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The University of Connecticut      Fall 2018 

Dept. of ECE         KRP 
 

Take Home 

(Due December 10, 2018). 

 

1. [10 points] Assume that xn, n=1,2,…,N are i.i.d. observations from a Gaussian N(,2).  

Obtain the MAP estimate of , if the prior follows the exponential distribution 

 

 

Obtain the Laplacian approximation of the posterior? 

2.  (10 points) Suppose we have features          , a two class response, with class sample 

sizes n1, n2 and the target responses {zi} coded as –N/ n1 for class 1, N/ n2  for class 2, 

where N = n1+ n2. 

 

(a) Show that the linear discriminant analysis (LDA) rule classifies a test feature x to 

class 2 if  

 

 

 

and class 1 otherwise.  Here 

 

 

 

 

 

 

 

(b) Consider minimization of the least squares criterion 

 

 

 

 

 

 

 

 

 

 

(c) Show that  

 

 

 

(d)  Show that this result in (c) is valid for any distinct coding of the two classes. 
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(e) Find the solution  

Show that the decisions rule to classify to class 2 if             and class 1 otherwise is 

not optimal unless the classes have equal number of observations. 

 

3.  (10 points) Let                           . Show that   

 

 

 

 

 

where  

 

 

 

 

4. [10 points] In this problem, you will prove that LMS converges in a mean square sense.  

Consider the LMS equation: 

 

 

 

 

 

(a)  Let  

 

Using LMS assumption and the orthogonality of error and the weight estimate, show 

that 

 

 

 

 

(Hint:  Use the fourth order moment equations of Gaussian random variables) 

 

(b) Consider the Eigen decomposition of  

 

Show that 

                

(c) Now consider the diagonal elements of  

 

Show that  

 

 

 

 

(d)  Show that this system is stable if  

 

0 0
ˆ ˆ ˆˆ   and hence the predicted responses .iiw z w w x 

ˆ  0iz 

2 ~ ( ; , )z N z  

 

2 2 2

E  |

 | ( )

c
z z c H

c
E z z c c H


 




   



 
    

 

 
        

 

( )
              ( )

1 ( )

 and where ( ) is the pdf of a standard Gaussian and ( ) is its CDF.

u
H u

u

u u










*

( 1) ( ) ( ) ( ) * ( ) *

( 1) ( ) ( ) ( ) **

( ) ( ( ) )

;

n

n n n T n n n T n n n nn n T

e

n n nT n n n nn

w w z w x x w z w x w w x x

v I x x v e x v w w

 

 





       

     
 

 
2( ) ( ) * 2{ }; [ ] ~ Correlation matrix of data; [ ]

n n T n nT n

n x eE v v R E x  x E e    

 
2

2 2 *

1

2 2 2 2

{ } { }

2 { }

n nT n nT n nTn

n n x n n x n

n x n n x x n x x n x e x

R R E x x x x E e x x

R R R R R tr R R

   

     

         

          

1 1
ˆ and let T T

x x n nR Q Q Q Q     

2 2 2 2

1
ˆ ˆ ˆ ˆ ˆ ˆ2 { }n n x n n x x n x x n x e xtr                       

11
ˆ  and represent them as a vector nn s 

2 2 2 2 2

1 1

1 2 1

( 2 2 )

.

T

n np x x e

T

p

s I s

where

      

   

 



      

   

1

1

2 2
0

( )
p

x
i

i

tr R







  





 

3 

 

 

5.  (10 points) Consider a general regularized least squares regression problem.   

 

 

 

 

 

  

a) Show that the optimal solution is a biased estimate given by 

 

 

Specialize the estimate when =Ip+1 and =X.  The latter is called uniform weight 

decay.  Why? (Hint:  It is related to ˆ (0, )w  .)  

 

b) Show that the bias in the weight estimate is given by 

 

 

Specialize the expected bias estimate when =Ip+1 and =X.  Show that the bias is 

only a function of  and w when =X.   

 

c) Show that the residual for a test vector ( x , z) is given by 

 

 

 

Specialize the residual expression for =Ip+1 and =X.   

 

d) Now, we compute square of the bias of the residual assuming the second moment 

matrix                                .  Show that 

 

 

 

When =Ip+1 and  x = Ip+1, show that 

 

 

 

Further when =X and  x = Ip+1, show that 

 

 

 

e) Show that, under the same assumption as in (d), the variance of the residuals is given 

by  
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When =Ip+1 and  x = Ip+1, show that 

 

 

 

Further when =X and  x = Ip+1, show that 

 

 

f) Find the optimal  that minimizes the mean square error = (bias2 +variance) for the 

two cases: (i) =Ip+1 and  x = Ip+1 and (ii) =X and  x = Ip+1.   

 

6. (10 points)  (a) Consider a support vector machine and the following training data from 

two categories: 

 

 

 

 

 

 

(i) Use the map  (x) to map x to a higher dimensional space  

 

 

(ii) Formulate the dual problem associated with the SVM classification problem 

and solve it by hand.  Check your answers with MATLAB or any SVM tool 

box you may have access to.  

(iii) Find the discriminant function g(x1,x2) = 0  in the x1-x2 plane.  Identify the 

support vectors from g(x1,x2) = 1.   

(iv) What is the margin? (Hint:  Use result from Problems 7.4 and 7.5 of Bishop).   

 

7. (10 points) Consider fitting a model of the form 

 

 

Suppose we have made N= 11 measurements given by 

 

{xn} = [94, 96, 94, 95, 104, 106,108, 113, 115, 121, 131] 

{zn} = [0.47,0.75,0.83,0.98,1.18,1.29,1.40,1.60,1.75,1.90,2.23]  

 

(a) Compute an unbiased estimate of  2 based on MLE estimate of 
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            posterior of the slope.  

 

8.  (10 points) Consider the negative log of the posterior given by 

     

    

22
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(a) Compute the gradient and Hessian of J and compute the MAP estimates of the 

parameters. 

(b) Use this to derive a Laplace approximation of the posterior 1 2( , | ).p D   

 

9. [10 points] Consider a cause-effect model where the set of binary variables {h1, h2, …, 

hm} are the causes (hidden or latent variables) and the set of binary variables {v1, v2, …, 

vn} are the effects (visible or observed variables) with the joint distribution given by 

 

 

 

 

 

 

(a) Show that P(h|v) is given by  

 

 

 

 

 

 

 

 

 

 

 

 

 

(b) By symmetry, show that 
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10. [10 points] Consider the problem of clustering one dimensional data with a mixture of 2 

Gaussians using the EM algorithm.  You are given three points x1=1, x2=10, x3=20.  

Suppose that the output of the E-step is the following responsibility matrix: 

 

 

 

 

 

 where the entry nk is the probability of observation xn belongs to cluster k.  You are asked 

  to compute the M-step.   

 

(a) Write down the likelihood function you are trying to optimize. 

(b) Perform the M-step for the two mixing weights and the two means. 

(c) Find the final converged mixing weights, means and responsibilities.   
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