H(s) can be decomposed (via PF expansion) into either a cascade or a sum of first  

    and second-order terms, equivalence can be done on a term-by-term basis.  

(1)  Simple Lag,  

(2)  General First-order factor 

h/τ

1α eK
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   
2 2

0 1 2 1 2

2 2

1 2 1 2

2 2

1 2 2

2 12 2

1 2 1 2

2 2

0 1 2 0 2

2 12

0 1 2

b s +b s+b z β z+β
H s  = K     H z  = K

s +a s+a z α z+α

1 a h/2 + a h /4 2 a h /2
α = ,            α =

1 + a h/2 + a h /4 1 + a h/2 + a h /4

b b h/2 + b h /4 2b b h /2
β = ,          β =

b  + b h/2 + b h /4 b






 

 
2

0 1 2

2

0 1 2

2

1 2

 + b h/2 + b h /4

b  + b h/2 + b h /4
                    K = K

1 + a h/2 + a h /4

Computing H(z) via Tustin Equivalent (Cont’d) 

(3)  General Second-order factor 
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General Algorithm for Tustin Transformation 

              
-1 -1

u z = C zI A B z +1  + d e z ;     A = I h/2 A I + h/2 A 

2 z 1
s .

h z 1

 
  

 

i ia , b ,

 
m m 1

0 1 m

m m 1

1 m

β z  + β z  + + β
H z K

z  + α z  + + α






 

11

2 2

i i i 0 0

m m

ba 1 0 0

a 0 1 0 b
A ;    B= ;    b b a b ;    C= 1 0 0 ;    d=b

1

a 0 0 b

  
  

       
  

     

ii i i +1

m m m i i

where    β  = b + b + da          0,  1,  2,  ,  1

             β = b + da ;    α  = a ; 1,2,..,

i m

i m

 



 
-1

C zI A B

 H z

     
2 z 1

x z  = Ax z +Be z
h z +1

 
  

 

  
-1

B = I h/2 A B h/2

 
 

 

m m 1

0 1 m

m m 1

1 m

u sb s  + b s + +b
H s  = K  = 

e ss  + a s + +a





(1)  Write a state variable model for H(s) in SOF with K = 1.  
x(t) = A x(t) + Be(t) ;   u(t) = C x(t) + de(t) 

(2)  Take  L ==>sx(s) = Ax(s) + Be(s) and replace 

(3)  Solve above for x(z) and form:   u(z) = Cx(z) + de(z) 

(4)  Use ss2tf to obtain coefficients            of denominator and numerator of 

(5)  Form final: 

 

( )
:

( )

; ;
0 0 0

;
1

a a

a

a

a a

x k
Augmented System

e k

A B A B
A

C

B
B C C d

Multiply numerator by z

 
 
 

   
   
  

 
  
 
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General Algorithm for Forward Integration 

        
-1

u z = C zI A B + d e z ;     A = I + hA

z 1
s .

h

 
  

 

i ia , b ,

 
m m 1

0 1 m

m m 1

1 m

β z  + β z  + + β
H z K

z  + α z  + + α






 

11

2 2

i i i 0 0

m m

ba 1 0 0

a 0 1 0 b
A ;    B= ;    b b a b ;    C= 1 0 0 ;    d=b

1

a 0 0 b

  
  

       
  

     

ii i

i i

where    β  = b + da ;   0,  1,  2,  ,  

             α  = a ; 1,2,..,

i m

i m





 
-1

C zI A B

 H z

     
z 1

x z  = Ax z +Be z
h

 
 
 

B =B h

 
 

 

m m 1

0 1 m

m m 1

1 m

u sb s  + b s + +b
H s  = K  = 

e ss  + a s + +a





(1)  Write a state variable model for H(s) in SOF with K = 1.  
x(t) = A x(t) + Be(t) ;   u(t) = C x(t) + de(t) 

(2)  Take  L ==>sx(s) = Ax(s) + Be(s) and replace 

(3)  Solve above for x(z) and form:   u(z) = Cx(z) + de(z) 

(4)  Use Leverier algorithm to obtain coefficients            of denominator and numerator of 

(5)  Form final: 
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General Algorithm for Backward Integration 

        
-1 -1

u z = C zI A Bz + d e z ;     A = I hA 

1 z 1
s .

h z

 
  

 

i ia , b ,

 
m m 1

0 1 m

m m 1

1 m

β z  + β z  + + β
H z K

z  + α z  + + α






 

11

2 2

i i i 0 0

m m

ba 1 0 0

a 0 1 0 b
A ;    B= ;    b b a b ;    C= 1 0 0 ;    d=b

1

a 0 0 b

  
  

       
  

     

ii i +1

m m i i

where    β  = b + da        i = 0, 1, 2, , m 1

             β =  da ;    α  = a ; 1,2,..,i m





 
-1

C zI A B

 H z

     
1 z 1

x z  = Ax z +Be z
h z

 
 
 

 
-1

B = I hA B h

 
 

 

m m 1

0 1 m

m m 1

1 m

u sb s  + b s + +b
H s  = K  = 

e ss  + a s + +a





(1)  Write a state variable model for H(s) in SOF with K = 1.  
x(t) = A x(t) + Be(t) ;   u(t) = C x(t) + de(t) 

(2)  Take  L ==>sx(s) = Ax(s) + Be(s) and replace 

(3)  Solve above for x(z) and form:   u(z) = Cx(z) + de(z) 

(4)  Use Leverier algorithm to obtain coefficients            of denominator and numerator of 

(5)  Form final: 
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Bode Plot Comparisons 

jωhz 1 2 1
Include option 3 in Bode plot program x = ,  and option 4, x =  where z = e

zh h 1

z

z

   
  

  

     jωh
jωh

jωh

2 e 1
z = e s

h e 1

Usually H z H s H jω  for Tustin equivalence. 
    

 

jωhz =e

Example 1: 
2s2 + 3s + 4  
 s2 + 2s + 6 

1.6z2 – 1.867z + 0.8  
   z2 –0.667z + 0.467 

  Tustin 
H(s) = H(z) = 

h = 0.5 

1.0 0.1 10.0 ω (rad/sec) 

20 

0 

-20 

| H
(j

ω
) 

| (
d

B
) 

90 

0 

H
(j

ω
) 

(d
eg

) 

Continuous H(jω)  
Tustin equivalent H(z)  
Backward difference 

-90 
1.0 0.1 10.0 ω (rad/sec) 

Tustin equivalence is usually superior to backward difference equivalent  
when comparing H(z)         to H(jω).  
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Tustin Equivalence with Frequency Prewarping 

ωh ωh
tan a ;    a >1

2 2

 
 

 

  Tustin with prewarp (include as option 5 in Bode plot)

   

 

jωhz =e s = jω

jωh

jωh

jωh/2 jωh/2

jωh/2 jωh/2

Tustin    H z H s

2 e 1
  if and only if    jω

h e 1

e e ωh ωh
or  tan

2 2j e +e







 
 

 

  
  

 

2 z 1
s

ah z 1

 
  

 

 

 
1

1

ω h / 22 z 1
s

h tan ω h / 2 z 1

 
  

 

 

 
1

1

tan ω h/2
a = 

ω h/2

 like a "modified"  h ah

•   Is it possible to improve the match between Tustin H(z) at z = ejωh and original H(jω)? 

•   At which frequencies, ω, does equality hold? 

- For 0 ≤ ω < π/h equality holds only at ω = 0. 

•   Can obtain equality at one other ω ≠ 0 if we have 

This corresponds to replacement 

•   For equality at ω=ω1, usually some important frequency,  

y ωh
y = tan

2

 
 
 

0

ωh

2π

2

ωh
y = a ,   a >1

2

 
 
 

ωh
y =  

2
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Example 2 – Tustin Equivalence  

               with Prewarping 

(corresponds approximately to where    H(jω) is max).  

a =              = 1.093 ; 
1.563z2 – 1.706z + 0.742  

     z2 – 0.5538z + 0.452 
H(z) = 

2s2 + 3s + 4  
     s2 + 2s + 6 

H(s) =                       ;  h = 0.5 

tan 0.5  
0.5 

jωhz =e
Require  H(z)        = H(s)        at ω = 2  

s =j

1.0 0.1 10.0 ω 

20 

0 

-20 

| H
(j

ω
) 

| (
d

B
) 

90 

0 

-90 

H
(j

ω
) 

(d
eg

) 

Continuous H(jω)  

Tustin equivalent  
Tustin with prewarp,    ω1 = 2.0 

1.0 0.1 10.0 ω 2.0 

  (rad/sec) 

(rad/sec) 

•   Gives better match in region ω ≈  [1.2, 3]. 
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Example 3 – Tustin Equivalence  

               with Prewarping 

e.g., ω1 = 4,    a =              = 1.558 

•   A poor choice of ω1 can result in substantial H(jω) vs. H(ejωh) mismatch for ω ≠ ω1. 

tan 0.5  
        0.5 

2s2 + 3s + 4  
     s2 + 2s + 6 

H(s) =                     ;    h = 0.5 

1.0 0.1 10.0 ω  (rad/sec) 

20 

0 

-20 

90 

0 

Continuous H(jω)  
Tustin with prewarp,    ω1 = 4.0 

-90 
1.0 0.1 10.0 ω  (rad/sec) 

| H
(j

ω
) 

| (
d

B
) 

H
(j

ω
) 

(d
eg

) 

=>  To avoid problems keep ω1 ≤ 1/h < π/h and examine Bode plot   
       comparisons of H(ejωh) vs. H(jω). 
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Other Techniques for  

H(s)→H(z) Equivalence 

s 0

 
 

 
 

 

 

p m

i i
i = 1 i = 1

m m

i i
i = 1 i = 1

s δ z δ

H s  = K           H z  = K

s λ z λ

Π Π

Π Π

 



 

 
 

2

2

h z 4z 11
      ( ) ( 2) [ ( ) 4 ( 1) ( 2)]

s 33 z 1

h
g k g k e k e k e k

 
        



where  
    1.  If H(s) has a  pole  at  s = λi, then H(z) has a  pole  at z = λi = eλih     .  

  3.  Pick K such that H(s)     =  H(z)        .  (use s =            if H(0) = 0)  

•   Pole-zero mapping 

     2π  

1000h 

  2.  If H(s) has a zero at s = δi, then H(z) has a zero at z = δi = eδih     .  

z 1

•   Zero-order hold  

Write state model (SOF) for H(s), then  H(z) = C(zI – Φ)-1Γ + d  

(Has "effective" h/2 sec delay due to hold equivalence)  

•   Higher-order polynomial approximations to 1/s  

  Tustin ~ 1st order polynomial through e(k–1), e(k)  

  Simpson ~ 2nd order polynomial through e(k–2), e(k–1), e(k) 

Gives a better equivalence in H(ejωh) vs. H(jω) but order of H(z) is 2m. 
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Summary of Discrete Equivalence Methods 

   2 z 1
s = 

h z +1

H s H z 
 
 



2 z 1

h z 1

 
 

 

G(s) G(z) 

H(s) H(z) 

Hold equivalent  
only Continuous  

design 

"Exact" equivalent  
 discrete system 

Any reasonable  
approximation to H(s) 

Discrete compensator 

•   Tustin equivalence, s→              , gives a good approximation with a minimum of effort. 

This is the most commonly used scheme. 

•   Consider use of prewarping if there is a frequency ω1, or frequency region about ω1, where  

    it is important that H(ejωh) ≈ H(jω); e.g., in vicinity of ωmax  for lead network, or around  

    crossover frequency ωc.  

•   Pole-zero mapping is frequently used (very similar in results to Tustin), but does not permit  

    frequency prewarping.  

•   H(s) → H(z) equivalent transformations are very frequently used in digital filtering and  

    Digital filter design.  
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Example of Discrete Equivalent Design 

•   Radar positioning system (Franklin and Powell, 1980) 

•   Closed-loop requirements 

r 
u 

H(s) G(s) 
e + 

- 

Command  
input 

y 

     0.1  
s(s + 0.1) 

G(s) = 

Desire ~ 15% overshoot to a step command input ( => ζ ~ 0.5 ) and  

mts(1%)  ~ 10 sec ( => ζωn~ 0.5) with a phase margin        ≥ 50o.  

y = Antenna position (deg) u 
v 1  

 s 
   1  
τs+1 

Drive motor,  G(s) =              ;      τ = 10 sec 
     1/ τ  

s(s + 1/τ) 

voltage 
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m 51 

Bode plot of G(s)  

  Bode plot of  
compensated   
G(s)H(s)  

  
Closed-loop  

ωc ≈ 0.8 rad/sec  

  

G(s)H(s) = 
   1  

s(s + 1) 

0.1 

1.0 

10.0 

20dB 

0dB 

-20dB 

-20 

ω 

-180o 

ω 

ωc 

0.1 1.0 10.0 

-135o 

-90o 

1 2ω ω β ,  etc.

•   Not a good CL design - not a large enough region of –20dB slope around  crossover,  

    asymptotic   
    approximation 

•   "Solution", H(s) = lead  NW =                (ω2 = 0.1, β = 10, K = 1) 
10s+1  
  s+1 

Example of Discrete Equivalent Design (Cont’d) 
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Time Domain Response  

of Continuous Design 

•   Root Locus 

σ 

jω 

–0.1 

(a)  Root locus of uncompensated system  

1  + KG(s) = 1 + 
0.1K  

s(s+0.1) 

(b)  Root locus of compensated system  

K  
s(s+1) 

   1 +   KG(s)H(s) = 1 + 

σ 

jω 

-1.0 

K = 1 ζ =0.5 

•   CL Step response 

0 

0.5 

1.0 

1.5 

2 4 6 8 10 12 14 16 t(sec) 

y 
P.O. ~ 16% 
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Discrete Equivalent Computations 

         

 max

0.1 0 0.1
x t x t u t  ;   0 1 x t

1.0 0 0

A 1.01/ 2 0.7 ;  λ A 0.1

y
   

     
   

 

z 1
s 2

z 1

 
  

 

 

 

1

1

u zz 0.905 1 0.905z
7 7

z 0.333 e z1 0.333z





   
   

    

•   Select time step h = 1.0 sec.  

Note:  State model of system with x1 = v,  x2 = y: 

0.5→ 1.0  

|| A || 
so h = 1.0 is compatible with criterion h <                . 

•   Zero-order hold equivalent, G(z)  
        z + 0.967  

  (z–1)(z–0.905) 
G(z) = 0.048 

•   Tustin equivalent  

                   H(z) = H(s)             = 

r(k) 
u(k) 

H(z) G(z) 
e(k) 

- 
y(k) 

- Algorithm  

u(k) = 7e(k) – 6.335e(k–1) + 0.333u(k–1) 

Examine CL step response, LGain(z), etc., for discrete system. 

+ 
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Evaluation of Digital Control Performance 

m

•   Step response, r(t) = 1. 

% overshoot is ~ 50%!  (ymax ≈ 1.5)  This corresponds to ζ ~ 0.22;  continuous design had ζ ~ 0.5.  

0 

0.5 

1.0 

1.5 

2 4 6 8 10 12 14 16 t(sec) 

y = Response of y(t) at sample points kh 

•   What happened ?  

  -  Clearly, there has been a decrease in     .  

  -  Problem is that G(ejωh) ≠ G(jω) in crossover region.  

-  H(ejωh) ≈ H(jω), at least in ωc crossover region.  

•   Heuristic analysis  

  -  to a first (crude) approximation G(ejωh)  ≈ e–jωh/2G(jω), i.e., sampling introduces  

     a delay of h/2 sec.   

  -  at ωc get a decrease in     of 57.3ωch/2 deg.  => 23o loss of phase margin here!  

  -      of discrete system ~ 51o – 23o = 28o corresponds to ζ ~ 0.25 (for a 2nd order  

     continuous system). 
m

m
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Continuous vs. Discrete System Loop Gain 

-  Shows aliasing properties of discrete LG for ω > π/h = 3.14  

  -  Repetition for ω > 2π/h;  LG(z) has poles at ω = 2Nπ/h (z = 1) 

1  
s(s+1) 

Continuous G(jω)H(jω) 

1.0 0.1 10 ω (rad/sec) 

0 

-20 

-40 

| L
G

 | 
(d

B
) 

-90 

0 

-270 

L
G

 (
d

eg
) 

  

-180 

20 

28o { 

1.0 0.1 ω (rad/sec) 

LG(s) = 

0.336z + 0.325  
z2 – 1.33z + 0.33 

LG(z) = 

Discrete G(z)H(z) 

ωc≈0.8 

10 
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Methods to Improve Discrete CL Performance 

•   Pick the time step, h, so as not to reduce the phase margin much:  

m = 57.3 (ωch/2) deg <  5 – 10o  

Choosing h in this manner will generally be smaller than when you select h   0.2/|| A ||,  

especially for a lead NW (but not necessarily a lag). But note that very small h may cause  

CPU timing and other problems.  

•   Use Tustin with prewarp  

Not particularly useful here, but could be used to assure H(z) gives little or no magnitude  
and/or phase distortion in the crossover region.  

•   Redesign H(s) to give additional positive phase  

  -  Precompensate for eventual phase decrease in G(z).  

  -  For given h = 1.0, need a continuous system phase margin of ~ 70o! : an unreasonable  

     H(s) design.  

m  -  Good approach if       <  15o.  

•   Design H(z) directly in the z-plane  

  -  G(z) is fundamentally different than G(s).  

  -  Avoids small time step constraints needed to make Tustin equivalent H(z) perform  

     satisfactorily   

  -  Less guesswork to modify design.  

  -  May be possible to use H(z) as a starting point.  

=>  Use Tustin if ωch is small, otherwise consider direct design of H(z). 
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Direct Design Compensation Methods 

 
   

   

 

 

G z H z y z
T z  =  = 

r z1 + G z H z

R(k) 
u(k) 

H(z) G(z) 
e(k) + 

– 

y(k) 

•   These schemes work directly with G(z) to design H(z) and so are not limited by the  

     requirement that h ~ small. 

•   Closed-loop transfer function 

(iii) Fixed-form parametric design 

       Assumes a structural form for H(z), e.g., PID, and adjusts free parameters. 

(i)   Root locus design methods 

       Compensator design in z-plane using standard root locus design procedures to move  

       CL poles. 

(iv) Miscellaneous approaches 

(ii)  w-plane design methods 

       This is the equivalent to classical frequency (ω) domain design procedures where w is  

       a rational approximation to (1/h)ln(z). 

(2)   Poles of T(z) are the roots of 1+G(z)H(z). 

(1)   Zeros of T(z) are the zeros of G(z)H(z) = zeros of G(z) plus those added by H(z). 
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   1

0

1

z δ
H z K KH z

z λ


 



 
    

    
 1 2 m

0

1 2 m

z δ z δ z δ
H z K  = KH z

z λ z λ z λ

  


  

   
des

0 z = z

1
K

G z H z




Root Locus Design of H(z) 

-   if λ1 < δ1  =>  lead compensator 

•   Generally a first or second order H(z) suffices, e.g., 

-   Do plot on z-plane with ζ, ωn overlay. 

•   Pick poles and zeros of H(z) so that roots locus of 1+KG(z)H0(z) with respect to gain K  

    passes through the region in z-plane where damping, ζ, and natural frequency, ωn, are suitable.  

-   Any added zeros δi must have an associated pole (no free zeros). 

-   Pick δi, λi, real, generally with | λi |  ≤ 1. 

•   Then pick K so that (dominant) closed-loop poles are at some desired location on the root 

     locus and specs are met.  

=>   trial and error design 

•   Adjust λi, δi (and K) until system meets specs. 

•   Next evaluate time response, loop gain KG(z)H0(z) at z = ejωh, etc. 

-   if λ1 > δ1  =>  lag compensator 

Remember  

s = 0  z=1 
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Some Helpful Hints for RL Design 

•   If zero ss error to a constant input is required, G(z)H(z) must have a pole at z = 1. 

•   Try not to have CL poles on  –1 < z < 0. If there is a pole at z = –a then y(k) or u(k) has a 

     term of the form (– a)k → 1, –a, +a2, – a3,  ... point-to-point oscillation. 

•   Recall – Root locus bends towards zeros, away from poles. 

•   “Nice” region in z-plane, especially for dominant pair. 

-   If can’t avoid then try to keep |a| small. 

Added zero Added pole

This response has

no continuous counterpart

(  aliasing phenomenon).

ζ 0.5
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n

s n n1%

ζω h

To have t 5 / ζω 10      need ζω   0.5 for dominant CL poles 

  need z e 0.6,   with =0.5 to PO  15%

  

   

Antenna Positioning Control 

Not too bad -- 

m 50 Specs:   PO to step input  ≈  15%,  ts|1% ≈ 10sec,  

•   First design trial;  H(z) = 

-   Need a zero on [0, 1] to bend RL inward more. 

•   Uncompensated root locus (pole already at z = 1 via G) 

 
 

 
  

0.1 z 0.97
G s                    G z 0.048

s s+0.1 z 1 z 0.905


  

 

h = 1 

-   Examine CL response via simulation. 

Not very good! 
 H z K

-   Place associated pole on [–1, 0], away from  

    added zero. 

    z – 0.5  
z + 0.6 

K 

u(k) = 20e(k) – 10e(k–1) – 0.6u(k–1)  

-   Also get a CL pole at z = –0.2  

    (will this give a problem?) 

-   With K≈20 obtain a dominant 

     CL pair with ζ ~ 0.5. 
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Time Response 

•   Need to reduce gain, move zero at 0.5 closer to pole at z = 0.905. 

•   Requires movement of pole at –0.6 closer to z = 0. 

    z – 0.5  
z + 0.6 H(z) = 20 

0 

0.5 

2 4 12 16 t(sec) 6 8 10 14 

1 

1.5 

5.0 

10 

15 

0 

-5 

2 

4 12 t(sec) 6 8 10 14 

20 

-15 

-20 

-10 

16 

y 

u 

PO    75%

indicates y(kh) sample

c mω 1.1,    26.4

C.L poles at -0.22,  0.28 j.51

 


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     1

vz 1

1
since   1 z G z H z K 0.71.

h




  

 
z 0.905

H z K
z 0.2






  
c m

0.432z 0.418
    ω   0.71 rad/sec,   56

z 1 z 0.2





 

Root Locus Re-Design  

(After much trial and error) 

•   Good design, but Kv has gone from 1.0 (continuous design) to 0.71,  

•   Use zero to cancel pole at z = 0.905. Place pole so that root locus goes through nice region 

     (|z|  ≤ 0.6 ,  ζ ≈ 0.5). 

K ~ 9 gives CL poles at 0.18 ± j0.44  => ζ ≈ 0.54. 

•   Bode plot of LG(z) = 

y 

0 

0.5 

2 4 12 16 
t(sec) 

6 8 10 14 

1 

1.5 

u 
5 

10 

0 

-5 
2 4 12 16 

t(sec) 
6 8 10 14 

-10 

1 
x x 

–1 
x 
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An Example of a  

Poor Design Choice 
Reduce PO further we can move the zero of H(z) close to the pole at z = 0.905 and move  

the pole of H(z) further out towards z = –1. 

1 
x x x 

–1 

•   Intersample “ripples” in y(t) and oscillatory u(k) are indicative of CL poles on negative  

     real axis.  

 
z 0.8

H z K
z 0.8






m
with K = 9 obtain a highly damped system with CL poles: 

z = 0.7 ± j0.1 and z = –0.75 (ωc=0.5 rad/sec ,    = 62o) 

y 

0 

0.5 

2 4 12 16 
t(sec) 

6 8 10 14 

1 

1.5 

u 
5 

10 

0 

-5 

2 4 12 16 
t(sec) 

6 8 10 14 

-10 

Indicates y(kh) samples 
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 
n n 1

0 1 n

n n 1

1 n

c w +c w c
G w

w d w d





 


  

1 wh / 2
z

1 wh / 2








2 h
tan   ω    when ωh << 1

h 2

 
 

 

  jωhz ew j
G(w) G z    if ωh << 1

v 


n n 1

0 1 n

n n 1

1 n

b z  + b z b

z a z a





 

  

2 z 1
w μ j

h z 1
v

 
   

 

w – Plane Design 

•   Attempt to use Bode design techniques to obtain H(z) starting with G(z). 

•   Define “w – plane” with w ~ s 

•   Rational mapping 

-  Map from z → s plane not rational 

•   Cannot go into s-plane to design H(s) and then get H(z). 

-  G(z) =  

-  On unit circle, v = 

-  Need a rational approximation to z = esh 

-  G(w) will always be n-th order/n-th order 

•   Can include as an additional option in Bode plot subroutine 

-  To first approximation (ω << π/h) 

-  Unit disk |z|  ≤ 1 mapped into LHP Re(w) ≤ 0 

  sh / 2

s jw j
G(w)  G s e

v 




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 
 

   

m

i
i 1

n k
k

j
j 1

K z δ
G z

z 1 z λ







 


  

 

 
     

 
     

n-m
m m

i
i = 1 i = 1

i i

n k n k
k k

j
j = 1 j = 1

j j

w w
K Π 1+δ 1 Π 1 + 

2/h 2/h 1+δ / 1 δ
G w  = 

w
Π 1+λ h w Π 1 + 

2/h 1+λ / 1 λ

 

  
           

 
   
      

  

Design Approach 

-  Useful formula when G(z) has only real poles and zeros 

•   z – to – w   Transformation 

(ii)  Stat-space approach in general case 

Bode Plot Design Techniques 

then, 

(i)  if  

2 z 1
w

h z 1

 
  

 

1 wh / 2
z

1 wh / 2






H(z) 

H(w) 

G(s) G(z) 

G(w) 

-  Identical to Tustin transform on H(w) 

•   w – to – z  Transformation 

-  Need a general technique that is computer-oriented 
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   
1

G z C zI


  

       
-1

-1 -12 2
y(w) = C wI Φ + I Φ I Φ + I w u w

h h

   
     

   



G(w)

}



General z – to – w Plane Mapping 

•   Follow general Tustin state-space approach for w – to – z plane H(w) → H(z). 

1.  Obtain equivalent discrete system in usual manner 

•   Given  

determine G(w) 

x(t) = A x(t) + Bu(t) 

y(t) = C x(t) 

y(w) = C x(w) 

System to be controlled 

-  Note non-minimum phase zero at w = 2/h. 

(1 + wh/2) x(w) = (1 – wh/2)Φx(w) + (1– wh/2)Γu(w) 

4.  Solve for y(w) 

2.  z – transform:  zx(z) = Φ x(z) + Γu(z) 
1 wh / 2

1 wh / 2




3.  Let z =  

x(k+1) = Φ x(k) + Γu(t) 

y(k) = C x(k) }

-  Use Leverier with  Φ and Γ  to obtain C(wI – Φ)-1Γ, then include (2/h – w) factor. 

 

   

 

1

1

: ;

2

; ;
0

0 0

; 0

2

a a

a

a

a a

x
Augmented System input u

u

h
C

C C
I

I I
h

I





 
 

 

 
           

 

 
   

 

     

    
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   0
w j0.77

K G w H w 1    K 1.0


  

2 c 2  ω ω / β 0.14,   βω 4.2   

  c m  ω 0.77 where G j 180 69 194v       

Antenna Positioning Controller:  

G(s) = 0.1/s(s+0.1) 

•   Pick K so that 

•   Use lead compensation to keep bandwidth up. 

max•   Use limit value of β = 30 (corresponds to Δ      ≈  69o). 

m•   Make ωc as large as possible with a     ~ 55o. 

1+ w/0.14 

    1+ w/4.2 
H(w) = 1.0 

Compensated design 

   1+ w/ω2 

 1+ w/βω2 
=  K 

  

 =  KH0(w) 

  G(z) = 0.048                                         G(w) = 
      (z+0.97) 

 (z–1) (z–0.905) 

0.1 (1+ w/120) (1– w/2) 

      w(1+ w/0.1) ( h = 1.0) 

v(rad/sec) 

c 2ω = β ω

m

-180o 

v 0.1 1.0 10.0 

-270o 

-90o 

 G
(j

v)
H

(j
v)

 ,
  

d
eg
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     v z = 1

z 1
K  = G z H z 1.0   same as continuous design

zh

 
 

 

 
2 z 1

w = 
h z+1

1+w/0.14 z 0.87
H z  = 1.0 10.5

1+w/4.2 z 0.35 
 
 






z 0.905
9

z 0.2





w – to – z (Backward) Transformation 

-  Very similar to RL design, H(z) =  

•   Time response 

PO  ~ 15% 

•   H(1) ≈ 1  =>  No reduction in low frequency gain 

y 

0 

0.5 

2 4 12 16 
t(sec) 

6 8 10 14 

1 

1.5 

u 
5 

10 

0 

-5 

2 4 12 16 
t(sec) 

6 8 10 14 

-10 

(a bit faster/better) 
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   
  

   

z + 0.967 z 0.87
LG(z) G z H z 0.504

z 1 z 0.905 z + 0.35


 

 

Frequency Domain Evaluation 

m

jωhz = e
| m•   Examine actual LG(z)          to find true ωc,  

•   Actual       ≈ 56o,  ωc ≈ 0.73 (system will tolerate a maximum loop delay τmax=     /ωc=1.34 sec) 

•   Discrete loop gain is very similar to root locus design with ~3dB higher very low frequency gain. 

•   Compare with G(w)H(w),  w = jv 

•   w – plane design approximation is OK for v ~ ω < 1/h 

m



Copyright ©2006-2012  by K. Pattipati  48 

Root Locus vs. w – Plane Design Comparison 

Root Locus Design 

-  Need overlay of ζ – ωn contours on RL plot. 

-  Seems to require more trial and error than does Bode approach. 

-  Hard to see where to place poles and zeros of H(z) to properly shape RL as desired. 

•   Either approach, used correctly, will give a good design. 

-  Requires z → w mapping on G, then reverse map on H. 

-  RL plot more difficult to draw than Bode plot 

-  If h ~ small, the RL tends to crowd into region around z = 1. 

-  Gives no explicit knowledge of CL pole locations. 

-  No guarantee that a good w – plane design will yield a good z – plane design (unless v < 1/h). 

-  Still need to evaluate frequency plot of LG in z-domain, since w ≠ s. 

-  Easier to work with and to modify than is RL. 

-  Difficult to make engineering approximations. 

Bode/ w – Plane  Design 
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1

Th 1 1 z
u z K 1    e z

T 1 z h 1 γzd


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 
    

  

 
 

 
 2

21 2

2

z 1Thz
u z K 1  + e z

TT z 1 T
h + z

N Nh+T

 
 

   
     

    
    

Digital PID Controller 

then u(k) = K[UI(k) + UP(k) + UD(k)] 

UP(k) = e(k) ; UD(k) = (T2d/h)[e(k) – e(k–1)] + γUD(k–1) UI(k) = (h/T1d)e(k) + UI(k–1) ; 

to be determined:  K, T1d,  T2d,  and possibly γ, (γ = T2d /Nh), T2d =  

•   General parametric form 

•   Discrete equivalent obtained from backward difference (other methods are also used), 

     s → (z – 1)/hz: 

γ 

P-I-D all in forward loop 

e(k) 
u 

≡ 

1

1d

h 1

T 1 z



1

2d

1

T 1 z

h 1 γz









1 K 

UI(k) 

UD(k) 

UP(k) 

y 

r 

D 

P 

I 

K 
u e 

H(z) 

Sum up 3 parts separately: •   Implementation – “Textbook” 

2

2

T Nh

T Nh
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PID Algorithm Implementation 

-  Move P to act only on y also, UP = –y(k) 

-  CL stability is unaffected (stability not a function of r). 

This is “derivative of output form”. 

Since y(k) cannot change very much 

from step k–1 to k, UD will be OK. 

UD(k) = – (T2d/h)[y(k) – y(k–1)] + γUD(k –1) 

-  Modify UD computation to use only Δy = y(k) – y(k–1), 

-  If r suddenly changes from time k–1 to time k, e.g., a step change, then e(k) – e(k–1) may 

    be large and UD will have a “spike” at step k: This is undesirable. 

•   Algorithm at step k 

-  Popular structure in process control (keeps control signal very smooth). 

y 

r 

P 

I 

K 
u e 

-D 

e = r – y 

UI = (h/T1d)e + UI 

UP = e 

UD = (T2d/h)[e – elast] + γUD 

elast = e 

u = K(UI + UP + UD) 

-  Only integral compensation uses error signal. 

•   “Set-point on I” structure 

•   Derivative on output  
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Integral Windup Modifications 

•   Limits are imposed by the system under control, e.g., actuator constraints. 

(symmetric limits are most common,  B- =  – B+) 

•   A problem that arises when u is limited, e.g., 

•   The control probably saturated because e(k) was large. 

-  Match these limits in controller software: 

B–  ≤  u(k)  ≤  B+ 

-  Value of UI does not change if/when u is saturated. 

if (u ≥ B+) set u = B+,  flag = +1 

if (u ≤ B–) set u = B–,  flag = –1 

else  flag = 0 

•   Include PID structure in Cntrl routine as an option during evaluation 

•   Integral protection 

if (flag = 0) UI = UI + (h/T1d)e 

if (flag ≠ 0) UI = UI  

=>  Turn off/skip the integration of e(k) in UI if the last control value was at a limit 

-  This is not indicative of a steady-state e. 

-  Because u is limited the error e will not be reduced to zero as fast (slower system). 
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   
1

1d

h 1
u z K 1 e z

T 1 z

 
   

 

•   Ex.  A motor with transfer function G(s) = 1/s(s+1) is to be controlled using a digital PI 

            controller* 

-  Since long periods of + (or –) e will cause UI to build up large values. Then e reverses… 

•   Lack of integral protection will often result in large overshoots in system response. 

* Note: The I part of the controller is not really needed here since G(s) contains a 1/s. 

              But it is only an example. 

(a)  No limit on u 

-  Examine step response when |u(k)|  ≤  0.2, with and without integral windup protection. 

with K = 0.4,  T1d = 5 sec,  h = 0.5 sec. 

(c)  Limited control  

       with ∫-protection 

(b)  Limited control  

       no ∫-protection 

y 
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0.5 

2 4 12 16 

t(sec) 

6 8 10 14 

1 
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2 

Example (Astrom and Wittenmark) 

Lecture5_Simulink/saturation_updated_final2.mdl
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Unified PID for Various Approximations    

•   Parameters for different approximations 
e = r – y 

UI = UI + 1 e + 2 epast 

UP = e 

UD = -d [y – ypast] + γUD 

epast = e 

u = K(UI + UP + UD) 

Parameter` Forward Backward Tustin Ramp 

1 0 h/T1d h/2T1d h/2T1d 

2 h/T1d 0 h/2T1d h/2T1d 

γ 1-Nh/T2 

=2-Nh/T2d 

T2d/Nh (2T2-Nh)/(2T2+Nh)= 

(3T2d-Nh)/(T2d+Nh 
e-Nh/T

2 

=e1-Nh/T
2d 

d 
N T2d/h 

 

2N/(1+Nh/T2d) T2(1-e-Nh/T
2)/h= 

 

2

1 2

1 1

2
2

2

1
( ) [1 ] ( )

1 /

d

d

T s
u s K e s

T s T s N

T T

T Nh
T

T Nh

  







2(1 / )2

2

( )(1 )dNh Td

d

T N
e

Nh T






•   Velocity algorithm (compute u) 

e = r – y 

UI = 1 e + 2 epast 

UP = e-epast 

UD = -d [y – 2ypast +ypastpast] + γ UD 

epast = e; ypastpast = ypast; ypast = y 

 u = K( UI +  UP +  UD) 
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IMC Design Approach - 1 

•   IMC design approaches for stable and possibly non-minimum phase systems 

• Step 1: Split                                                         as follows: 

   Here b+s = Part of b(z) with zeros having positive real parts and inside unit circle 

            b-   = Part of b(z) with zeros having negative real parts ( inside and outside unit ) 

           bnm+  = Part of b(z) with zeros having positive real parts and outside unit circle 

• Step 2: (i)  Replace part with zeros having negative real part with a DC gain (set z=1) 

               (ii) Replace non-minimum phase zeros with their reciprocals 

               (iii) Add filters of the form                              so that                          is proper 

• Step 3: 

•    Example 

 

 

 

 

 

 

• Step response exhibits an undershoot as one would expect from a non-minimum phase system  

( ) ( ) ( ) ( )
( )  =

( ) ( )

s nm
k kb z b z b z b z

G z z z
a z a z

  
 

1

1
( ) ( ) ; 1

1

kF z k
z



 


 



1( ) ( ) ( )Q z G z F z

1( ) ( )[1 ( ) ( )]H z Q z G z Q z  

1 1
1

2 1 1

1 1

3 0.040678( 1.163) 0.040678 (1 1.163 ) ( )
( ) ; 0.05sec ( )

5 6 ( 0.9048)( 0.8607) (1 0.9048 )(1 0.8607 ) ( )

 0.040678; 1; ( ) (1 1.163 ) (1 1.163 ) (s nm

s z z z b z
G s h G z z

s s z z z z a z

b b b z z replace by z z z

 


 

    

     
     

     

       

1 1

1

1.163)

( ) (1 0.9048 )(1 0.8607 ) ( 0.9048)( 0.8607) 1
, ( ) ( ) ( )

( ) 0.040678( 1.163) 0.0473( 0.8598)

10.5708( 0.9048)( 0.8607)
            ; 0.5

( 0.8598)( 0.5)

( ) ( )[1 (

a z z z z z
So Q z F z F z

b z z z z

z z

z z

H z Q z G z







 





    
  

   

 
 

 

  1 10.5708( 0.9048)( 0.8607)
) ( )]

( 0.07013)( 1)

z z
Q z

z z

  


 

Select  based on 

other criteria, e.g., 

phase margin,  

settling time  
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IMC Design Approach - 2 

•  

 

 

 

 

 

 

 

•  Example 2 
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Bode Diagram

Gm = 6.61 dB (at 7.79 rad/sec) ,  Pm = 60.4 deg (at 1.45 rad/sec)

Frequency  (rad/sec)

1 1
1

1 1

1

1 0.00729( 0.9109)
( ) ; 2sec ( )

(10 1)(25 1) ( 0.9231)( 0.8187)

0.00729 (1 0.9109 ) ( )
, ( )

(1 0.9231 )(1 0.8187 ) ( )

 0.00729; (1 0.9109 ) 1.9109; ( ) 1

,

s nm

z
G s h G z

s s z z

z z b z
so G z z

z z a z

b b z replace by b z

So Q

 


 

   


   

   


 

 

    

1 1

2

2 2

1

( ) (1 0.9231 )(1 0.8187 )
( ) ( ) ( )

( ) 0.0139

71.94( 0.9231)( 0.8187) (1 ) 6.17( 0.9231)( 0.8187)
            ; 0.707

1 ( ) ( 0.707)

6.17( 0.9231)( 0.8187)
( ) ( )[1 ( ) ( )]

( 0

a z z z
z F z F z

b z

z z z z

z z

z z
H z Q z G z Q z

z






 



 
 

    
  

 

 
  
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Pole Placement Method: Shaping T(z) - 1  

•   What is feasible if you have unstable and non-minimum phase systems? 

 

.

( )( ) (1)
Suppose ( )  and want ( ) . DC gain =1 = . What is feasible for ( )?

( ) ( ) (1)

Let  ( ) ( ) ( ) ( );   ( ) (z) ( ) ( )

k k r
r r r

r

bad also close to unit cgood goodbad

s nm s us

b zb z d
G z z T z K z K b z

a z d z b

b z b z b z b z a z a a z a z

 

     

  

 

1Consider a control scheme given by ( ) ( ) ( ) ( ) ( ) ( ); ( ), ( ), ( ) are polynomials in 

( ) ( ) single DOF controller

, ( )[ ( ) ( ) ( ) ( )] ( ) ( ) ( ). Recal

ircle

h r h

k k

h r

d z u z K p z r z q z y z d z p z q z z

p z q z

So z b z d z u z q z y z K z p z b z r z



 

 

 

  l ( ) ( ) ( ) ( )

( ) ( )( )
[ ( ) ( ) ( ) ( )] ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

k

k
k k r

h r k

h

k s nm
kr r

rs us k s nm

h

a z y z z b z u z

K z p z b zy z
d z a z z b z q z y z K z p z b z r z

r z d z a z z b z q z

K z p z b z b z b z b z
K z

d z a z a z a z z b z b z b z q z




 



   


      



    


 


1 1 1

1

1 1

1

( )

What if we select ( ) ( ) ( ); ( ) ( ) ( ); ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )  keep "bad" zeros in the close

s s s

h

nm

r r
rus k nm

nm

r

d z

d z b z d z q z a z q z p z a z p z

K p z b z b z b z
then K

d z a z a z z b z b z q z d z

b z p z b z b z

  

 

    

 

  




  

1 1
1 1

d-loop system

( ) ( ) ( ) ( ) ( ) ( )
1  Bezout Identity.  Get ( ) and ( ) by equating coefficients.

( ) ( )

us k nmd z a z a z z b z b z q z
d z q z

d z d z

    

  

1 1

( )( ) ( )( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

us k nm

D zY z X zM z N z
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X z N z Y z M z D z
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Solving N(z) X(z) +M(z) Y(z) = D(z)  

 

( )

( )

1 2 1 2

1 2 0 1 2

1 2 1 2

1 2 0 1 2

1 2

1 2

( )
( ) ( ) ( ) ( ) ( ) ( )

( )

( ) .... ; ( ) ....

( ) 1 .... ; ( ) ....

( ) 1 ..

V z

F z

k p

k p

l p

l p

N z
X z Y z D z V z F z D z

M z

N z n z n z n z X z x x z x z x z

M z m z m z m z Y z y y z y z y z

D z d z d z

     

     

 

 
   

 

        

         

   

 

1

0 1

1

0 1

0 1

0 1

0 1 1

0 1

0

..

( ) ... ; max( , ); 2

( ) ... ;  don't know  a priori. Each  is a 2-row vector.

. 0

0 .
. 1 .

0 0

0 0 0

Find  su

n

n

m

m i

p

p i

m
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p n

d z

F z F F z F z m k l F vector
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F F F

F F F
V V V d d VF D

F F
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
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 
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   

 
 
        
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 

 ch that rows of   are independent.  

 Get ( ) from odd coefficients of 

 Get ( ) from even coefficients of  

F

X z V
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


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; ; 1
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n
F F i
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  
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   

 ; 0i i iV x y i 

Deconvolution Problem 
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Pole Placement Method: Shaping T(z) - 2  

•   Example 

 3 2

280.14
( ) ;  poles at 31.321, 31.321, 100; 0.002 sec

100 981 98100

Want 0.5sec  for 2% error, % 5% and steady state error 0.02

   50 (1) / ( 1) 0.9804

8 0.69 11.6 / sec
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n n

G s h
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  

     
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G z
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    
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
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     

   1 1 1

7 1 1

1 1 1 1

1 1

93 )(1 0.8187 ); ( ) 1; ( ) (1 1.065 )

( ) 3.56x10 ; ( ) (1 3.554 )(1 0.255 ); ( ) 1

( , ) :

(1 1.065 ) ( ) (1 3.554 )(1 0.255 ) ( ) 1 1

un

s nm

z z a z a z z

b z b z z z b z

Bezout Aryabhatta Diophantine identity

z d z z z z q z

    

     

   

   

     



      1 2

1 2

1 1 1 1

7 1 2

1

1 1

1

1

.968 0.9685 ( )

Solve for ( ) ( ) ( ) 1 0.9042 0.001 ; ( ) 0.0012

( ) ( ) ( ) 3.56x10 (1 0.9042 0.001 )

( ) ( ) ( ) 0.0012(1 0.9393 )(1 0.8187 )
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s

h

s

z z d z

d z and q z d z z z q z

d z b z d z z z

q z a z q z z z

p z

 

 

   

  

 

     

     

    


1

5

3 1 1

1 2

( ) ( ) 0.9804 (1)
1 ( ) ( ) ( ) 8.577x10

( ) (1) (1)

( ) 3.371x10 (1 0.9393 )(1 0.8187 )
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( ) (1 0.9042 0.001 )
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K b z b z z d
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  
 

 

 
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 
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A Technique for Control of Systems  

with Time Delay, τ=Mh + ε 

u(z) = H(z){r(z) – [ym(z) + (y(z) – yp(z)]} 

-  Nominally y(k) – yp(k) = prediction error should be small 

-  Control is based primarily on r – ym 

u 

G(z) → z-MG(z),   M = integer 

Smith Predictor/Compensator 

yp(k) = “predicted” value of y(k) 

•   Implementation: 

(Will consider mods for “fractional” delay part 0 ≤  ε <  h later.) 

ym(z) = Gm(z)u(z)  ~  M – step ahead prediction of y 

yp = z-M Gm(z)u(z) 

•   Design  H(z)  using  Gm(z) = “model” of  G(z) (usually  Gm ≡ G). 

(need to know/estimate future r if it is changing). u(z) = H(z)z+M[r(z) – y(z)] 
-  Basic idea is to build a control that approximates 

ye ~ “effective” output 

r 
e 

ye 
H(z) y 

z-M 
yp 

“plant” 

z-MG(z) 

Gm(z) 
ym 

IMC-like structure 
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 
z 0.87

H z 10.5
z 0.35






Smith Compensator Application 

-  Possible numerical problems if G(z) is unstable 

•   Model of system in feedback loop 

m
m-  Recall       ~ 56o ,  ωc ~ 0.73 => τmax ~ 1.34 sec, so expect poor performance with no delay 

   compensation as      would drop to ~ 14o.  

v(k–M) 

Implement z-M = M – step delay line by an (M+1) – dimensional push – down stack. 

•   Motor-positioning example with τ = 1sec,  h = 1 sec (i.e.,  M = 1) 

y 

0 
0.19 

15 

0.38 
0.57 
0.76 
0.95 
1.15 
1.34 
1.53 
1.72 
1.91 

1.5 13.5 12 10.5 9 7.5 6 4.5 3 

-  Initialize Gm to rest condition ( ≡0) 

v(k–1) v(k)  

(from w-plane design) 

-  Initialize stack with v(k – j) = y(k)  for all  j at k = 0 

v(k) = ym(k) 

yp(k) 

Step input response, τ = 1 sec 

No delay compensation 
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Results with Delay Compensation 

System response with no time delay 

•   CL response is identical to undelayed case, with a time-shift of M steps. 

ym = propagation of y through G(z), remains unchanged. 

System response with τ = 1 sec and  

delay compensation design 

System initially at rest,  r(k) = unit step. 

•   As M increases the need for Gm(z) ~ G(z) becomes more critical. 

-  If system is not initially at rest, output response would “drift” for first M steps until 

   the first control begins to affect response. 

y 

0 

0.11 

15 

0.23 

0.34 

0.45 

0.68 

0.80 

0.91 

1.02 

1.14 

1.25 

1.5 13.5 12 10.5 9 7.5 6 4.5 3 

 

  

z 0.97

z 1 z 0.905



 
•   M = 1,  Gm(z) = G(z) = 0.048 

yp = prediction of current y(k). Obtain via model discussed in Lecture 4. 

Modifications for non-integer τ = Mh + ε,  ε ≠ 0 
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 
 

    
*

m

H z
H z   

1  H z G z 1 z M


 

Alternate Implementation  

of Smith Compensator 

•   Typically,  H*(z) will be a high-order compensator 

u(z) = H(z) e(z) – H(z)Gm(z)(1 – z-M)u(z) 

-  Implementation methods are critical 

>>  1 – 2 usually associated with lag, lead, and PID. 

•   Consolidate inner loop, between e and u 

•   Consolidate  FB loops 

Accuracy 

Speed/timing for real-time 

e 
r H*(z) z-MG(z) y 

u 

e 

r H(z) z-MG(z) y 

Gm(z) z-M–1 

u 
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           0 1 m 1 mu k β e k β e k 1 β e k m   α u k 1 α u k m                 

 
m m 1

0 1 m

m m 1

1 m

β z β z β
H z

z α z α





  


  

 
sf NN

i i1 i2

0 2
i = 1 i = 1i i1 i2

A A z + A
H z β   

z + κ z  + κ z + κ
   

 Implementation of High-Order  

Digital Compensators 

-  Needs storage of last m e(i) and u(i) 

-  SE and SU for time k:  computed at step k–1 

•   Direct form 

SU SE 

•   Small changes in αi ,  βi coefficients (especially αm , βm) can cause large changes in  

     roots = poles and zeros of H(z). 

-  Very poor numerical properties! 

Nf First-order Factors 

PF expansion (assume no repeated roots): 

-  Decompose H(z) into a sum of low-order subparts (e.g., as in PID) and then add up parts 

•   Decomposition Approach 

•   Errors in e(k), u(k) “hang around” for m steps 

 
m 1

1 m

0 i i 0 im m 1

1 m

β z β
H z β  ;        β β β α

z α z α





 
   

  

Ns Second-order Factors 
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2 1

1

e

e e

e



sf NN

i=1 i=1

R UFi  USi  

Implementation Structure of H(z) 

Note 1 –step delay in all first, second-order parts => can compute these at step k – 1 for use 
at time k. 

•   Algorithm  (initiate R, e1, USi1,  USi2,  UFi1  = 0 ) 

Structure 0β UP 

i-th 1st –order part e(k) 
u(k) 

1

i

1

i

A z

1 κ z





 1 1

i1 i2

1 2

i1 i2

A +A z z

1 κ z κ z

 

  

i-th 2nd –order part 

UFi 

USi 

 
 sf

1 1NN 1
i1 i2i

0 1 1 2
i = 1 i = 1i i1 i2

A  + AA z
H z β   

1 + κ z 1 + κ z  + κ

z z

z

 

  
   

•   Include in Cntrl subroutine, OPT = 3. 

obtain  e(k) = e = r(k) – y(k) 

U = β0e + R 

output  u(k) U  

UFi = Aie1 – κiUFi1 

UFi1 = UFi 

USi = Ai1e1 + Ai2e2 – κi1USi1 – κi2USi2 

USi2 = USi1 

USi1 = USi 

Do for each  

1st-order part 

Do for each  

2nd-order part 

Obtain next value of UFi 

save it for next time 

Obtain next USi,  

save last two  

values of USi 
=> 
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Summary of Compensator Design Methods 

•   Direct design methods 

•   Indirect design H(s) → H(z)  by discrete equivalent 

-  Easy and straightforward 

-  Generally requires small h 

-  Extremely difficult for MIMO systems 

-  Does not use all available information about system behavior (e.g., y instead of x) 

-  Limited by human insight 

=>  Disadvantages 

-  Measures used are not 1:1 with time response (requires trial and error with CL  

   simulation) 

-  Low-order compensator designs do not always work 

-  Generally easy to design H(z) 

-  Universally used techniques, time-tested 

-  Higher order dynamics in G(s) accommodated with little extra dffort 

=>  Advantages 

-  A low-order design, easily realized, is found 

-  Only have Nyquist restriction on h 

-  Root locus,  w – plane,  PID 


